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Abstract

LetV be a closed algebraic subvariety of then-dimensional projective space over the complex or
real numbers and suppose thatV is non-empty and equidimensional.The classic notion of a polar
variety ofV associated with a given linear subvariety of the ambient space ofV was generalized and
motivated in Bank et al. (Kybernetika 40 (2004), to appear). As particular instances of this notion of a
generalized polar variety one reobtains the classic one and an alternative type of a polar variety, called
dual. As main result of the present paper we show that for a generic choice of their parameters the
generalized polar varieties ofV are empty or equidimensional and smooth in any regular point ofV.
In the case that the varietyV is affine and smooth and has a complete intersection ideal of definition,
we are able, for a generic parameter choice, to describe locally the generalized polar varieties ofV
by explicit equations. Finally, we indicate how this description may be used in order to design in the
context of algorithmic elimination theory a highly efficient, probabilistic elimination procedure for
the following task: In case, that the varietyV is Q-definable and affine, having a complete intersection
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ideal of definition, and that the real trace ofV is non-empty and smooth, find for each connected
component of the real trace ofV an algebraic sample point.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The notion ofgeneralizedpolar varietieswas introduced and motivated in[4].The present
paper is devoted to the study of their smoothness which entails important algorithmic con-
sequences. It turns out that the classic polar varieties are special instances of the generalized
ones. Classic polar varieties were used in [2,3] for the design of a highly efficient elimina-
tion procedure which, in the case of an affine, smooth andcompactreal hypersurface or,
more generally, a complete intersection variety, produces an algebraic sample point for each
connected component of the given real variety. The aim to generalize this algorithmic result
to thenon-compactcase motivates the introduction of the concept of the generalized polar
varieties of a given algebraic manifold associated with suitably generic linear subvarieties
and a non-degenerate hyperquadric of the projective ambient space. In [4] it was shown
that these generalized polar varieties become Cohen–Macaulay. This ratheralgebraicthan
geometric result suffices to solve the algorithmic task which motivates the consideration of
generalized polar varieties. In this paper we go a step further: we show ageometricresult
saying that under the same genericity condition the generalized polar varieties of a given
algebraic manifold are smooth, and we derive handy local equations for them.

Let P n denote then-dimensional projective space over the field of complex numbersC

and let, for 0�p�n,V be a purep-codimensional closed algebraic subvariety ofP n.
Now we are going to outline the basic properties of the notion of a generalized polar variety

ofVassociated with a given linear subspaceK, a given non-degenerate hyperquadricQand
a given hyperplaneH of the ambient spaceP n, subject to the condition thatQ ∩ H is a
non-degenerate hyperquadric ofH. We denote this generalized polar variety byŴK(V ). It
turns out that̂WK(V ) is empty or a smooth subvariety ofVhaving pure codimensioni inV,
if V is smooth andK is a “sufficiently generic”,(n − p − i)-dimensional, linear subspace
of P n, for 0� i�n − p (see Corollary 11 and the following comments).

In this paper we consider mainly the case thatH is the hyperplane at infinity ofP n,
fixing in this manner an embedding of the complexn-dimensional affine spaceAn into the
projective spaceP n. LetS := V ∩ An be the affine trace ofV and supposeSis non-empty.
ThenS is a purep-codimensional closed subvariety of the affine spaceAn.

The affine tracêWK(S) := ŴK(V )∩An is called theaffinegeneralized polar variety ofS
associated with the linear subvarietyK and the hyperquadricQof P n. The affine generalized
polar varieties ofSgive rise to classic and dual affine polar varieties.

