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Abstract

LetV be a closed algebraic subvariety of tirelimensional projective space over the complex or
real numbers and suppose tNais non-empty and equidimensional’he classic notion of a polar
variety ofV associated with a given linear subvariety of the ambient spadenafs generalized and
motivated in Bank et al. (Kybernetika 40 (2004), to appear). As particular instances of this notion of a
generalized polar variety one reobtains the classic one and an alternative type of a polar variety, called
dual As main result of the present paper we show that for a generic choice of their parameters the
generalized polar varieties ®fare empty or equidimensional and smooth in any regular poivt of
In the case that the varieYyis affine and smooth and has a complete intersection ideal of definition,
we are able, for a generic parameter choice, to describe locally the generalized polar varMties of
by explicit equations. Finally, we indicate how this description may be used in order to design in the
context of algorithmic elimination theory a highly efficient, probabilistic elimination procedure for
the following task: In case, that the variatys Q-definable and affine, having a complete intersection
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ideal of definition, and that the real trace \#fis non-empty and smooth, find for each connected
component of the real trace @fan algebraic sample point.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The notion ofyeneralized polar varietiesas introduced and motivated[#]. The present
paper is devoted to the study of their smoothness which entails important algorithmic con-
sequences. It turns out that the classic polar varieties are special instances of the generalized
ones. Classic polar varieties were used in [2,3] for the design of a highly efficient elimina-
tion procedure which, in the case of an affine, smooth @mdpactreal hypersurface or,
more generally, a complete intersection variety, produces an algebraic sample point for each
connected component of the given real variety. The aim to generalize this algorithmic result
to thenon-compactase motivates the introduction of the concept of the generalized polar
varieties of a given algebraic manifold associated with suitably generic linear subvarieties
and a non-degenerate hyperquadric of the projective ambient space. In [4] it was shown
that these generalized polar varieties become Cohen—Macaulay. Thisalgttaaicthan
geometric result suffices to solve the algorithmic task which motivates the consideration of
generalized polar varieties. In this paper we go a step further: we slyeeraetricresult
saying that under the same genericity condition the generalized polar varieties of a given
algebraic manifold are smooth, and we derive handy local equations for them.

Let P" denote then-dimensional projective space over the field of complex numBers
and let, for 0< p <n, V be a purg-codimensional closed algebraic subvarietyPdf.

Now we are going to outline the basic properties of the notion of a generalized polar variety
of V associated with a given linear subsp&ca given non-degenerate hyperquadiand
a given hyperplanél of the ambient spac”, subject to the condition tha® N H is a
non-degenerate hyperquadrictdfWe denote this generalized polar varietyiﬁx(V). It
turns out thaWWg (V) is empty or a smooth subvariety@having pure codimensiarin V,
if Vis smooth anK is a “sufficiently generic”(n — p — i)-dimensional, linear subspace
of P", for 0<i<n — p (see Corollary 11 and the following comments).

In this paper we consider mainly the case tHais the hyperplane at infinity oP”,
fixing in this manner an embedding of the comptedimensional affine spac&” into the
projective spac@”. LetS := V N A" be the affine trace &f and suppos&is non-empty.
ThenSis a purep-codimensional closed subvariety of the affine space

The affine tracéVg (S) := Wi (V)N A" is called theaffinegeneralized polar variety &
associated with the linear subvariétand the hyperquadri@ of P”. The affine generalized
polar varieties oS give rise to classic and dual affine polar varieties.

Let us denote the field of real numbers Byand the reah-dimensional projective and
affine spaces by, and A', respectively. Assume thatis R-definable and leVy :=
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VNPRandSg := SNAL = VN AT, be the real traces of the complex algebraic varieties
VandS Similarly, let Hg := H N P, be the hyperplane at infinity of the real projective
spaceP ;. Suppose that the real codimensioniaf andSg at any point i, thatSk (and
henceVg) is non- emth and tha andQ areR-definable. Then the generalizezhl polar
varletlesWK(VR) = Wk(V) N PR and WK(SR) WK(S) N AR WK(V) N AL

are well defined and lead to the notions of a classm and a dual polar variéty ahd

Sr. Suppose thafy is smooth. Then “sufficiently generic” real dual polar varietiespf
contain for each connected componenfgfat least one algebraic sample point. The same
is true for the real classic polar varieties if additionally the ideal of definitios &f a
complete intersection ideal andSf; is compact (see Propositiohsand 2).

Let Q be the field of rational numbers, I&t, ..., X, be indeterminates ovék and let
aregular sequencky, ..., F, in Q[Xy, ..., X,] be given such thatFy, ..., F,) is the
ideal of definition of the affine variet@ Then, in particularSis a Q-definable, complete
intersection variety. Suppose that the hyperquagdiggiven by a non-degenerate quadratic
form over@Q and, in particular, thaQ N Hg can be described by the standamd;ariate
positive definite quadratic form (inducing ok, the usual euclidean distance). Assume
that the projective linear variet is spanned by: — p — i + 1 rational points(ai o :

cratp) ...y @r—p—i410 ¢ o+ ¢ Gn—p—iy1n) Of P With a1, ..., a;, generic for
1<j<n—p—i+1. ThusK has dimension — p —i. Then, ifSis smooth, the generalized
affine polar varietyWK(S) is empty or of pure codimensidnin S Moreover, W (S) is
smooth and its ideal of definition i@ [ X3, ..., X, ] is generated by, ..., F, and by all
(n — i + 1)-minors of the polynomiaf(n — i + 1) x n)matrix

B aFl 8F1 T
5X1 8Xn
0Fp J0Fp
0X, 0Xn
a1,1 —a1,0X1 e ain —a1,0Xn
Lan—p—i+11—n—p—i+1,0X1 = dp—p—i+1ln — dn—p—i+1,0Xn
(see TheoremO0).

In [2,3], classic polar varieties were used in order to design a new generation of efficient
algorithms for finding at least one algebraic sample point for each connected component of
a given smooth, compact hypersurface or complete intersection subvari&ty.of

Let us illustrate this comment in the case of the two-dimensional unit sghedesich is
a smooth, compact hypersurfacefg}, given by the polynomiaF := X2 + X3 + X2 — 1.

Let Q be the hyperquadric dP2 defined by the quadratic foriZ + X2 + X3 + X3
and letk 1 and kK © be the linear subvarieties @rg defined by the linear equation systems
Xo=0,X3=0andXg =0, X3 =0, X» =0, respectively. Observe that! is spanned
by the rational pointg0 : 1: 0: 0) and(0: 0: 1 : 0), and thatk© consists of the point
(0:0:0:1). One verifies easily that the real polar variét\/skl(S) is described by the

vanishing of the polynomials and whereas the polar vaneWKo(S) is described by

the vanishing of, (,;"XF and £ ‘F Therefore,WKl(S) andWyo(S) are the classic real polar

varieties obtained by cuttlng the two-dimensional unit spl$avéh the linear subspaces of
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A% given by the equation systen¥g = 0 andX3 = X2 = 0, respectively. In other words,
WKo(S) is the zero-dimensional algebraic varidty, 0, 0), (—1,0,0)}, and WK1(S) is

the unit circle ofA2 The elimination algorithm off2] or [3] applied to the input equation

F = X2 + X + X3 — 1 = 0 consists in solving the zero-dimensional equatlon system
X% + X2 + X2 1=0, X2 =0, X3 = 0, which describes the polar varleWKo(S).

In this paper we will uselual polar varieties for the same algorithmic task in tian-
compact(but still smooth) case. This leads to a complexity result that represents the basic
motivation of this paper: If the real varieSg is non-empty and smooth and3is given as
before by aregular sequengg, ..., F, in Q[X4, ..., X,] suchthat, forany £ < p, the
ideal generated by, . .., Fj, isradical, then there exists a uniforpmpbabilisticalgorithm
which finds a (real algebraic) sample point for each connected compongniroéxpected
sequential im& ((;)Ln“pzdzéz) (counting arithmetic operations @ at unit costs). Here,

the O-notation (introduced in [45]) indicates that we neglect polylogarithmic factors in the
complexity estimated is an upper bound for the degrees of the polynomials .., F
L denotes the (sequential timajithmetic circuit complexityf them andd <d” p"~7 is
the (suitably definedjlegree of the real interpretatioof the polynomial equation system
Fi, ..., F, (see Theorems 13 and 14 and for the pattern of elimination algorithm described
here compare [21] and [22]). Although this complexity boun@d$ynomialin 9, it may
become exponential with respect to the number of variafled least in the worst case.
This exponential worst case complexity becomes unavoidable Sinogay contain expo-
nentially many connected components. On the other hand, the elimination problem under
consideration is intrinsically of non-polynomial character with respect to the syntactic input
length for any reasonable continuous data structure (cf. [11,20]).

In view of [12] we may conclude that no numerical procedure (based on the bit rep-
resentation of integers) is able to solve this algorithmic task more efficiently than our
symbolic-seminumeric procedure.

2. Intrinsic aspects of polar varieties

For two given linear subvarietigsandB of the complex-dimensional projective space
P" we denote by(A, B) the linear subvariety oP” spanned byA andB. We say tha#A
andB intersect transversally (in symboldmB) if (A, B) = P" holds. In case thak and
B do not intersect transversally, we shall writ&/ B, (observe that dird + dimB < n
implies Aty B). LetV be a projective algebraic subvariety Bf and suppose that is of
pure codimensiomp for some G< p <n (this means that all irreducible componentsvof
have the same codimensiph We denote by eq the set of all regular (smooth) points of
V. Observe thaVeg is a complex submanifold dP" of codimensiorp and thatVieg is
Zariski-dense itv. We call Vsing := V \ Vieg the singular locus of the projective variéty
LetV andW be two given pure codimensional projective subvarietie® bfand letM be
a given point ofP" belonging to the intersection dfeg and Wreq. We say that/ andW
intersect transversally at the poitif the Zariski tangent spaceg, V andTy W of the
algebraic varietie¥ andW at the pointM intersect transversally (here we interpré&igV
andTy, W as linear subvarieties of the ambient sp&¢ethat contain the poin).
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We assume for the moment that the variétis the projective closure of a given closed
algebraic subvariet$ of the affine spacé\” and thatS has pure codimension We call
Sreg 1= ViegN A" andSsing := VsingN A" the set of smooth (regular) points and the singular
locus of the affine variet$, respectively. For any smooth poixtof the affine varietySwe
interprete, as usual, the tangent spégeS of SatM as a linear subspace 6" passing
through the origin. Thus, if we interprel® as a point of the projective varie¥; the affine
trace of the tangent spa@g, V of V atM, namelyT,; V. n A", turns out to be the affine
linear subspace di” that is parallel tdl’y; S and passes throudW, namelyM + Ty, S. In
the same sense we wrid + A := (M, A) N A" for any linear subvarieth of P".

For the rest of this paper let us fix integars 0, 0< p <n and a projective subvariety
V of P" having pure codimensign Using the projective setting, we introduce in Section
2.1 the notion of gyeneralizedpolar variety ofV associated with a given linear subspace
K, a given non-degenerate hyperquadiand a given hyperpland of the ambient space
[P", subject to the condition th& N H is a non-degenerate hyperquadrid-bf

Restricting again our attention to the case tHas the hyperplane at infinity oP”,
we may consider the complexdimensional affine spac&” as embedded i?”. In this
context we may define thaffine generalized polar varieties of the affine variety:=
VvV n A", which we suppose to be non-empty. It turns out thatdlagsicpolar varieties
of Sare special instances of the affine generalized ones. We finish Section 2.1 with the
description of another type of special instance of affine generalized varieties, namely the
dual polar varieties introduced in [4]. Finally, in Section 2.2 we introduce and discuss the
real (generalized, affine, classic, dugblar varietiesof the real varietied/r := V N P,
andSg := S N A’y (supposing thaV and Sk are non-empty). We will formulate two
sufficient conditions for the non-emptyness of such real polar varieties.