Let us denote the field of real numbers byR and the realn-dimensional projective and
affine spaces byP n

R andAn
R, respectively. Assume thatV is R-definable and letVR :=
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V ∩P n
R andSR := S∩An

R = V ∩An
R be the real traces of the complex algebraic varieties

V andS. Similarly, letHR := H ∩ P n
R be the hyperplane at infinity of the real projective

spaceP n
R. Suppose that the real codimension ofVR andSR at any point isp, thatSR (and

henceVR) is non-empty and thatK andQ areR-definable. Then the generalizedreal polar
varietiesŴK(VR) := ŴK(V ) ∩ P n

R andŴK(SR) := ŴK(S) ∩ An
R = ŴK(V ) ∩ An

R
are well defined and lead to the notions of a classic and a dual polar variety ofVR and
SR. Suppose thatSR is smooth. Then “sufficiently generic” real dual polar varieties ofSR

contain for each connected component ofSR at least one algebraic sample point. The same
is true for the real classic polar varieties if additionally the ideal of definition ofS is a
complete intersection ideal and ifSR is compact (see Propositions1 and 2).

Let Q be the field of rational numbers, letX1, . . . , Xn be indeterminates overR and let
a regular sequenceF1, . . . , Fp in Q [X1, . . . , Xn] be given such that(F1, . . . , Fp) is the
ideal of definition of the affine varietyS. Then, in particular,S is aQ-definable, complete
intersection variety. Suppose that the hyperquadricQ is given by a non-degenerate quadratic
form overQ and, in particular, thatQ ∩ HR can be described by the standard,n-variate
positive definite quadratic form (inducing onAn

R the usual euclidean distance). Assume
that the projective linear varietyK is spanned byn − p − i + 1 rational points(a1,0 :
· · · : a1,n), . . . , (an−p−i+1,0 : · · · : an−p−i+1,n) of P n with aj,1, . . . , aj,n generic for
1�j�n−p− i+1. ThusK has dimensionn−p− i. Then, ifSis smooth, the generalized
affine polar varietyŴK(S) is empty or of pure codimensioni in S. Moreover,ŴK(S) is
smooth and its ideal of definition inQ [X1, . . . , Xn] is generated byF1, . . . , Fp and by all
(n − i + 1)-minors of the polynomial((n − i + 1) × n)matrix



�F1
�X1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn

a1,1 − a1,0X1 · · · a1,n − a1,0Xn

.

.

.

.

.

.

.

.

.

an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn




(see Theorem10).
In [2,3], classic polar varieties were used in order to design a new generation of efficient

algorithms for finding at least one algebraic sample point for each connected component of
a given smooth, compact hypersurface or complete intersection subvariety ofAn

R.
Let us illustrate this comment in the case of the two-dimensional unit sphereS, which is

a smooth, compact hypersurface ofA3
R given by the polynomialF := X2

1 +X2
2 +X2

3 − 1.
Let Q be the hyperquadric ofP 3

C defined by the quadratic formX2
0 + X2

1 + X2
2 + X2

3
and letK1 andK0 be the linear subvarieties ofP 3

C defined by the linear equation systems
X0 = 0, X3 = 0 andX0 = 0, X3 = 0, X2 = 0, respectively. Observe thatK1 is spanned
by the rational points(0 : 1 : 0 : 0) and(0 : 0 : 1 : 0), and thatK0 consists of the point
(0 : 0 : 0 : 1). One verifies easily that the real polar varietŷWK1(S) is described by the

vanishing of the polynomialsF and �F
�X3

, whereas the polar varietŷWK0(S) is described by

the vanishing ofF, �F
�X3

and �F
�X2

. Therefore,ŴK1(S) andŴK0(S) are the classic real polar
varieties obtained by cutting the two-dimensional unit sphereSwith the linear subspaces of



380 B. Bank et al. / Journal of Complexity 21 (2005) 377–412

A3
R given by the equation systemsX3 = 0 andX3 = X2 = 0, respectively. In other words,

ŴK0(S) is the zero-dimensional algebraic variety{(1,0,0), (−1,0,0)}, andŴK1(S) is
the unit circle ofA2

R. The elimination algorithm of[2] or [3] applied to the input equation
F = X2

1 + X2
2 + X2

3 − 1 = 0 consists in solving the zero-dimensional equation system
X2

1 + X2
2 + X2

3 − 1 = 0,X2 = 0,X3 = 0, which describes the polar varietŷWK0(S).
In this paper we will usedual polar varieties for the same algorithmic task in thenon-

compact(but still smooth) case. This leads to a complexity result that represents the basic
motivation of this paper: If the real varietySR is non-empty and smooth and ifSis given as
before by a regular sequenceF1, . . . , Fp in Q[X1, . . . , Xn] such that, for any 1�h�p, the
ideal generated byF1, . . . , Fh is radical, then there exists a uniform,probabilisticalgorithm
which finds a (real algebraic) sample point for each connected component ofSR in expected
sequential timẽO(

(
n
p

)
Ln4p2d2�2) (counting arithmetic operations inQ at unit costs). Here,

theÕ-notation (introduced in [45]) indicates that we neglect polylogarithmic factors in the
complexity estimate,d is an upper bound for the degrees of the polynomialsF1, . . . , Fp,
L denotes the (sequential time)arithmetic circuit complexityof them and��dn pn−p is
the (suitably defined)degree of the real interpretationof the polynomial equation system
F1, . . . , Fp (see Theorems 13 and 14 and for the pattern of elimination algorithm described
here compare [21] and [22]). Although this complexity bound ispolynomialin �, it may
become exponential with respect to the number of variablesn, at least in the worst case.
This exponential worst case complexity becomes unavoidable sinceSR may contain expo-
nentially many connected components. On the other hand, the elimination problem under
consideration is intrinsically of non-polynomial character with respect to the syntactic input
length for any reasonable continuous data structure (cf. [11,20]).

In view of [12] we may conclude that no numerical procedure (based on the bit rep-
resentation of integers) is able to solve this algorithmic task more efficiently than our
symbolic-seminumeric procedure.

2. Intrinsic aspects of polar varieties

For two given linear subvarietiesA andB of the complexn-dimensional projective space
P n we denote by〈A,B〉 the linear subvariety ofP n spanned byA andB. We say thatA
andB intersect transversally (in symbols:A�B) if 〈A,B〉 = P n holds. In case thatA and
B do not intersect transversally, we shall writeA /� B, (observe that dimA + dimB < n

impliesA /� B). LetV be a projective algebraic subvariety ofP n and suppose thatV is of
pure codimensionp for some 0�p�n (this means that all irreducible components ofV
have the same codimensionp). We denote byVreg the set of all regular (smooth) points of
V. Observe thatVreg is a complex submanifold ofP n of codimensionp and thatVreg is
Zariski-dense inV. We callVsing := V \ Vreg the singular locus of the projective varietyV.
LetV andW be two given pure codimensional projective subvarieties ofP n and letM be
a given point ofP n belonging to the intersection ofVreg andWreg. We say thatV andW
intersect transversally at the pointM if the Zariski tangent spacesTMV andTMW of the
algebraic varietiesV andWat the pointM intersect transversally (here we interpreteTMV

andTMW as linear subvarieties of the ambient spaceP n that contain the pointM).
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We assume for the moment that the varietyV is the projective closure of a given closed
algebraic subvarietySof the affine spaceAn and thatShas pure codimensionp. We call
Sreg := Vreg∩An andSsing := Vsing∩An the set of smooth (regular) points and the singular
locus of the affine varietyS, respectively. For any smooth pointM of the affine varietySwe
interprete, as usual, the tangent spaceTM S of SatM as a linear subspace ofAn passing
through the origin. Thus, if we interpreteM as a point of the projective varietyV, the affine
trace of the tangent spaceTM V of V atM, namelyTM V ∩ An, turns out to be the affine
linear subspace ofAn that is parallel toTM S and passes throughM, namelyM + TM S. In
the same sense we writeM + A := 〈M,A〉 ∩ An for any linear subvarietyA of P n.

For the rest of this paper let us fix integersn�0, 0�p�n and a projective subvariety
V of P n having pure codimensionp. Using the projective setting, we introduce in Section
2.1 the notion of ageneralizedpolar variety ofV associated with a given linear subspace
K, a given non-degenerate hyperquadricQ and a given hyperplaneH of the ambient space
P n, subject to the condition thatQ ∩ H is a non-degenerate hyperquadric ofH.