2.1. Generalized polar varieties

Let Q be a non-degenerate hyperquadric defined in the projective dadeor a linear
subvarietyA ¢ P" of dimensiona, we denote byl ¥ the dual ofA with respect tdQ. The
dimension ofAY isn —a — 1.

Further, letH be a hyperplane such that the intersect@m H is a non-degenerate
hyperquadric oH (this means that at any poiM of O N H the hyperplaned is not
contained in the tangentspa€g Q). If Ais a linear subvariety dP” contained irH, we
denote byA* its dual with respect t@ N H. The dimension ofA* isn — a — 2. Observe
that the linear varietied* andAY N H coincide.

Now we are going to introduce the notion of a generalized polar variety contained in
the projective spacP”. Such polar varieties will be associated with a given flag of linear
subvarieties, a non-degenerate hyperquadric and a hyperpl&rfewhich is supposed not
to be tangent to the hyperquadric. We consider this situation to be represented by a point of a
suitable parameter space given as a Zariski open subset of the product of the corresponding
flag variety, the space of hyperquadrics and the dual spaé diVe will denote a current
point of this parameter space Wy= (K, 0, H).

In view of the intended algorithmic applications to real polynomial equation solving,
the principal aim of this paper is the proof of suitable smoothness results for generic polar
varieties associated with the given projective variétiyor this purpose we will work locally
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(inthe Zariski sense) in the variety This allows us to restrict our attention to locally closed
conditions in the parameter space (instead of the more general constructible ones).

For a given pointP = (K, Q, H) we define, for any membé¢ of the flag/C, thegen-
eralized polar varietﬁk (V) associated witlK as the Zariski-closure of the constructible
set

{M € Vieg\ (K U H) | TyVdy (M, (M,K)N H)*)atM}. (1)
Note thatW (V) is contained itV. Let us denote the given flag by
K : P" > K" 15K 25...oK" P 5.5k 5 KO

Then the generalized polar varieties associated Witlre organized as a decreasing se-
quence as follows:

V= Wanl == WKﬂ*p D Wanpfl DD WKl D WKO.

In order to simplify notations, we write

~

‘/i = Wanpfi, 1<l<n —P.

We callV; theith generalized polar varietgf VV associated with the parameter pdnfThe
subscript reflects the expected codimensionigfin V. Note that theelevant partof the
flag K leading to non-trivial polar varieties ranges frdei—?—1 to K ©.

Let K be any member of the flalf and assume thad is the hyperplane at infinity of
P" (fixing an embedding of the-dimensional affine spac&” into P") and thatV is the
projective closure of a given pugdimensional closed subvarie§of the affine space
A". We denote by)VK(S) ;= Wg (V)N A" theaffine generalized polar variety associated
to K.

Two particular choices of the parameter patht= (IC, H, Q) are noteworth. Let us fix
a non-degenerate hyperquadgi@nd a hyperplankl not tangent t@Q. Furthermore, let be
given a flag

L: LPcrt.cLPtc...cL"?cLtcpr

organized as aimcreasingsequence of linear subvarieties of tieimensional projective
space and suppose that~1 = H holds.

We associate two new flags of linear subspacdg’ofvith the flagZ, both organized as
decreasingsequences. We call these two flags the internal and the external flaguad
denote them byC and/C, respectively.

We write theinternal flagC as

K: P">K" 1> K" ?2>5...5K" P 5.5k 5 KO

Fori ranging from 1 tox — p, we define the relevant part &if by K" ~7~ := (LPTi=2)*
(observe that the linear variefy’+~2 is contained in the hyperplarng). The irrelevant
partK"~1 > K"2 5 ... 5 K" P of K may be chosen arbitrarily.

Consider now an arbitrary membgrof the relevant part of the internal fl&g Further-
more, letL be the member of the flag determined by the conditiok = L*, and letM
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be a point belonging t¥reg \ H. Taking into account thak is contained irH, whereasvl
does not belong tbl , we conclude that

(M.KyN H=K
holds. This implies
(M, (M, K)n H)*) = (M,K*) = (M, L).

Provided thaH does not contain any irreducible component/ofve infer from () that
Wk (V) coincides with the Zariski-closure of the constructible set

{M € Vieg\L | TyV dy (M,L) at M}. )

We denote this Zariski-closure By, (V).

As before letH be the hyperplane at infinity & " and letV be the projective closure of
a given puregp-codimensional closed subvarie®ypof the affine spacé\”. ThenH does not
contain any irreducible component¥find from @) we deduce that the affine generalized
polar vanetyWK(S) WK(V) N A" is the affine tracéV; (S) := W, (V) N A" of the
polar varietyW (V). Since the linear subvarietyis contained in the hyperplane at infinity
H, we may interpreté as a linear subspadeof the affine spacé\”. From (2) one infers
easily that the affine polar varieW (S) is the Zariski-closure of the constructible set

{M € Seg\(LNA") | M+TySdy M+L at M},
or, alternatively, of
{M € Sieg\ (LNA") | TySdy I at M} (3)

(here we use freely the usual notion and notation of non-transversality of linear and affine

linear subspaces @i"). This implies thatW, (S) is exactly the classic polar variety &f

associated with the linear spalkcd-inally, let us remark that any classic polar varietySof

is obtained by a suitable choice of the flagvith L”~1 = H. For the definition and basic

properties of classic polar varieties we refef40] and the references cited therein. More

details on the relations between classic and generalized polar varieties can be found in [4].
We write theexternal flagiC as

K : RN G G NI i e R Ny o

Fori ranging from 1 to: — p, we define the relevant partETby?n_p_i = (LPHhY,
The irrelevant park” " > K" 2 5 -+ > K" " of K may be chosen arbitrarily.
Consider now an arbitrary membgTrof the relevant part of the external fl&g Further,

let L be the member of the flag determined by the conditioR = LV, and letM be
a point belonging t0/eg \ (K U H). Fromk® c K we deduce thak " is contained in

— —0V
(M, K). Taking into accountth&® = L1 = H holds, we conclude that any element of
(M, K)" belongs to the hyperplat& Thus(M, K)V is contained if({M, K)N H)Y N H.
A straightforward dimension argument implies now

M, K)Y=(M,Kyn H)Y N H=({M,K)nN H)*.



384 B. Bank et al. / Journal of Complexity 21 (2005) 377—-412

Hence, from {) we conclude that the generalized polar var@ty(V) coincides with the
Zariski-closure of the constructible set

{M € Viegg\ (K U H) | TyVdy (M, (M,K)")atM}. 4)

Again, let us assume that the vari#tys the projective closure of a given closed subvariety
S of the affine spacé\”, thatShas pure codimensiopand thatH is the hyperplane at
infinity of P”. We call the affine polar varletWK(S) = W (V) N A" the dual polar
variety of Sassociated witfK .

From @) one easily deduces that the affine dual polar vanié}g(S) is nothing else but
the Zariski-closure (iA") of the constructible set

{M € Seg\ (K N A" | M+Ty Sty M+(M,K)"atM}. (5)

Let M be a regular point o8that does not belong t N A”. Since the linear subvariety
(M, K)V is contained in the hyperplane at infinityBf', we may interprete the affine cone
of (M, K)V as alinear subspadg, ¢ of A”. Inthe same way we may interprete the affine
cone of the linear variety as a linear subspatef A”. Then the linear spadg, g consists
exactly of those elements bfhat are orthogonal to the poikt with respect to the bilinear
form induced byQ N H. From 6) one easily deduces that the affine dual polar variety
Wf(S) is the Zariski-closure of the constructible set

{M € Sreg\ (K N A" | Ty S dy IM’f}. (6)

In conclusion: Internal flags lead to the classic polar varieties and external flags lead to a
new type of polar varieties, namely the dual ones.

Classic and dual polar varieties play a fundamental role in the context of semialgebraic
geometry, the main subject of this paper. In the next subsection we shall disaligslar
varieties.

2.2. Real polar varieties

Recall the following notation, and A", for the realn-dimensional projective and
affine spaces. Sometimes, we will also wiité := P andA" := A’ for n-dimensional
complex projective and affine spaces.

Let a flag of real linear subvarieties of the projective spi¢gbe given, namely

£: L°cLlc--cL"tcPh.

Let H be the hyperplane at infinity dP'c, and letHr := H N A}, be its real trace.
Thus Hp, fixes an embedding of the real affine spaté, into P',. Furthermore, let an
R-definable, non-degenerate hyperquadiof P~ be given and suppose th@tn H is

also non-degenerate, and thatn Hp can be described by means of a positive definite
bilinear form. Observe thaP N Hp induces a Riemannian structure on the affine space
A’ and thatl induces a flag oR-definable linear subvarieties of the complex projective
spaceP .. We call this flag the complexification @f. Suppose that we are given a purely
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p-codimensionalR-definable closed subvarie§of A’ whose projective closure iR

isV. We denote by := V NP andSg := S N A’ the real traces of andS(se€[7]).
Suppose for the rest of this subsection that! = Hg holds, thatp is the real codi-

mension ofSk at any point and thafr is non-empty (this implies th&g contains at least

one smooth point). For the given flagof linear subvarieties o, we may now define

the notion of an internal and an external flag and the notionrebbgeneralized, affine,

classic and dual polar variety ¢fz and of Sk in the same way as in the Section 2.1. It

turns out that these polar varieties are the real traces of their complex counterparts given by

V, Sand the complexification of and its internal and external flag. All our comments on

classic and dual polar varieties made in the Section 2.1 are valid mutatis mutandis in the

real case. Again we denote the (real) internal and external flag associated litki and

K, respectively. For any memberof the flagZ, K of the flagK and K of the flagiC, we

denote the corresponding real polar variety by

WL(VR), Wr(Sr), Wk(Ve), Wk(Sm), We(Vr) and W (Sg).

We are now going to discuss the real affine polar varieties associated with the internal and
external flagsC andK of L.

Let us first consider the case of the internal flag.et L be any member of the relevant
part of the given flagC and letK be the member of the internal fldgdefined byK := L*.
Observe that and K are contained in the hyperplane at infiniiz. Hence, we may
interpretel. as aR-linear subspackof the real affine spac&p,. From our considerations
in the Sectior2.1 we deduce that

Wk (Sr) = Wg (Vg) N A% = Wi (VR) N A = WL(SR)

holds and from3) we infer that the classic real polar variéty (Sg) is the Zariski-closure
of the semialgebraic set

{M € (Sp)reg | Tv Sty 1}

in Af,.
R o~
In principle, the classic real polar varieW, (Sg) may be empty, even in case ttat
contains real smooth points. However, under certain circumstances, we may conclude that
Wi (Sr) is non-empty. This is the content of the following statement:

Proposition 1. Suppose that S is a pure p-codimensional complete intersection variety
given as the set of common zeros of p polynomfals ..., F, € R[Xq, ..., X,], where

X1, ..., X, areindeterminates over the reals. Suppose thatthe ideal generatgd by, F),

is radical and thatSg is a pure p-codimensionahon-emptysmooth and compact real va-
riety. ThenWg (Sg) = Wi (Sr) contains at least one point of each connected component
of Sg.