Restricting again our attention to the case thatH is the hyperplane at infinity ofP n,
we may consider the complexn-dimensional affine spaceAn as embedded inP n. In this
context we may define theaffinegeneralized polar varieties of the affine varietyS :=
V ∩ An, which we suppose to be non-empty. It turns out that theclassicpolar varieties
of S are special instances of the affine generalized ones. We finish Section 2.1 with the
description of another type of special instance of affine generalized varieties, namely the
dualpolar varieties introduced in [4]. Finally, in Section 2.2 we introduce and discuss the
real (generalized, affine, classic, dual)polar varietiesof the real varietiesVR := V ∩ P n

R
andSR := S ∩ An

R (supposing thatVR andSR are non-empty). We will formulate two
sufficient conditions for the non-emptyness of such real polar varieties.

2.1. Generalized polar varieties

LetQ be a non-degenerate hyperquadric defined in the projective spaceP n. For a linear
subvarietyA ⊂ P n of dimensiona, we denote byA∨ the dual ofA with respect toQ. The
dimension ofA∨ is n − a − 1.

Further, letH be a hyperplane such that the intersectionQ ∩ H is a non-degenerate
hyperquadric ofH (this means that at any pointM of Q ∩ H the hyperplaneH is not
contained in the tangentspaceTMQ). If A is a linear subvariety ofP n contained inH, we
denote byA∗ its dual with respect toQ ∩ H . The dimension ofA∗ is n − a − 2. Observe
that the linear varietiesA∗ andA∨ ∩ H coincide.

Now we are going to introduce the notion of a generalized polar variety contained in
the projective spaceP n. Such polar varieties will be associated with a given flag of linear
subvarieties, a non-degenerate hyperquadric and a hyperplane ofP n, which is supposed not
to be tangent to the hyperquadric. We consider this situation to be represented by a point of a
suitable parameter space given as a Zariski open subset of the product of the corresponding
flag variety, the space of hyperquadrics and the dual space ofP n. We will denote a current
point of this parameter space byP = (K,Q,H).

In view of the intended algorithmic applications to real polynomial equation solving,
the principal aim of this paper is the proof of suitable smoothness results for generic polar
varieties associated with the given projective varietyV. For this purpose we will work locally
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(in the Zariski sense) in the varietyV. This allows us to restrict our attention to locally closed
conditions in the parameter space (instead of the more general constructible ones).

For a given pointP = (K,Q,H) we define, for any memberK of the flagK, thegen-
eralized polar varietŷWK(V ) associated withK as the Zariski-closure of the constructible
set {

M ∈ Vreg \ (K ∪ H) | TMV /� 〈M, (〈M,K〉 ∩ H)∗〉 atM
}
. (1)

Note thatŴK(V ) is contained inV. Let us denote the given flag by

K : P n ⊃ Kn−1 ⊃ Kn−2 ⊃ · · · ⊃ Kn−p−1 ⊃ · · · ⊃ K1 ⊃ K0.

Then the generalized polar varieties associated withK are organized as a decreasing se-
quence as follows:

V = ŴKn−1 = · · · = ŴKn−p ⊃ ŴKn−p−1 ⊃ · · · ⊃ ŴK1 ⊃ ŴK0.

In order to simplify notations, we write

V̂i := ŴKn−p−i , 1� i�n − p.

We callV̂i theith generalized polar varietyofVassociated with the parameter pointP. The
subscripti reflects the expected codimension ofV̂i in V. Note that therelevant partof the
flagK leading to non-trivial polar varieties ranges fromKn−p−1 toK0.

Let K be any member of the flagK and assume thatH is the hyperplane at infinity of
P n (fixing an embedding of then-dimensional affine spaceAn into P n) and thatV is the
projective closure of a given purep-dimensional closed subvarietyS of the affine space
An. We denote bŷWK(S) := ŴK(V )∩ An theaffine generalized polar variety associated
to K.

Two particular choices of the parameter pointP = (K, H,Q) are noteworth. Let us fix
a non-degenerate hyperquadricQ and a hyperplaneH not tangent toQ. Furthermore, let be
given a flag

L : L0 ⊂ L1 · · · ⊂ Lp−1 ⊂ · · · ⊂ Ln−2 ⊂ Ln−1 ⊂ P n

organized as anincreasingsequence of linear subvarieties of then-dimensional projective
space and suppose thatLn−1 = H holds.

We associate two new flags of linear subspaces ofP n with the flagL, both organized as
decreasingsequences. We call these two flags the internal and the external flag ofL and
denote them byK andK, respectively.

We write theinternal flagK as

K : P n ⊃ Kn−1 ⊃ Kn−2 ⊃ · · · ⊃ Kn−p−1 ⊃ · · · ⊃ K1 ⊃ K0.

For i ranging from 1 ton − p, we define the relevant part ofK by Kn−p−i := (Lp+i−2)∗
(observe that the linear varietyLp+i−2 is contained in the hyperplaneH). The irrelevant
partKn−1 ⊃ Kn−2 ⊃ · · · ⊃ Kn−p of K may be chosen arbitrarily.

Consider now an arbitrary memberK of the relevant part of the internal flagK. Further-
more, letL be the member of the flagL determined by the conditionK = L∗, and letM
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be a point belonging toVreg\H . Taking into account thatK is contained inH, whereasM
does not belong toH , we conclude that

〈M,K〉 ∩ H = K

holds. This implies

〈M, (〈M,K〉 ∩ H)∗〉 = 〈M,K∗〉 = 〈M,L〉.
Provided thatH does not contain any irreducible component ofV, we infer from (1) that
ŴK(V ) coincides with the Zariski-closure of the constructible set{

M ∈ Vreg \ L | TMV /� 〈M,L〉 at M
}
. (2)

We denote this Zariski-closure byWL(V ).
As before letH be the hyperplane at infinity ofP n and letV be the projective closure of

a given purep-codimensional closed subvarietySof the affine spaceAn. ThenH does not
contain any irreducible component ofV and from (2) we deduce that the affine generalized
polar varietyŴK(S) = ŴK(V ) ∩ An is the affine traceWL(S) := WL(V ) ∩ An of the
polar varietyWL(V ). Since the linear subvarietyL is contained in the hyperplane at infinity
H, we may interpreteL as a linear subspaceI of the affine spaceAn. From (2) one infers
easily that the affine polar varietyWL(S) is the Zariski-closure of the constructible set{

M ∈ Sreg \ (L ∩ An) | M + TMS /� M + L at M
}
,

or, alternatively, of{
M ∈ Sreg \ (L ∩ An) | TMS /� I at M

}
(3)

(here we use freely the usual notion and notation of non-transversality of linear and affine
linear subspaces ofAn). This implies thatWL(S) is exactly the classic polar variety ofS
associated with the linear spaceI. Finally, let us remark that any classic polar variety ofS
is obtained by a suitable choice of the flagL with Ln−1 = H . For the definition and basic
properties of classic polar varieties we refer to[40] and the references cited therein. More
details on the relations between classic and generalized polar varieties can be found in [4].

We write theexternal flagK as

K : P n ⊃ K
n−1 ⊃ K

n−2 ⊃ · · · ⊃ K
n−p−1 ⊃ · · · ⊃ K

1 ⊃ K
0
.

For i ranging from 1 ton− p, we define the relevant part ofK byK
n−p−i := (Lp+i−1)∨.

The irrelevant partK
n−1 ⊃ K

n−2 ⊃ · · · ⊃ K
n−p

of K may be chosen arbitrarily.
Consider now an arbitrary memberK of the relevant part of the external flagK. Further,

let L be the member of the flagL determined by the conditionK = L∨, and letM be

a point belonging toVreg \ (K ∪ H). FromK
0 ⊂ K we deduce thatK

0
is contained in

〈M,K〉. Taking into account thatK
0∨ = Ln−1 = H holds, we conclude that any element of

〈M,K〉∨ belongs to the hyperplaneH. Thus〈M,K〉∨ is contained in(〈M,K〉∩ H)∨ ∩ H .
A straightforward dimension argument implies now