Propositionl is an easy consequence of the arguments used in [3, Section 2.4], which
will not be repeated here.
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Let us now consider the external fl&g Observe thak ’ is a zero-dimensional linear
subvariety of",, namely the origin ofA”. Therefore any member of the external flag
K has a non-empty intersection withf,. Assume now that the Riemannian metric/of
induced by the hyperquadr@@is the ordinary euclidean distance. Under these assumptions
we shall show the following result:

Proposition 2. Suppose thaiy is a pure p-codimensionaion-emptysmooth real variety.
Let K be any member of the external flfgand suppose thak N Al is not contained in
Sr. Then the real affine dual polar varietﬁ/f(SR) is nonempty and contains at least one
point of each connected componentSgt

Observe that the statement of Propositbiecomes trivial fork belonging to the
irrelevant part ofC, since in this cas#%(Sr) = Sg holds.

Proof. SinceK N A, is not contained irf, there exists a poirk of K N A" that does
not belong toSk. Consider now an arbitrary connected compor@uff Si. ThenC is a
smooth, closed subvariety éff, whose distance to the poiRtis realized by a poin# of
C. SinceP does not belong t6r, one has\ — P # 0.

The square of the euclidean distance of any péiraf Af, to the pointP is a real
valued polynomial function defined oftf, whose gradient irX is 2(X — P). Applying
now the Lagrangian Multiplier Theorem (see e.qg. [46]) to this function and the polynomial
equations definingr we deduce thadf — P belongs to the orthogonal complement of
the real tangent spac®, (Sr) (observe thaM is a smooth point ofk). The real trace
Iy, & N Af of the linear spacé,, % introduced in Section 2.1 consists of all elements of

the orthogonal complement &f N A[, that are also orthogonal ¥. Observe now that the
linear spacé; (Sgr) + Uy gN Afp) is strictly contained i}, since otherwise any point
of Af, would be orthogonal ta7 — P. On the other handiy (Sr) + (1, g N AR) # AR
implies thatTy; (Sg) Y Uy N AR) holds. From (6) we finally deduce that the padint
belongs to the real affine dual polar varié@,;(s[p‘g) = Wf(S) N Af and therefore we
haveC N Wx(Sg) # 4. O

3. Extrinsic aspects of polar varieties

In this section we will describe in more detail the generalized polar varieties of a closed,
p-codimensional subvarietyof A", which is given by a system of polynomial equations.
We suppose that these polynomial equations form a regular sequence and generate the
(radical) ideal of definition of. LetK be a “sufficiently generic” linear subvariety &"
of dimension at most — p. We will show that the polar varietWK(S)Qf Sis either
empty or equidimensional of expected codimensio8.itWe will describeWk (S) locally
by transversal intersections of explicitly given hypersurfaced’®fand, in case tha is
smooth, globally by explicit polynomial equations, which generate the ideal of definition
of Wk (S).
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3.1. Explicit description of affine polar varieties

LetP" andA" be then-dimensional projective or affine space oleor R, according to
the context. As above, we consid&f to be embedded if?" in the usual way. For given

complex or real numbers, . .., x, that are not all zeroy := (xg : x1 : ... : x,) denotes
the corresponding point of the projective sp&té Moreover, forxg = 1 we denote the
corresponding point of the affine spaé¢ by (x1,...,x,) == (1 : x1 : ... : x,). Let
Xo, ..., X, be indeterminates ovér (or R).

As of now we suppose that the given projective, purglgodimensional variety is
defined byp non-zero formsfy, ..., f, overC (or R) in the variablesXy, ..., X,,. In other
words, we suppose

V=V, )
whereV (f, ..., fp) denotes the set of common zerosfaf ..., f, in P". Therefore,
the homogeneous polynomiafs, . . ., f, form a regular sequence in the polynomial ring
C[Xo0,,..., Xy](OrR[Xo,, ..., X,]). LetS := VN A" and assume th&is non-empty.
The dehomogenizations ¢i, ..., f, are denoted by

Fr:=fi, X1,..., X)), ..., Fp = fp(L X1, ..., Xp).

Observe thaf7, ..., F, are non-zero polynomials in the variabl€s, . . ., X,, overC (or
R). Thus we have

S=VNA"=V(Fi, ..., Fp),

whereV (Fy, ..., F),) denotes the set of common zerosKyf ..., F, in A". Note that
the polynomials Fy, ..., F, form a regular sequence ifC[X1,,...,X,] (or in
R[X1,,..., X,]).
The projective Jacobian (matrix) ¢i, ..., f, is denoted by
0f;
J(fi“."fb)._-[5};]l§j§p.
0<k<n

For any pointx of P" we write

J(f1 oo fp)x) = [%(X)}
0Xy é
for the projective Jacobian of the polynomidls . . ., f, atthe poink. Similarly we denote
the affine Jacobian of the polynomidl, ..., F), by
OF;

J(F1, ..., Fp) = | —
(F1 ») |:6Xk]1<j<p
1<k<n

and we write for any point of A":

OF;
J(F, ... Fp)(x) = (3_Xk(x) o
k<n

ININ
ININ

1
1
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A pointx of V (or of V. N A") is called(f1, ..., fp)-regular (or(Fu, ..., Fp)-regular) if
the Jacobia (f1, ..., fp)(x) (or J(Fy, ..., F,)(x)) has maximal ranlp. Note that the
(f1, ..., fp)-regular points o¥ are always smooth points ¥f but not vice versa. For the
sake of simplicity, we shall therefore suppose from now on that all smooth poiktaref
(f1...., fp)-regular. In other words, we suppose tifat. .., f, (and hencery, ..., F))
generate a radical ideal of its ambient polynomial ring. Any smooth poi8t®therefore
(F1, ..., Fy)-regular. On the other hand, by assumption, the polynon#igls. ., F,, form
aregular sequence D[ X1, ..., X,].

Suppose for the rest of this section that our ground field iNext, we will generate local
equations for the generalized polar varieties of the affine complete intersection @afliety
this end (and having in mind the algorithmic applications of our geometric considerations
to real affine polar varieties described in Sectidrve may restrict our attention to the case
whereH is the hyperplane at infinity dP” (defined by the equatioky = 0) and where
the given non-degenerate hyperquadics defined by a quadratic foriR, which can be
represented as follows:

n n
R(Xo.....Xp) =X’ + Y 2cxXoXx + »_ Xi®
k=1 k=1

with c1, ..., ¢, belonging taC or R, according to the context. Observe that this representa-
tion of Rimplies the hyperquadric@andQ N H to be non-degenerate®” andH, respec-
tively. Further, observe thad? N H is defined by the quadratic forRo(Xq, ..., X,) =
et X,f € R[X1, ..., X,]. Therefore, the real variet9 N Hp is represented by a pos-
itive definite quadratic form that induces the usual euclidean distané€;om.et us note
that the special shape & (and, in particular, the positive definiteness of the quadratic
form Ro representing) N Hpy) does not restrict the generality of the arguments which will
follow. These may be applied mutatis mutandis to any non-degenerate hyperquadric whose
intersection with the hyperplane at infinityis still non-degenerate.

Fix now 1<i <n — p and choose for each<j<n — p —i +1apointA; = (a0 :

taj,) of P" withajo = 0o0rajo = 1anda;1,...,a;, generic (our genericity
conditions will become evident in the sequel). By this choice, we may assume that the
pointsAy, ..., A,—p—i+1Span an(n — p —i)-dimensional linear subvariey := Kn—p—i
of the projective spac@”.
Let us consider anfy, ..., fp)-regular pointM = (xo : ... : x,) of Vwith xg # 0 and

M ¢ K.Thenone easily sees that ftae- p —i)-dimensional linear subvariety/, K)N H
is spanned by the — p — i 4+ 1 linearly independent points

x0A1—aioM,..., x0 An7p7i+1 — dn—p—i+1,0 M.
Let Y1, ..., Y, be new indeterminates and 1€ := > }_; X; Y%, ® € R[X1,...,X,,

Y1, ..., Y,], denote the (polarized) bilinear form associated with the hyperquéadficH .
Forl<j<n—p—i+1,letf; € C[Xy,..., X,] be defined by

. (X0, -s%n)
L= Ej "= @(xoaj,l —a;0X1,...,X00jn —aj0Xp, X1,...,Xy)
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andG; € C[Xo, X1,.... X,] by

Gj:= Gg""*-"“") = xozf‘o’-"’xn)(xl , X)) — Xo NO """ ) (31, LX)
Then the linear form$g;, ..., ¢,_,_; 1 define the(p 4 i — 2)-dimensional linear variety

(M, K)N H)*in H and are therefore linearly independent. Moreover, the linear forms
G1,...,Gu—p—i+1 vanish atM and at any point of (M, K) N H)*. Hence, they vanish

at any point of the(p + i — 1)- dimensional linear varietyM, (M, K) N H)*). From

the linear independence 61, ..., ¢,_,_;1 one easily deduces the linear independence
of the linear formsGy, . .. Gn —it1. ThereforeGy, ..., G p_it1 descrlbe the linear
variety(M, (M, K)N H)*) used in 1) to define the generallzed polar varlety((V) (see
Section 2.1).

Observe now that for anyd j <n — p —i + 1 the linear forrTG;?‘(J """ ) can be written
as
GE-XO ..... _(XO _ -xO) E(XO xn)(xl )
+x0 Ei»xo """ x")(Xl — X1, ..., Xn — Xp)
= —(Xo — x0) £ (x1, ..., xp)
+x0 Z(xo ajk—ajoxp)(Xg — xi).
k=1
Without loss of generality suppose theg = 1 holds. Thenx := (x1,...,x,) iS an
(F1,..., Fp)-regular point of§ = v N A" and the polynomlad?(1 "Flaerr¥n) depends only
on the varlablesfl, ..., X,. Therefore, it makes sense to con5|der the Jacobian
; ; 1x1,.., , 1x1,..., .
TO = T@(Xl,...,xn) = J(FL ... Fp G G
whose entries belong to the polynomial ri@d X, ..., X, ]. Observe that the polynomial
matrix 7@ is of the following explicit form, namely
B GFl 0F1 T
E'Xl axn
70 oy 0Fp
- 0x1 0Xn
ai1 —ai,0X1 ay, —a1,0Xn
—“nfpfiJrl.l*;’rz—1>—i+l.0X1 - anfpfiﬂ,n*;lflfpfi+1.oxzz_
with ayo, ..., a,—p—i+1,0 being elements of the sét, 0}.

Moreover, observe that the condition
Tu (VY (M, ((M,K)N H)")

from (1) is equivalent to the vanishing of @&t — i + 1)-minors of the((n — i + 1) x n)-
matrix 7 at the poink. Therefore the polynomial&y, . .., F), and the(n —i +1)-minors
of T define the generalized affine polar varlé‘lzy<(S) outS|de of the locussing (recall
that by assumption all smooth points®&are (Fy, ..., F,)-regular). LetW be the closed
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subvariety ofA" defined by these equations. Then any irreducible componeﬁkaS)

is an irreducible component dY. In particular, we havéVg (S) N Sreg = W N Sreg, and
VYK(S) =W if the affine varietySis smooth. Note, thatis the expected codimension of
Wk (S) = Wgn—p-i (S) in S, These considerations lead to the following conclusion:

Lemma 3. Any irreducible component (WK(S) = VT/K,,-,)-I- (S) has codimension at most
iinS.

Proof. Let us denote by the ideal of the coordinate rinG [S] of the affine varietyS
generated by all — i + 1)-minors of the((n — i + 1) x n)-matrix induced by @ in C [S].