〈M,K〉∨ = (〈M,K〉 ∩ H)∨ ∩ H = (〈M ,K〉 ∩ H)∗.
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Hence, from (1) we conclude that the generalized polar varietyŴK(V ) coincides with the
Zariski-closure of the constructible set{

M ∈ Vreg \ (K ∪ H) | TMV /� 〈M, 〈M,K〉∨ 〉 atM
}
. (4)

Again, let us assume that the varietyV is the projective closure of a given closed subvariety
Sof the affine spaceAn, thatShas pure codimensionp and thatH is the hyperplane at
infinity of P n. We call the affine polar varietŷWK(S) := ŴK(V ) ∩ An the dual polar
variety ofSassociated withK.

From (4) one easily deduces that the affine dual polar varietyŴK(S) is nothing else but
the Zariski-closure (inAn) of the constructible set{

M ∈ Sreg \ (K ∩ An) | M + TM S /� M + 〈M ,K〉∨ atM
}
. (5)

LetM be a regular point ofSthat does not belong toK ∩ An. Since the linear subvariety
〈M ,K〉∨ is contained in the hyperplane at infinity ofP n, we may interprete the affine cone
of 〈M ,K〉∨ as a linear subspaceIM,K of An. In the same way we may interprete the affine
cone of the linear varietyL as a linear subspaceI of An. Then the linear spaceIM,K consists
exactly of those elements ofI that are orthogonal to the pointM with respect to the bilinear
form induced byQ ∩ H . From (5) one easily deduces that the affine dual polar variety
ŴK(S) is the Zariski-closure of the constructible set{

M ∈ Sreg \ (K ∩ An) | TM S /� IM,K

}
. (6)

In conclusion: Internal flags lead to the classic polar varieties and external flags lead to a
new type of polar varieties, namely the dual ones.

Classic and dual polar varieties play a fundamental role in the context of semialgebraic
geometry, the main subject of this paper. In the next subsection we shall discussreal polar
varieties.

2.2. Real polar varieties

Recall the following notation:P n
R andAn

R for the realn-dimensional projective and
affine spaces. Sometimes, we will also writeP n := P n

C andAn := An
C for n-dimensional

complex projective and affine spaces.
Let a flag of real linear subvarieties of the projective spaceP n

R be given, namely

L : L0 ⊂ L1 ⊂ · · · ⊂ Ln−1 ⊂ P n
R.

Let H be the hyperplane at infinity ofP n
C, and letHR := H ∩ An

R be its real trace.
ThusHR fixes an embedding of the real affine spaceAn

R into P n
R. Furthermore, let an

R-definable, non-degenerate hyperquadricQ of P n
C be given and suppose thatQ ∩ H is

also non-degenerate, and thatQ ∩ HR can be described by means of a positive definite
bilinear form. Observe thatQ ∩ HR induces a Riemannian structure on the affine space
An

R and thatL induces a flag ofR-definable linear subvarieties of the complex projective
spaceP n

C. We call this flag the complexification ofL. Suppose that we are given a purely
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p-codimensional,R-definable closed subvarietySof An
C whose projective closure inP n

C
isV. We denote byVR := V ∩ P n

R andSR := S ∩ An
R the real traces ofV andS(see[7]).

Suppose for the rest of this subsection thatLn−1 = HR holds, thatp is the real codi-
mension ofSR at any point and thatSR is non-empty (this implies thatSR contains at least
one smooth point). For the given flagL of linear subvarieties ofP n

R we may now define
the notion of an internal and an external flag and the notion of areal generalized, affine,
classic and dual polar variety ofVR and ofSR in the same way as in the Section 2.1. It
turns out that these polar varieties are the real traces of their complex counterparts given by
V, Sand the complexification ofL and its internal and external flag. All our comments on
classic and dual polar varieties made in the Section 2.1 are valid mutatis mutandis in the
real case. Again we denote the (real) internal and external flag associated withL by K and
K, respectively. For any memberL of the flagL, K of the flagK andK of the flagK, we
denote the corresponding real polar variety by

WL(VR), WL(SR), ŴK(VR), ŴK(SR), ŴK(VR) and ŴK(SR).