Let C be a given irreducible component of the affine polar varf@ty(S) and letp be the

ideal of definition ofCin C [S]. Thenp is an isolated prime component of the determinantal
ideal a. From[17], Theorem 3 (see also [38, Theorem 13.10]) we deduce that the height
of the prime idealp is bounded byi. This means that the codimension ©fin Sis at
mosti. [

In the further analysis of the generalized affine polar vaﬁ%MS) we shall distinguish
from time to time two cases, namely the case that the linear projective varietyk "7~
spanned by the given pointsy, ..., A,—,—i+1 of P", is contained in the hyperplane at
infinity H of P", and the case th&tis not contained ifd. If K is contained irH, we have
a0 =--- = an—p—i+1,0 = 0 and ifK is not contained ifd, we may suppose without loss
of generality that,_,_; 11,0 = 1 holds.

Let us now discuss the particular case tKat= K"~P~' is contained in the hyperplane
at infinity H of P". Let S be the Zariski-closure of the affine varie®jin the projective
spaceP” and letL := K*. ThusL is a(p +i — 2)-dimensional linear projective subvariety
of H, the projective varietys is of pure codimensiop in P” and none of the irreducible
components of is contained irH. Furthermore, we havk = L* andS$ = SN A", From
(2) we deduce now thaWK(S) W1 (S) holds. This implies

Wk (S) = Wi (S) N A" = W.(S) N A" = WL(S). (7)

ThereforeW (S) is theclassicpolar variety associated with thie + i — 2)-dimensional
linear subvariety of the hyperplane at infinitid of P".

We now return to the analysis of the general situation. Let be given a cort{plexp —
i +1) x (n+ 1))-matrix

b10 e bin

bn—p—LO e bn—p—Ln
hn—p—i+L0 T hn—p—[+Ln

with bn—p—i—i—l.O = dn—p—i+1,05 .-+ bn—p—i+1,n = dn—p—i+ln and Withbl,O» cees bn—p—i.O
being elements of the sgt, 0} and suppose thithas maximal rank — p —i + 1 and that
the entriest,—p—i+1n—i+1, .- ., An—p—i4+Ln Ar€ generic with respect to the other entries of
b(e.g.a:=(aj, k)1<1<n p-irrissucha(n — p —i + 1) x (n + 1))-matrix).

0<k<n
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Let K (b) be the linear subvariety @& spanned by the — p — i + 1 projective points
(bl,O N bl,n)» ceey (bn—p—i+l,0 N bn—p—i—i—l,n)-

Observe thak (b) is (n — p —i)-dimensional and thak (a) = K"~ 7~ holds. For the sake
of notational succinctness letus use, fef 1<n— p —i +1 and 1<k <n, the abbreviation

b
r](.,,)((Xk) =bj r—bjoXk.

We consider now the polynomiéln — i + 1) x n)-matrix

r 0n . LT
0xq 0Xn
7O _ Fp i orp
b axl 0Xn
A0 <) IS (o6 )
(b) ' ) (b) ’
_rn—p—i+l,1<Xl) o rn—p—i+1‘n(X”)_

Observe that”) = 7@ holds.
Lets € {n —i,n —i + 1}. For any ordered sequen(@e, ..., k) of different elements
of the set{1, ..., n} we denote by ® ({k1, ..., ks}) := M® (kq, ..., ky) the minor that

corresponds to the firstrows and to the columns, . . ., k; of the matrixTh(").
Let us fix an ordered sequentef n — i different elements of the séi, ..., n}, say
I:=(,...,n—1i),andletus consider the upper— i)-minor
r aFl E'Fl N
6X1 (’}]X,l,i
0F, ' oF,
m® = MOy =det| G, 7
Mlxy o X
Ly e

of the matrix7 @,

Note thatn®) depends only on the entriés, 1<,j<n — p —i,0<k<n —i, of the
matrixb. In what follows, we will assume thatsatisfies the additional conditien® £ 0.
Let us assume, without loss of generality, that the polynogpiat p)-matrix

0X1 0xp
‘!.w ’ ‘1:
ap . Yy
0X1 0xp

is non-singular. Then, in particular, the genericity of the entrigs of the ((n — p —
i +1) x (n 4+ 1))-matrix aimplies thatm® is a nonzero element of the polynomial ring
C[X1, ..., X,]. Therefore the matria satisfies this condition.
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The Exchange Lemma ¢8] implies that, for any ordered sequenge, ..., k,_;+1) of
different elements of the sét, .. ., n}, the identity

m® M® (ky, ... ky—iy1)

= Z o MOk, . ki) \ 1D
letky,....kn—i+1\{1.....n—i}
<xMP @, ....n—iD (8)
holds withy; € {—1, 0, 1}, for any index € {k1, ..., ky—iy1} \ {1, ..., n —i}.
Let us abbreviata?” ;== MO, ....n—i+1), M, =MD ... n-

in—i+2),,....MP :=M®@, ... n—i n). Assume now that there is given a point
x of Ssatisfying the conditions:® (x) # 0 and
MP @)= =MD ) =0 ©)

n—

Then we infer from 8) thatM® (k1, . .., k,—i+1)(x) = 0 holds for any ordered sequence
(k1, ..., k,—;i+1) of different elements of the sét, . . ., n}. This means that alh —i + 1)-
minors of the matriXTb(” vanish at the poink. Sincem® (x) # 0 impliesx € Sreg, We
conclude thak belongs to the polar variety ) (S). On the other hand, any poirtof
Wk o) (S) satisfies condition (9). Therefore, the polar vari8éity ;) (S) is defined by the
equationsFy, ..., Fp, M,Eb_)iH, ..., M outside of the locu® (m®).

LetZ,_i+1, ..., Z, be new indeterminates and consider the— i + 1) x n)-matrix

ron 0r _0rn ary 7
8Xl aX}l*l’ 5Xn7i+1 ax’l
o 0Fp oy or
8X1 6X)17i 6xn7i+1 6x,,
b L b L
KD ) Moni 41 Kni ) e
» : ®) ’ ®) ’ : ®»
rn:pftﬁl(xl) Tn—p—in—i Xn—i) rn71)7i,n7i+l(x"—"+1) rnfpfi,n(x'o
b b
_r,g,)],,i+l_1(Xl) V,,(l,)p,iJrl’,,,,'(ani) Zn—i+1 *bnfpr»l,OanH»l s Zn *bnfpr»l,OXn_
o7 (b) o7 (D) o7 (P) . ; ; ; ;
LetM,”, 1, M,”. >, ..., M, denote then — i + 1)-minors of this matrix obtained by

successively selecting the columns 1., n —i,n—i+1,thenl...,n—i,n—i+ 2,
up to, finally, the columns,1..,n —i, n. LetU, := A"\ V(m™®) and observe thdt, is
non-empty since:®), by assumption, is a non-zero polynomial.

Now we consider the following morphism of smooth, affine varieties

(Dl(b) s Up x AP > AP x A
defined by

o (x,2) = ( Fi(x), ..., Fp(), M 1 (x,2), . B (x, 2) )

for any pair of pointsc € Uy, z € A'.
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Lemma 4. The origin (0, ..., 0) of the affine spacé\” x A’ is a regular value of the
morphism(l)gb).
Proof. Without loss of generality, we may assume that the f(ml@)—l(o, ..., 0)isnon-

empty. Consider an arbitrary poitt, z) of (<D§b))‘1(0, ...,0) with x € U, andz € A'
and observe that the Jacobi.a(ﬁ)gb))(x, z) of @}b) at the point(x, z) has the form

_pFl(X) ﬂFl(x) 0 0 7]
0xq 0Xn
oFpy R ) ‘ )
0 0
ax, (x) o, (x)
% * m® ) .. 0
L * * 0 m(b}(x)_

Sincex belongs toU,, we conclude that the firgt rows ofJ((I)l("))(x, z) are C-linearly
independent and that® (x) # 0 holds. ThereforeJ (®”)(x, z) has maximal ranio + i.
Thus (x, z) is a regular point oﬂ)gb). Since(x, z) is an arbitrary element of the fibre
(@Eb))*l(o, ..., 0), we conclude finally that0, . . ., 0) is a regular value 0<D§b). O

Applying now the Weak—Transversality Theorem of Thom—-Sard (se¢l&]).to <D§b),
we deduce from Lemma 4 that there exists a residual densg s\’ such that, for any
pointz € Q, the polynomials

Fi....Fp M. (X1, X2, MP (X1, .. X0 2)

of C[X4,..., X,] intersect transversally in any of their common zeros outside of the
positive codimensional, Zariski closed locs \ U,. From the genericity of the entries

bp—p—itln—i+l = np—itln—itls -+ bn—p_itin = Gn_p—_iy1,, Of the matrixTh(’) we
deduce that we may assume, without loss of generality, that thespeinta, — ,—;+-1,,—i+1
..an—p—i+1,n) belongs to the sef). Observing now thatM,g )l+1 = M,(l )l+1
(X1, ..., X, 0),. M(b) M(b)(X ., Xn, ) holds, we conclude that the equations
F1, ..., Fp, M(’i). . M,Eh) intersect transversally atany point@R(;,)(S) not belong-
ing to the IocusV(m(b)) and that such points exist.
We have therefore shown the following statement:

Lemma 5. Let the notations and assumptions be as before. Then the polyn@mial +
1) x n)-matrix Tb(’) satisfies the following condition

Theequation$?, ..., Fp, Méb)lﬂ, .. M(b) define the generalized polarvarid@,((b)
($) outside of the IOCUB’(m(b)) and intersect transversally in any point of the affine variety
W) () \ V(m®). In particular, Wg 4 (S) \ V(m®) is empty or a smooth, complete

intersection variety of dimension— p — i.
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Observe that all uppe — i)-minors of 7@ vanish at a giver(ry, ..., F)-regular
pointx of Sif and only ifx belongs to the polar varleWK” p—i-1(S) whichii |s contained in
WK(S) WKn »—i(8). Applying now Lemméab to any uppeln — i)-minor of the matrix

70 = 79 we conclude:

Proposition 6. For any(Fy, ..., Fp)-regular point x OfWKn—p—i S\ VT/K,,_,,_,-_l(S) there
existindicesl<k; < --- < k,—; <n with the following property

Letm := M({ka, ..., k,—;}) be the uppetn—i)-minor of the polynomial(n —i +1) x n)-
matrix 7@ determined by the columm®y, ..., k,—;), let {1, ..., n} \ {k1, ..., ky—i} =
{kn7i+17 B kn} and letMnfi+l = M({kl’ ey ki, k,17i+1}), Mnfi+1 = M({kl, )
kn—i, kn—iv2}), ..., My == M({ka, ..., ky—i, ky}). Thenthe minor m does not vanish at the
point x and the equation&, ..., F,, M, _i11, ..., M, intersect transversallx at x. More-
over, the polynomial§y, ..., Fp, M,_it1, ..., M, define the polar variety .- (S)
outside of the locu§ (m).

Fix forthe moment X j <n—p—i+1andletE; be the(n — p—i—1)-dimensionallinear
projective subvariety oP " spanned by the point&y, ..., Aj_1, Aj41,..., Ap_p_it1.In
particular, we haveg,,_,_; 41 = K"~P~=1,

From the generic choice of the complex numhers, 1< j<n—p—i+1, 1<k<n
we infer that Propositior® remains still valid if we replace in its statement the upper
(n — i)-minorm = M(ky, ..., k,—;) by the (n — i)-minor of T® given by the rows
1,...,p+j—1 p+]+1 ,n—p—i+21andthe columnk, ..., k,_; and the polar
varletyWKn —i-1(S) by WE (S)

LetAi := M1<j<n—pit+1 WE (S). ThenA; is contained mWKn »-i+1(S) and Propo-
sition 6 implies that, outside of the locds, the polar vanetWVKn »-i(8) iIs smooth and
of pure codimensionin S. Itis not too difficult to deduce from Proposition 6 that the codi-
mension ofA; in Sis at least 2+ 1. Hence, fon”‘f’z’_1 < i <n-— p, the algebraic variet};
is empty and therefore, the polar varief’t\y(nfpfi (S) is smooth in anx\of it$F1, ..., Fp)-
regular points. In the next subsection we will show this propert¥gf.—,-: (S) for any
0<i<n — p (see Theorem 10 below).

Finally, let us consider the case= n — p. Observe thal' " ~7) is a((p + 1) x n)-matrix
which contains the .Jacoblar(Fl,... F),) asitsfirstp rows. Thus, for anyFy, ..., Fp)-
regular pointx of WKo(S) there exists an uppgrminor m of 7"~ with m(x) ;é 0.
Therefore, we defm@VK 1 as the empty set. Thus, in particuldy, _, is empty and this
implies thatWKo(S) is smooth and of pure codimensign— p) outside of the locuSsing
(cf. Lemma 7 below).

3.2. Geometric conclusions

The geometric main outcome of this section is Theorem 10 below, which is a basic result
for generalized affine polar varieties in the reduced complete intersection case. The proof
of this result requires three fundamental technical statements, namely Lemmas 7, 9 and
Proposition 8 below. For the rest of this section let the assumptions and notations be as
before.
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Lemma 7. The generalized polar varietWKo(S) is empty or oflexpecteyicodimension
n — pin S(i.e, Wgo(S) contains at most finitely many poihtsMoreover Wo(S) is
contained inSreg.

Proof. Without loss of generality, we may assume tﬁqgo(S) is non-empty. Consider an
irreducible componer® of WKo(S) Since the(Fy, ..., F),)-regular points oWKo(S) are
Zariski dense |rWKo(S) we conclude tha€ N Sreg is Non-empty.

Observe thalWK 1(S) is empty. From Propositio we conclude now that any point
of WKo(S) N Sreg is isolated. Thereforé: consists of a single point that belongsSaeg.
This implies that the algebraic varleWKo(S) is contained irfregand of pure codimension
n—pinS O

Proposition 6 and Lemma 7 imply our next result.

Proposition 8. Suppose that the generalized affine polar varﬁf}yqf,,fi (8) is non-empty.
ThenW g.—p-i (S) is of pure codimension iin@nd thereforethe codimension o¥ gn— i (S)
in S coincides with the expected gnbloreover for each irreducible component C of
WKn »—i(S) there exists an uppewm — i)-minor m of 7® such that m does not vanish
|dent|cally on C. In particulay no irreducible component cWKn »—i (S) is contained in
WKn p-i-1(S).

Proof. Let C be an irreducible component tﬁ?mf,ﬂ (S). Suppose for the moment that
all upper(n — i)-minors of 7) vanish identically orC. Then Propositior implies that

C is contained mWKn p-i-1(S). From Lemma 7 we deduce that there exists an index
0<j < n—p—isuchthaCis contained |rWK,(S) but not mWK, 1(5). SinceC N Sreg

is Zariski dense it€, there exists a point € C N Sreg\ WK] 1(S). From Proposition 6 we
infer that there is a single irreducible componéhtof vT/K,- (S) that contains the point
Moreover, this irreducible component has codimensienp — j > i in Sand contain€&.
Thus the codimension @ in Sis strictly larger that. On the other hand, Lemma 3 implies
thatC has codimension at mosin S. From this contradiction we deduce that there exists
an upper(n — i)-minormof 7@ that does not vanish identically @

Therefore,C \ V (m) is non-empty. From Proposition 6 we deduce now that the codi-
mension ofC in Sis exactlyi. Hence, the generalized affine polar vari8ty,—,-i (S) is of
pure codimensionin S.

Observe that the same arguments are valid for the polar vami’g}typ i-1(S). Thus
WKn p-i-1(S) is of pure codlmen5|00 +1) in S Consequently, the irreducible component
Cof WKn »—i cannot be contained |WK,, —i-1(8). O

Let us remark that, for a generic choice of the parametgrs 1<j<n—p, 1<k<n,
Propositions 6 and 8 yield a local description of the generalized polar varieties of a given
complete intersection variety by polynomial equations.

Moreover, it is not too difficult to conclude from Propositions 6 and 8 that in the case,
WhereSandWanpf,- (S) are non-empty and smooth, the ideal generatéd[iki4, . .., X,]
by Fi, ..., F, and all(n — i + 1)-minors of 7 is Cohen—Macaulay and radical. This is
a consequence of the main result of [16]. On the other hand, this ideal theoretic conclusion
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of Propositions and 8 ensures already the correctness of the main algorithmic results
described in Section 4, namely Theorems 13 and 14 below (see [4] for details).
In what follows, we shall use the notations that we are going to introduce now.

Let Al = (al,O s al,n) : An p—i - (anfpfi,(_) s anfpfi,n)' AnfpfiJrl =
@y pit107 " Ay l+1n) be then — p — i 4+ 1 points ofP" whose coordinates are
defined byaj y :=0,....a,_, ;o:=0,a, , ;.19 = an—p-i+1,0and, forI<j<n —

—z+1and l\k<n by

Ajk — An—p—i+1k if 1<j<n—p—i and ajo=1

a_’;’k =1 ajx if 1<j<n—p—i andajo=0,
An—p—i+1k if j=n—p—i+1
Note that we have alway$; poitl = = A,_p_it1andA] = A, ...,A;_p = A,_pinthe
case thatiy o = - - - a,—p—i+1,0 = 0 holds. Let us recall from Secti@l that the condition
a0 = ---an—p—i+1,0 = 0 is equivalent to the conditiok”~?~% ¢ H and that we have
by assumptiom,,_,_;+1,0 = 1 in the cas&k" P~ ¢ H.Observe thatthe — p —i + 1
pointsAy, ..., A,_ ;. spanthelinear projective subvariety """ of P" and that their

coordinatesz;’f’k, 1<j<n—p—i+1, 1<k<n, are generic. MoreoveWKHq (S is
defined, outside of the singular locus®foy the vanishing of the polynomialg, ..., F,
and of all(n — i + 1)-minors of the((n — i + 1) x n)-matrix

r 81“1 81-‘1 ]
0Xq 0Xn
: oFp 0rp
1—‘(’) — 6X1 0Xn
* *
411 “n
* *
A—p—il Ay—p—in
* * * *
Ly p—i+1,1~ anfpfiJrl,O‘Xl Ay p—itln T anfpfiJrl.OX" -

We denote the polynomia(n — i) x n)-matrix of the first: — i rows of ) by £ From
Proposition8 we deduce that the Zariski closure of @, ..., F),)-regular points oB at

which all (n — i)-minors off(l) vanish constitutes a (classic) polar vari@y, ; which is
contained inW.—,-i (S) and is empty or has pure codimensio# 1in S

Let (ki,...,k,) be an arbitrary ordered sequencepotlifferent elements of the set
{1,...,n}. We denote by *1-k») thep-minor of the Jacobiad (Fy, . . ., F,) determined
by the columny, ..., k,.

Lemma 9. Suppose that the variables,, ..., X, are in general position with respect to
the affine variety S and that the generalized polar vari&ty.—,-i (S) is non-empty. For
n—i+1<k<n,we denote by, the(p+ 1)-minor determined by the columbs. . ., p, k

of the polynomial(p + 1) x n)-matrix

J(F1(2), ..., Fp(Z))
an—p—i+1,1 — anfpr»l,OXl o dp—p—i+ln — an7p7i+l,OXn ’
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Then there exists a point x of the affine variety S satisfying the conditions

TP (x) # 0, Nyiga(x) =+ = Ny(x) = 0.

Proof. For 1<j<n — p — i and 1<k<n, consider the generic linear form* :=
Zlgzgna;f,le and let{y = ({k1,...,{.n) be a point of A" such thatly, ..., {, 1
and{y, ..., {, constitute aC-vector space basis of thg + 1)-dimensional subspace of

A" defined by the generic linear forndsy, ..., A, _,_; and of the affine spac&”, re-
spectively. We denote the transposed matrixfy)1< j.x<» by B. From the genericity

of the linear formsA%, ..., Ajj_p_Hl we deduce thafy, ..., {,,; form a generic set of
points of A”. Without loss of generality, we may assume that the same is true for the points
(v Gy For 1<k <, et Zyg i= "1 < <,y GouXo, where(@ 1, ..., G ) is thekth row

of the inverse of the matrii.

LetZ := (Z1,..., Z,) and observe thatrepresents a generic coordinate transformation
of the affine spacé\”. Following the context, we will consideZ, ..., Z, to be new
variables or linear forms iX1, ..., X,. By F1(2), ..., F,(Z) we denote the polynomials
F1,..., F, rewritten in the new variable®;, ..., Z, and by

OF,(Z
J(F]_(Z),...,Fp(z)) = <0 3 )>1<h<p

aZk 1<k<n
the Jacobian of, ..., F), with respect to the variable;, ..., Z,. For 1<h<p and
1<k <n we have then
0F, " 0F,
—(Z) = —_— 10
(')Zk( ) ; kot X, (10)

In that what follows, we shall consider the entriés, ..., Z, of Z to be linear forms in
the variablesXy, ..., X,,. Consequently, the entries of the Jacohid@f(Z), ..., F,(Z))

will be considered elements of the polynomial ri6g X1, ..., X, ]. Taking into account
that(y, ..., {,4;—1 form a basis of thé&-vector space defined by the linear forms
n n
Aﬂ]i = Z ClilX[ yoee ey A:—p—i = Z a:_p_iﬁlX[,
=1 =1

we deduce from identitied Q) that the matrices"’ B andT"® B are of the form

Tl [ J(Fu(2), ..., Fy(2)) }
B =
L Onfpfi, p+i (*) n—p—i,n—p—i
and
_ J(F1(2), ..., Fy(Z))
rop= On—p—i, p+i (%) n—p—i,n—p—i | »
| Bi—nZa o By = PnZn

where0,,_,_;, p+; denotesth€(n—p—i) x (p+i))-zero matrix(x) ,_,—; ,—p—; indicates
a suitable((n — p — i) x (n — p — i))-matrix with generic complex entriegy, ..., f3,
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are generic complex numbers and. . ., 7, are complex numbers satisfying the condition
y1 = --- =7, = 0inthe caser,_,—j+1 = 0andy; # 0,...,7y, # 0in the case
an—p—i+1,0 = 1. Without loss of generality we may assume that= - - -7, = a,—p—i41,0
holds. Let us therefore abbrevigte= y;.

The genericity of the matrig),,— ,—; »—,—; implies that th&n —i)-minors of the matrix

f(Z)B, that are not identically zero, are scalar multiples ofgfrainors selected between
the columns 1..., p+i of the Jacobial (F1(Z), ..., F,(Z)), and vice versa. Hence, the
ideal generated by thepemmors inC[X4, ..., X,] coincides with the ideal generated by

all (n—1i)- mlnors ofF B and therefore also with the ideal generated byal i )-minors

of the matan (observe that the matrig is generic and consequently regular).

Therefore aIIp—mlnors selected between the columns.1, p + i of the Jacobian
J(F1(2),. F (Z))vanishatdFy, ..., F,)-regular point of Sif and only if all (n —i)-
minors ofF do so, i.e., if and only if¢ belongs to the classic polar variet; 1. Since
Wi 1 is an affine subvariety oWKn »-i () which is either empty or of pure codimension
i + 1 in Sand since by Propositiod the generalized polar \LaneWKn »—i(S) is of pure
codimensioni in S we conclude that there exists a paxf Wg.-,-i (S) which does not
belong toW; 1.