We are now going to discuss the real affine polar varieties associated with the internal and
external flagsK andK of L.

Let us first consider the case of the internal flagK. LetL be any member of the relevant
part of the given flagL and letK be the member of the internal flagK defined byK := L∗.
Observe thatL andK are contained in the hyperplane at infinityHR. Hence, we may
interpreteL as aR-linear subspaceI of the real affine spaceAn

R. From our considerations
in the Section2.1 we deduce that

ŴK(SR) = ŴK(VR) ∩ An
R = WL(VR) ∩ An

R = WL(SR)

holds and from (3) we infer that the classic real polar varietyWL(SR) is the Zariski-closure
of the semialgebraic set

{
M ∈ (SR)reg | TM SR /� I

}
in An

R.
In principle, the classic real polar varietŷWL(SR) may be empty, even in case thatS

contains real smooth points. However, under certain circumstances, we may conclude that
ŴL(SR) is non-empty. This is the content of the following statement:

Proposition 1. Suppose that S is a pure p-codimensional complete intersection variety
given as the set of common zeros of p polynomialsF1, . . . , Fp ∈ R [X1, . . . , Xn], where
X1, . . . , Xn are indeterminatesover the reals.Suppose that the ideal generatedbyF1, . . . , Fp
is radical and thatSR is a pure p-codimensional, non-empty, smooth and compact real va-
riety. ThenŴK(SR) = WL(SR) contains at least one point of each connected component
of SR.

Proposition1 is an easy consequence of the arguments used in [3, Section 2.4], which
will not be repeated here.
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Let us now consider the external flagK. Observe thatK
0

is a zero-dimensional linear
subvariety ofP n

R, namely the origin ofAn. Therefore any member of the external flag
K has a non-empty intersection withAn

R. Assume now that the Riemannian metric ofAn

induced by the hyperquadricQ is the ordinary euclidean distance. Under these assumptions
we shall show the following result:

Proposition 2. Suppose thatSR is a pure p-codimensional,non-empty,smooth real variety.
LetK be any member of the external flagK and suppose thatK ∩ An

R is not contained in
SR. Then, the real affine dual polar varietŷWK(SR) is nonempty and contains at least one
point of each connected component ofSR.

Observe that the statement of Proposition2 becomes trivial forK belonging to the
irrelevant part ofK, since in this casêWK(SR) = SR holds.

Proof. SinceK ∩ An
R is not contained inSR, there exists a pointP of K ∩ An that does

not belong toSR. Consider now an arbitrary connected componentC of SR. ThenC is a
smooth, closed subvariety ofAn

R whose distance to the pointP is realized by a pointM of
C. SinceP does not belong toSR, one hasM − P �= 0.

The square of the euclidean distance of any pointX of An
R to the pointP is a real

valued polynomial function defined onAn
R whose gradient inX is 2(X − P). Applying

now the Lagrangian Multiplier Theorem (see e.g. [46]) to this function and the polynomial
equations definingSR we deduce thatM − P belongs to the orthogonal complement of
the real tangent spaceTM(SR) (observe thatM is a smooth point ofSR). The real trace
IM,K ∩ An

R of the linear spaceIM,K introduced in Section 2.1 consists of all elements of

the orthogonal complement ofK ∩ An
R that are also orthogonal toM. Observe now that the

linear spaceTM(SR)+ (IM,K ∩ An
R) is strictly contained inAn

R, since otherwise any point
of An

R would be orthogonal toM −P . On the other hand,TM(SR)+ (IM,K ∩ An
R) �= An

R
implies thatTM(SR) /� (IM,K ∩ An

R) holds. From (6) we finally deduce that the pointM

belongs to the real affine dual polar varietŷWK(SR) = ŴK(S) ∩ An
R and therefore we