Since the poink does not belong to the polar varieif§;.1, we may assume without loss
of generality that th@-minor J(1 """ P) of the matrixJ (Fi(Z), ..., Fp(Z)) determined by
the columns 1..., p does not vanlsh at Consider now th(é(p + 1) x n)-matrix

7@ _ [ J(FU(Z). ... Fp(2) }
p1 VZ

and denote byv(z)l 1 NS the (p + 1)-minors of T?) obtained by successively
selecting the columns 1...,p,p+1,thenl... p, p+ 2, upto, finally, the columns
1,....,p,p+i.

The same argument as above implies thatithe +1)-minors of the matrixX" ") B thatare
notidentically zero, are scalar multiples of the+ 1)-minors selected between the columns
1,..., p+i of the polynomial(p + 1) x n)-matrix T?), Therefore thesép + 1)-minors
generate the ideal of alh — i + 1)-minors of the polynomial(n — i + 1) x n)-matrix ")
which on their turn define the generalized polar variéty.-,-: (S) outside of the singular

locus of S This implies that the polynomialgi(Z), ..., F,(Z) and Ny(,z),+1’ e N,EZ)
vanish at the poing := Z(x), Whereasl(1 """ P) does not.
We may easily rearrange the coordlnate transformatien (Z1, ..., Z,) in such a way

that the polynom|al$v(zl+l, ..., N\?) become thép + 1)-minors of the matrixt’ %) ob-
tained by successively selecting the columns 1, p, n —i+1,thenl...,p, n—i+2
up to, finally, the columns,1. ., p, n. Since the entrief;, . .., f, of the matrix7*) and
the coefficients of the coordinate transformatioe- (Z4, ..., Z,) are generic, the conclu-
sion of the lemma follows now easily replacing the varialigs. .., Z, by X1, ..., X,,
the parametey by a,_,—_; 11,0, the parameterg,, ..., 8, bya,—p_it11, ..., G p—it1n
and observing thaji(l """ P — j@..p) and thatN(X) 1= Nosig1...., NE = N,
holds. O
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Theorem 10. Let the assumptions and notations be as at the beginning of S&cfitren

the following assertions are true

(i) The affine polar variety¥ .- ,-: (S) is smooth in any of itéF, . . ., F),)-regular points.
Suppose that the variableg,, .. ., X, are in general position with respect to S. Then
for anyp-minor J of the Jacobiati(Fy, ..., F),) the ideal of definition of the affine
variety Wgn—p-i (S) \ V(J) in C[X4, ..., X,]1s, the localization ofC [X4, ..., X, ] by
the polynomial Jis generated by, . . ., F,, andall(n—i+1)-minors of the polynomial
matrix 7@,

(i) Supposethatthe polarvarleWKn »—i (S)isnon-empty. Ifany pointof S@gx, . .., F))-
regular, thenW,(n »-i (S) is smooth and itéadical) ideal of definitioninC [ X1, ..., X,]
is generated by, ..., F), and by all(n — i 4+ 1)-minors of the polynomial matrix @,

In particular, this ideal is unmixed and regular

Proof. Assertion (i) is an immediate consequence of assertion (i). Therefore we will show
only assertion (i). Without loss of generality we may assumeWhat,- (S) is non-empty

and that the variableX1, ..., X, are in general position with respect$oFor 1< j <n —

p —iand 1<k <n, let Z; ; be new indeterminates and let us consider the polynomial
((n—p—i+1) x n)-matrix

r 0Fy 0Fy T
0X, 0Xn
oF ' Ey.
~ . OF OF
i) _ P P
T ) — 0X1 aXn
Z11 Zin
anH»l,l anH»l,n
Lan—p—i+1,1 = dn—p—i+1,0X1 -+ p—p—i+ln — dn—p—i+1,0Xn -

whose entries belong to the polynomialalgebra
Ri:=ClZjk, Xk |1<j<n—p—i, 1<k<n]

We denote byy; the ideal generated by, ..., F, and all(n — p — i + 1)-minors of
T in R; and by rada; the radical ideal ofy;. Let 2, := V(a;) be the closed subvariety
of the affine spacé\"~7=)>" x A" defined by the vanishing afy, ..., F,, and of all
(n — p — i + 1)-minors of 7@ and letr; : £; — A®~P=D*" pe the morphism of affine
varieties induced by the canonical projection®f —»~)*" x A" onto A"~?~)*" Then
the C-algebraR; /rad «; is isomorphic to the coordinate rifg[X;] of Z;.

Letus consideranarbitrary point= (z;, k)1§,<n »—i of A=P=D>" gnd inanalogy with
the notation of Lemma, let us writeX (z) for be the linear prolectlve variety spanned by the
n—p—i+1points: 71,1 AT IR (O Zpn—p—i,1: 1 Zn—p—in)s @n—p—i+1,0:
Qp—p—iyl, 1" a,,_,,_,-+1,,,) in P". Then the fibrerl._l(z) is canonically isomorphic to
the generalized polar varieﬁ;,((z)(S). In particular,WK(z)(S) is non-empty if and only if
zbelongs to the image of;.

We consider now the point* = (a} k)1<j<,, »—i of A=P=Dxn \whose coordinates

are generic. Observe th&t(a*) = K" 7P~ i holds SmceWKn _p-i(S) is by assumption
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non-empty, we conclude that the point belongs to the image af;. From the genericity
of the coordinates of the point* we deduce now that the morphism of affine varieties
i 0 X — AP=P=DX1 s dominating and from Propositidhwe infer that the dominating
irreducible components &; are of pure codimensiop + i in A®#~P=Dxn,

LetA; :=C[Z;, | 1<j<n — p —i, 1<k<n] andB; := R;/q;. Sincen; : X; —
A=P=Dxn is dominating andR; /rada; is isomorphic toC [Z;], we may considerd; as
aC-subalgebra oB;.

Let (k1,...,kp) be an arbitrary ordered sequencepoflifferent elements of the set
{1,...,n}. Then

k) o @x) € By |z e ACTPIX e A Ttk () 2 0)

is an open, affine subvariety a; whose coordinate ring is isomorphic {&®;/rad

) (ky.....k,)- We denote by LK) g ko) (i=p=dxn the morphism of affine

i
varieties induced by; and we writeBl.(kl""’k”)

the polynomialy *1--») of R;.
For any pointzin A”~7=D*" we denote by, the ideal of definition ok in .4; and by
(A, (B, and(B'V ") the localizations of4;, B; andB\" 7" at the maximal

i
. . . k1,..., kp k1,...,kp
idealn,, respectively (here we considBy andBl.( Lokp) as.A;-algebras). Let/{i( Lokp)

be the set of all points of A”~P~*" such thaB;)y, is & SMoOth.A; ). -algebra. From

for the localization of th&r,;-algebral3; by

In order to simplify notations we suppose without loss of generalitythat 1, ..., k, =
p holds. Since, by assumption, the variabtas.. . ., X,, are in general position with respect
to Swe haves %P £ 0.

We are going to show tha{i(l""‘p) is non-empty. To this end let us consider the complex
((n — p —1i) x n)-matrixb = (bj,k)lis_/gn_p_i definedfor KK j<n—p—iand 1<k <n

<k<n
by

p. .10 i k#zp+j,
PEEY1 0 ifk=p4.

Letb = (bji)1<i<np-i+1 be the complex(n — p — i + 1) x n)-matrix defined for
X 0<k<n

1<j<n—p—iand1<k<n by

. bjk if 1<j<n—p—i and 1<k<n,
bjr=10 if 1<j<n—p—1i andk =0,
an—p—it1k it j=n—p—i+1 and 0Kk<n.
One verifies easily, with the notations of Section 3.1, the ident(fy = &P, that the
complex((n — p — i + 1) x n)-matrix b satisfies the assumptions of Lemisand that
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Wk (S)\ V(J(L, ..., p)). Therefore we have

Wi ($)\Vm®) = (@)D ).

From Lemma5 we deduce now that, anda; generate inR;) (..., » the trivial or a
complete intersection idea|”’ that defines thagl"“”’)-fibre of the pointy € A—P=xn
and that this fibre is empty or a smooth complete intersection variety of dimensipnr-i.

Observe now tha(ngl """ P (p) is defined by the vanishing ofy, ..., F, and of all
(n — i + 1)-minors of the polynomia{(n — i 4+ 1) x n)-matrix

r 8F1 6171 (7F1 (Fl (7F1 (7F1 n
0X1 0xp 0X 11 0Xp_j 0Xy_iy1 0Xn
oFp  0Fp JFp o JFp JFp 0
0X1 0Xp 0X i1 0Xp_i 0Xy_iy1 0Xp >
0 1 0 0 0
0 0 0 1 0 0
LP1XD) - PpXp) PppaXprd) o PriKnmi) Pyjp1 Kn—ip) - P (Xn)

where p, (Xx) denotes the linear form,, p—i+1k — Qn—p— ,+1 oXx, for 1<k <n. From

(b)

ideala;”” is generated by a regular sequence which consists of the canonlcal generators of

1, and suitable elements af. Consider now an arbitrary point = (b, x) of Zﬁkl’“"k”)
with xin A". Letn, be the ideal of definition of in R; and observe that, = A; Nn, and
a; C nyholdsandthaf (1, ..., p)is notcontained im,. Thus(R;),(1,... p) is a subring of

(Ridn, and(agb))ny is a complete intersection ideal of the local rif#g; ), . From [38, 6.16,
Corollary] and the Exchange Lemma of [3] we deduce now thatenerates iR, )n, a
complete intersectionideal and th&; /a;)n, = (B;)n, hasKrulldimensionn+1) (n—p—

is a regular localC- algebra of Krull dimensiom(n — p — i) contarned in(B; )nb, we
deduce from [38 8.23, Theorem 31.1] thﬁﬁl""”’))nb is a flat(A;)n,-algebra. Taking into

from [33, Theorem 8. 1] and Nakayamas Lemma (or from [38, 8.23, Theorem 37.7]) that
(Bi)n, is a smooth(A;)y, -algebra. This implies that the poibte A¢r=P=Dxn halongs to

the seul.(l""”’). Thereforeui(l"“”’) is a non-empty Zariski open subset of the affine space
A()’l p— i)xn

Let; be the intersection of all (non-empty, Zariski open) “f‘({% ,where Kk <

- < k, <n.Thenl; is a non-empty Zariski open subsetAf'~?~)>"_Since the coor-
dinates of the point™* = (“,7,k) of A=P=D*" gre generic, we may assume without loss

.....
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of generality that:* belongs ta/;. Therefore, for any ordered sequer@g, . .., k,) of
p different elements of the sé¢t, ..., n}, the ring(B(kl"'

i
algebra. This implies thaBl.(kl’”"k”)/Bfkl""’k”) - ng+ is a regularC-algebra and there-

fore reduced. ThigC-algebra is the coordinate ring of thékl""’k”)—fibre of the point
a* of A”=P=D>" which is canonically isomorphic k@) (S) \ V(I k1, ..., kp)) =
Wgn-—p-i ()Y \ V(I (kg, ..., kp)).

Sincel’;’l.(k1 """ “») is the localization of th&R;-algebraB; by the polynomial/ (k1, . .., kp)
of R;, we infgr now from the identity3; = R;/q; that the ideal of definition of the
affine varietyWgn—p-i (S) \ V(J (k1, ..., kp)) iINnC[Xq, ..., Xl (k. kp) is generated by
Fi,..., Fpandall(n —i + 1)-minors of the polynomial matrig @) (observe that the ideal
generated by thé: — i + 1)-minors of 7® equals the ideal generated by tne— i + 1)-
minors of ¥ and thatl"") is obtained fron"® by specializing for each pair of indices
1<j<n — p—iand I<k<n the variableZ; , to the complex number;f’k).

Moreover, the coordinate ring of the varie@,(n_p_,- O\ V(I (ky, ..., kp)) is isomor-
phic to the regulatf)-algebral’j’(kl’""k”) """

.-, kp)) is asmooth, Iocallylclosed, affine subvariety/df. This implies that the gener-
alized polar variety ., (S) is smooth in any of it§Fy, ..., F,)-regular points. [J

~vkp))na* is a SmOOth(Ai)na*'

In the case of affine, classic polar varieties (i.e., in the ¢&se”~' c H) Propositions
6 and 8 and Theorem 10 are nothing but a careful reformulation of [3, Theorem 1].
In terms of standard algebraic geometry, Theorem 10 implies the following result:

Corollary 11. Let S be a smoofipure p-dimensional closed subvariety®f. Let K be a
linear, projective subvariety aP” of dimensionn — p — i) with 1<i <n — p. Suppose

that K is generated by — p — i + 1 many pointsd; = (a10 : --- : a1n), ..., A; =
(aj,O N aj,l’l)7 cee aAnfpr»l = (anfpfiJrl,O N anfpfiJrl,n) of PiWIth ajo = 0
orajo=1anda;,...,a;, genericforanyl < j<n — p —i + 1. ThenWg (S) is either

empty or a smooth variety of pure codimensioniin S

Proof. By assumptionSis smooth and of pure codimensiprin A". Therefore, the al-
gebraic varietySis locally definable by radical complete intersection ideals of hegight
C[X1, ..., X,]. Therefore we may apply a suitably adapted local version of Proposgions
and 8 and Theorem 10 to the vari@yThusWK (8) is locally empty or a smooth variety of
pure codimensionin S This implies the corresponding global propertiedgf (S). O

Observe that Corollary 11 remains mutatis mutandis true if we replace in its formulation
the affine varietys by the projective variety and ifV is smooth.

Remark 12. One obtains a slightly more elementary but less transparent proof of Theorem
10 (and hence of Corollary 11) by a suitable refinement of Lemma 9.

For an alternative proof of Corollary 11 for classic polar varieties we may reason as
follows: Suppose for the moment that the linear projective varity”?~! is contained
in the hyperplane at infinit{d of P" and letLP+ =2 := (K"~P~%)* Then (7) implies
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the identity VT/K,,f,,f,- (8) = Wypti-2(S). In other words,VT/anpf,-(S) is a classic polar
variety.

In the Grassmannian aiz — p)-dimensional subspaces &f" we consider now the
Schubert variety; associated with the multiinde®, ..., 1) € 7'~1 and with the linear
projective varietyL?+=2. Then it is not too difficult to see that the classic polar variety
Win-p-i (S) = Wy p+i-2(S) is obtained as the image under the Nash modification of the fibre
product of the Gauss map 8fgand the canonical embeddingagfinto the corresponding
Grassmannian. Applying Kleiman’s Transversality Len{BtH to this situation, one infers
now easily Corollary 11 (cf. [47, Corollaire 1.3.2 and Définition 1.4] or [39] for this kind
of reasoning).

Inthe context of the present paper, this elegant geometric argument has two disadvantages:
e We lose control over the equations which define the polar vangty-,-i (S).

e The general case of polar varieties requires a different use of Schubert varieties.

4. Real polynomial equation solving

The geometric and algebraic results of Sectidrend 3 allow us to enlarge the range
of applications of the new generation of elimination procedures for real algebraic varieties
introduced in [2,3].

Let S be a purep-dimensional andl-definable, closed algebraic subvariety of tie
dimensional, complex, affine spaéé¢- and suppose th&is given byp polynomial equa-
tionsFy, ..., F, ofdegree at most, forming aregular sequence@( X, .. ., X,]. Assume
that, for any K k< p, F1, ..., Fi generate a radical ideal. Moreover, suppose that the real
algebraic varietySi := S N A’ is non-empty and smooth.

In this section we are going to explain how the geometric and algebraic results of
Sections 2 and 3 together with [30], Theorem 4.4, lead peohabilistic elimination pro-
cedure that finds an algebraic sample point for each connected componggpt the
complexity of this algorithm will be ointrinsic type, depending on the maximal geometric
degree of the dual polar varieties®that are associated with the external flag of a generic,
Q-definable flag contained in the hyperplane at infildtpf the n-dimensional, projective
spaceP¢.

In order to describe this algorithm, let us first discuss these polar varieties and then the
data structure and the algorithmic model we are going to use.

Let us choose a rational point= (u1, ..., u,) of A" \ Sg with generic coordinates
ui, ..., u, and, generically in the hyperplane at infintly a flag£ of Q-definable, linear
subvarieties o ¢, namely

£: L°crl'c...crrtc...cr e tepg
with L"~1 = H. Let Q, be the hyperquadric @? defined by the quadratic form
Ri(Xo. X1,....Xn) = X5 -2 ) wXoXe+ ) Xi
1<k<n 1<k<n

Observe that the hyperquadri¢s, and Q, N H are non-degenerate A'- andH, re-
spectively, and tha, N Hp is represented by the positive definite quadratic fatgn
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(X1,..., X)) = Zlgk@ X,f that introduces the usual euclidean distancegn One
verifies immediately that the poirill : ug : --- : u,) € P" spans, with respect to the
hyperquadriaQ,,, the dual space df"~1 = H

Let us consider the external flagassociated witl, namely

— — —n-2 —n—p— — —

K: POK oK 55K "5 5% 5K,
with K" 777" .= (LP+—1)V, for 1<i <n — p, and with an arbitrarily chosen irrelevant
part

?n—l 5 ?11—2 5.0 ?n—p'
Observe thak > consists of the rational poifiL : w1 : - - - : u,) € P".

Let 1<i <n-—pandrecallthatthép+i —1)-dimensional{)-definable, linear subvariety
LP*~Lwas chosen generically in the hyperplane at infihityf P2. ThereforeX” "~ i
an(n — p — i)-dimensional (2-definable, linear subvariety 6%, WhICh we may |mag|ne
to be spanned by — p — i + 1 rational points

Al = (Cll,O e al,n), ey An—p-i+1 = (aﬂ—p—i+l,0 R an—p—i—i—l,n)
of Pdwithay 1 = w1, ..., a1, =u, anda; 1, ..., a;, generic, for X j<n — p —i +1,
anday 0 = 1.a20 = - = a,—p—i 0 = 0. Observe thatthe poinbelongstok™ " " NA"

and is not contained ifig. Thus Propositio2 implies that the real affine dual polar variety
Weon—p-i (Sr) contains at least one algebraic sample point of each connected component
of Sg.

In particular, the complex affine dual polar varieWSLn »—i(S) is not empty. From the
generic choice of the pointand of the flagC we deduce now that Proposition 6, Lemma 7,

Proposition 8 and Theorem 10 are applicable to the dual polar vafiiety Won—p- i(S).

Observe thas; is Q-definable and of pure codimensioin S According to the termmology
introduced in Section 2, we cal theith dual polar variety ofs associated with the flag
K. Observe thaS is non-empty and intersects each connected component of the real
variety Si. R

Thus, in particulars,_, is aQ-definable, zero-dimensional, algebraic variety that con-
tains an algebraic sample point for any connected componeit.of

We will now analyse the dual polar varieﬁ/ more closely. For Z j<n — p letA; :=
Y 1<i<n@juXpand, for ISk <n, let = (i1, - - -5 (r,n) € Q" such that; is a zero of
Az, {1 and{; are zeros oAz andAgs , ..., {1, ..., {,41 are zeros oA, ..., A, and
such thaty, ..., {, form aQ-vector space basis @" (recall that the coefficients of the
formsAo, ..., A —p are generic). LeB be the transposed matrix off; x)1< j, x<a- FOr

1<ksn, letZy =3¢, C,”XJ, where(Ck 1o Ck ») 1S thekth row of the inverse
of the transposed matrix @. Let Z := (Z1, ..., Z ) As in Section 3, consider now the
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polynomial((n — i + 1) x n)-matrix

B R R ]
0x1 0Xn
70 — orp OFp
0X4 0Xp
a1 —ai,0X1 B ay —a1,0Xn
Lan—p—i+1,1 — dn—p—i+1,0X1 -+ ap—p—i+ln — dn—p—i+1,0Xn

Observe that' ) B is of the following form:

0 J(FL(Z), ..., Fp(2))
TYVB =|n _01Xl"'b[)+i _("p+ixp+i hp+i+1_Cp+[+1Xp+[+1"‘bll —cnXn s
On—p—i, p+i (p—p—i, n—p—i
whereby, ..., b, and the entries of«),_,_; ,—,—; are all generic rational numbers and

wherecy, ..., ¢, belong toQ \ {0}. For the sake of simplicity we shall suppose that=

-+ = ¢, = 1 (this assumption does not change the following argumentation substantially).
Thus the(n — i + 1)-minors of the matrix?¥) B, which are not identically zero, are

scalar multiples of thép + 1)-minors selected among the columns 1, p + i of the

((p + 1) x n)-matrix

0 |:J(F1(Z)s ...,F,,(zn]
o b1 —X1 - by — X,

and vice versa.

Consider now an arbitrafyminormof the Jacobiad (F1(Z), ..., F,(Z)). For the sake
of definiteness let us suppose thas given by the columns,1. ., p. Forp+1<j < p-+i,
let M; be the(p + 1)-minor of the matrixd given by the columns,1.., p, j.

Then we deduce from the Exchange LemmiBbthat, for any poink of Swith m (x) # 0,
the conditionM, 1 1(x) = --- = M,4;(x) = O is satisfied if and only if al{p 4 1)-minors
of 0 vanish aix.

Taking into accountthai (x) # Oimpliesthe(Fy, ..., F,)-regularity of the point € §,
we conclude that the equatiofs, ..., Fj, M1, ..., Mp4; define the dual polar variety
S; outside of the locu¥ (m). Moreover, from Theorem 10 (i) we deduce that the (radical)
ideal of definition of the affine variet@ \ V(m) in Q[X3q, ..., X,]n is generated by the
polynomialsFy, ..., Fp, Mpy1, ..., Mpyi.

For 1<h < p, let S, be the affine variety defined by the equatidns. . ., Fj,. Denote
by degs;, the geometridegreeof S, in the set-theoretic sense introduced in [25] (see also
[18,48]). Thus, in particular, we do not take into account multiplicities and components at
infinity for our notion of geometric degree. We call

& := maximax{degs,|1<h < p}, maxidegS;|1<i <n — p}}

thedegree of the real interpretation of the polynomial equation sydtgm. ., F,.

Taking into account the arguments used in the proof of Thedi@rmnd the genericity
of £ in H we deduce from Propositions 6 and 8 thatoes not depend on the choice of the
particular flagZ.
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Since, by assumption, the degrees of the polynon#ials. ., F,, are bounded bg, we in-
fer from the Bézout-Inequality §25] the degree estimates deg d” and deg), <d" <d?,
forany 1<ha < p.

Let 1<i<n — p and recall from the beginning of Section 3.1 that each irreducible
component of the polar varie@ = Wen—p-i (S)isa(n — p — i)-dimensional irreducible
component of the closed subvariety®t defined by the vanishing dfy, . .., F), and of all
(n — i + 1)-minors of the polynomial(n — i 4+ 1) x n)-matrix T, Taking generic I/i\near
combinations of these minors, one deduces easily from the Bézout inequality tSatsleg
bounded by

(degs) - (p(d — 1) + 1) <dP™ pi<d" p"P.

This implies the extrinsic estimate<d” p"~P.

We are now going to introduce a data structure for the representation of polynomials of
Q[X31, ..., X,] and describe our algorithmic model and complexity measures. Our elimi-
nation procedure will be formulated in the algorithmic model of (division-free) arithmetic
circuits and networks (arithmetic-boolean circuits) over the rational nunibers

Roughly speaking, a division-free arithmetic circfitover Q@ is an algorithmic de-
vice that supports a step by step evaluation of certain (output) polynomials belonging
to Q[Xy,..., X,], say F1, ..., F,. Each step off corresponds either to an input from
X1, ..., X,, either to a constant (circuit parameter) franor to an arithmetic operation
(addition/subtraction or multiplication). We represent the cirguiity a labelleddirected
acyclic graph (dag)The size of this dag measures the sequential time requirements of the
evaluation of the output polynomials, ..., F, performed by the circuif.

A (division-free) arithmetic network ovel) is nothing else but an arithmetic circuit that
additionally contains decision gates comparing rational values or checking their equality,
and selector gates depending on these decision gates.

Arithmetic circuits and networks represent non-uniform algorithms, and the complexity
of executing a single arithmetic operation is always counted at unit cost. Nevertheless, by
means of well known standard procedures our algorithm will be transposable to the uniform
randombit model and will be implementable in practice as well. All this can be done in the
spirit of the general asymptotic complexity bounds stated in Theoléasd 14 below.

Letus also remark thatthe depth of an arithmetic circuit (or network) measu e tike!
time of its evaluation, whereas its size allows an alternative interpretation as “number of
processors". Inthis context we would like to emphasize the particularimportance of counting
only nonscalararithmetic operations (i.e., only essential multiplications), takintinear
operations (in particular, additions/subtractions) for cost-free. This leads to the notion of
nonscalar size and depth of a given arithmetic circuit or netygorik can be easily seen
that the nonscalar size determines essentially the total sigéwalfiich takes into account
all operations) and that the nonscalar depth dominates the logarithms of degree and height
of the intermediate results ¢f

For more details on our complexity model and its use in the elimination theory we refer
to [8,19,26,32,37] and, in particular, to [23,35] (where also the implementation aspect is
treated).
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Now we are ready to formulate the algorithmic main result of this paper.

Theorem 13. Let n, p,d, d, L and ¢ be natural numbers withi >2 and p<n. Let
X1, ..., X,, Y beindeterminates ovéd. There exists an arithmetic netwakk overQ, de-
pending on certain random parametevéth Sizeé((;)Ln4p2d252) and nonscalar depth
O (n(¢ + lognd) logd), such thatV for suitable specializations of the random parameters
has the following properties

Let F, ..., F, be a family of polynomials in the variablég,, ..., X,, of a degree at
most d and assume thd, ..., F, are given by a division-free arithmetic circuft in
Q[X1, ..., X,] of size L and nonscalar depth Suppose that the polynomidf, . .., F,
form aregularsequenceid [ X1, ..., X,,]andthatFy, ..., Fj, generate aradical ideal for
any1<h < p. Moreover, suppose that the polynomidls ..., F, define a closed, affine
subvariety S o\’ such thatSg is a pure p-codimensional, non-empty and smooth real
variety. Assume that the degree of the real interpretation of the polynomial equation system
is bounded by. Then the algorithm represented by the arithmetic netw\drktarts from
the circuit f as input and computes the coefficienta af 1 polynomialsP, P, ..., P, in
Q [Y] satisfying the following conditions:
e P is monic and separable,
e 1<degP <4,
e max{degP; | 1<k <n} < degP,
o the cardinality#§ of the (non-empty) affine variety

S={(PL(y)..... P.()) |y €C. P(y) =0}

is at mostdegP, the affine varietﬁ is contained in S and at least one point of each
connected component 8f belongs tas. R
Moreover, using sign gates the netwdvkproduces at mostS sign sequences of elements
{—1, 0, 1} such that these sign conditions encode the real zeros of the polynomial P “a la
Thom” ([13]).
In this way, namely by means of the Thom encoding of the real zeros of P and by means
of the polynomialsy, .. ., P,, the arithmetic network describes the finite, non-empty
set

SAR" = {(P(y)..... Pa()) |y € R, P(y) =0},

which contains at least one algebraic sample point for each connected component of the
real variety Sg. For a given specialization of the random parameters, the probability of
failure of \/ is smaller than% and tends rapidly to zero with increasing n. The parameters

n, p,d, 9, L and{ representan instance of a uniform procedure which produces the network
Nin timeé((Z)Ln“pZdZ(SZ).

Taking into account the extrinsic estimateld” p"~¢ of the beginning of this section
and the straightforward estimates< d"tlande < logd, we obtain the worst case bounds
(") (p"=Pd™)°D andO ((n lognd)?) for the size and non-scalar depth of the netwiikf
Tpheoreml3. Thus, our worst case sequential time complexity bound meets the standards of
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todays most efficient ? ™ -time procedures for the problem under consideration (compare
[5,6] and also [9,10,14,24,27-29,41,42]).

Proof. Since we are going to describe a probabilistic procedure, we may assume without
loss of generality that we have already chosen a rational p@hi\” \ Sg and a flagC of
Q-definable linear subvarietidd;, satisfying the genericity conditions considered at the
beginning of this section, and that the variablés ..., X,, are in general position with
respect t&s. Therefore, we may use freely the previous notations.

For any choice op columns iy < --- < i, <n and any indexj € {1,...,n}\
{i1,...,ip} we denote byn'1-ir) the p-minor of J(Fi(Z), ..., F,(Z)) given by the
columnsis, ...,i, and by Mt-ir:/) the (p + 1)-minor of 6 given by the columns
i1, . lp, j-

Let us recall that the dual variefy, - p» is Q-definable and zero-dimensional. Moreover,
Sp p is of degree (i.e., cardinality) and contains an algebraic sample point for each
connected component 6k.

Let us consider an arbitrary poirbf §,,_ Sincexis (F1, ..., Fp)-regular, there exist
indices 1<ip < -+ < i,<n such thatm(’1 ~~~~~ (x) £ 0 holds Letipt1,...,in be
an enumeration of the sét, ..., n} \ {i1, .. ,ip}. From Lemma 5 we deduce that the
equationsry, ..., F,, MUt-ipipsd) M(’1 vvvvv ip-in) define the dual variets, _ poutside
of the locusV (m1-ip)), Moreover they intersect transversally in any pomtS‘Qip \

V (m'-»)) and hence, also in the poirt

Let 1< j<n — p. Observe that our argumentation at the beginning of this section im-
plies that the equationsy, ..., F,, MUt-ipips0) - pU1--ipij) define the dual po-
lar varletyS outside of the Iocu?/(m(’1 ’’’’’ i»)). Moreover, the polynomialgy, ..., Fp,
M Lenip, ’P+1) ..., Mipii) generate a radical ideal [ X1, . .., Xu],i1.ip) -

We are now in conditions to apply the main algorithm of [23] or [26] to the system

Fi=0,..., F, =0, M@inii) =0, M-ini = 0 i) £,

and in fact, we are using a combination of both. This algorithm may be realized by
an arithmetic network\;, ..., of size O(L n*p2d26°) and non-scalar deptt (n (¢ +
lognd) log §) which produces as outpui + 1) polynomials P(1:--ip) Pl(’l""””) -
P”(”"“"”) € Q[Y] satisfying the following conditions:
e PU1-ip) js monic and separable,
o 1< degPitin) L6,
. max{degp(’1 P 1 1<k <n) < degpinin),
° Snfp \ V(m(ll,....ip)) _

= (P )L BT ) [y € € PUin) () = )
(see[23, Theorem 1]). Now we repeat this procedure for each indexiget. ., i,,} with
1<iy < --- < i, <n and simplify the outputs by iterated greatest common divisor com-
putations in the polynomiab-algebraQ [Y]. _

The final outcome is an arithmetic netwokk of sizeO((Z)L n*p2d25?%) and non-scalar
depthO (n (£+lognd) log d) which produces as outp@t+1) polynomialsP, P1, ..., P €

.
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() [Y] satisfying the following conditions:
e Pis monic and separable,
o degP = #S,_, <9,
° max{dAeng | 1<k <n} < degP,
o S:=8p={PL(y),.... L) |yeC: P(y)=0}.
We apply now to the polynomiat € (0 [Y] any of the known, well parallelizable Computer
Algebra algorithms for the determination of all real roots of a given univariate polynomial,
where these roots are thought to be encoded “a la Thom” (sefL8]y. This subroutine
may be realized by an arithmetic netwgdyvkwhich uses sign gates and extends the network
Ni. The size and the non-scalar depth\6fare asymptotically the same as those\af

The estimation of the error probability of the probabilistic algorithm just described is
cumbersome and contains no substantial new ideas. It is not difficult to derive such an
estimation from the proof of [4, Theorem 11]. We omit these details hdré.

Some of the ideas contained in the proof of Theorem 13 are implicitly used in [1,43] for
the purpose to find for any connected componestaén algebraic sample point. However,
the algorithm developed in loc.cit. is rewriting based, and, although a rigorous complexity
analysis is missing, its minor efficiency can easily be verified.

In the particular case that the real variéty is compact, our method produces the fol-
lowing alternative complexity result:

Theorem 14. Let the notations and assumptions be as in Thed@18uppose that the real
variety Sg is not only of pure codimension pon-empty and smoaqthut also compact. For
1<h< p, let S, be the closed subvariety é6f defined by the equations, . .., Fj,. Let
L be the generic flag d-definablelinear subvarieties o ¢ introduced at the beginning
of this sectionnamely

£: L°cllc...crrtc..cr et epg
with L"~1 = H. LetK be the internal flag associated with namely
E: P”35"7135”723-~-D§”7p713---351350.

For1<i<n— p,let §, = AK,HH (8) = W, p+i-2(S) be the ith classic polar variety of S
associated with the internal flafg.

Finally, suppose thad is an upper bound for the geometric degrees of the affine varieties
S1,....8pandSy, ..., S,—,. Underthese assumptions the same conclusions as in Theorem
13 hold true.

Theorem 14 is the algorithmic main result of [3], where its statement is slightly different.

Motivated by the outcome of Theorems 14 and 13 above, the following geometric result
was shown in [44]. This result is interesting on its own because of its mathematical and
algorithmic consequences.

Let the notations and assumptions be as in Theorem 14, however, dropping the require-
ment thatSk is compact. Suppose that the variabes .. ., X, are in generic position with
respect to the algebraic variety S. For eatii < n — p, letm; : Af, — Ag "' bethe
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projection given by the variableXy, ..., X,_,—;. Furthermore, letl = (i1, ..., Z,—p)
be a randomly chosen point @~ and letA”) := (l1,..., Z4—p—;). Then, for each
1<i < n — p, the algebraic varietyr, *(.)) N §; is zero-dimensional or empty and the
finite setS,_, U Ut<icnp, (@ 1 0 S;) intersects any connected componensof

This geometric result allows to extend the validity of Theofiehto the non-compact case,
however, its proof is somewhat different, because it requires the more general elimination
procedure of [36] for polynomial equation and inequation systems defining (locally closed)
algebraic subvarieties oi.. From the point of practical computations it seems difficult
to compare the algorithm of Theorem 13 with the elimination algorithm described in [44].
On the one hand, one may expect that the degree associated with the real interpretation of
a polynomial equation system is typically smaller if this notion of degree is based on the
concept of classic polar varieties as in Theorem 14. On the other hand, the use of a more
general and intricate elimination algorithm may diminish this complexity gain.
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