haveC ∩ ŴK(SR) �= ∅. �

3. Extrinsic aspects of polar varieties

In this section we will describe in more detail the generalized polar varieties of a closed,
p-codimensional subvarietySof An, which is given by a system of polynomial equations.
We suppose that these polynomial equations form a regular sequence and generate the
(radical) ideal of definition ofS. LetK be a “sufficiently generic” linear subvariety ofP n

of dimension at mostn − p. We will show that the polar varietŷWK(S) of S is either
empty or equidimensional of expected codimension inS. We will describeŴK(S) locally
by transversal intersections of explicitly given hypersurfaces ofAn and, in case thatS is
smooth, globally by explicit polynomial equations, which generate the ideal of definition
of ŴK(S).
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3.1. Explicit description of affine polar varieties

Let P n andAn be then-dimensional projective or affine space overC or R, according to
the context. As above, we considerAn to be embedded inP n in the usual way. For given
complex or real numbersx0, . . . , xn that are not all zero,x := (x0 : x1 : . . . : xn) denotes
the corresponding point of the projective spaceP n. Moreover, forx0 = 1 we denote the
corresponding point of the affine spaceAn by (x1, . . . , xn) := (1 : x1 : . . . : xn). Let
X0, . . . , Xn be indeterminates overC (or R).

As of now we suppose that the given projective, purelyp-codimensional varietyV is
defined bypnon-zero formsf1, . . . , fp overC (or R) in the variablesX0, . . . , Xn. In other
words, we suppose

V := V (f1, . . . , fp),

whereV (f1, . . . , fp) denotes the set of common zeros off1, . . . , fp in P n. Therefore,
the homogeneous polynomialsf1, . . . , fp form a regular sequence in the polynomial ring
C [X0, , . . . , Xn] (or R [X0, , . . . , Xn]). LetS := V ∩ An and assume thatSis non-empty.
The dehomogenizations off1, . . . , fp are denoted by

F1 := f1(1, X1, . . . , Xn), . . . , Fp := fp(1, X1, . . . , Xn).

Observe thatF1, . . . , Fp are non-zero polynomials in the variablesX1, . . . , Xn overC (or
R). Thus we have

S = V ∩ An = V (F1, . . . , Fp),

whereV (F1, . . . , Fp) denotes the set of common zeros ofF1, . . . , Fp in An. Note that
the polynomialsF1, . . . , Fp form a regular sequence inC [X1, , . . . , Xn] (or in
R [X1, , . . . , Xn]).

The projective Jacobian (matrix) off1, . . . , fp is denoted by

J (f1, . . . , fp) :=
[

�fj
�Xk

]
1� j �p
0� k� n

.

For any pointx of P n we write

J (f1, . . . , fp)(x) :=
[

�fj
�Xk

(x)

]
1� j �p
0� k� n

for the projective Jacobian of the polynomialsf1, . . . , fp at the pointx. Similarly we denote
the affine Jacobian of the polynomialsF1, . . . , Fp by

J (F1, . . . , Fp) :=
[

�Fj
�Xk

]
1� j �p
1� k� n

,

and we write for any pointx of An:

J (F1, . . . , Fp)(x) :=
[

�Fj
�Xk

(x)

]
1� j �p
1� k� n

.
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A point x of V (or of V ∩ An) is called(f1, . . . , fp)-regular (or(F1, . . . , Fp)-regular) if
the JacobianJ (f1, . . . , fp)(x) (or J (F1, . . . , Fp)(x)) has maximal rankp. Note that the
(f1, . . . , fp)-regular points ofV are always smooth points ofV, but not vice versa. For the
sake of simplicity, we shall therefore suppose from now on that all smooth points ofV are
(f1, . . . , fp)-regular. In other words, we suppose thatf1, . . . , fp (and henceF1, . . . , Fp)
generate a radical ideal of its ambient polynomial ring. Any smooth point ofS is therefore
(F1, . . . , Fp)-regular. On the other hand, by assumption, the polynomialsF1, . . . , Fp form
a regular sequence inC [X1, . . . , Xn].

Suppose for the rest of this section that our ground field isC. Next, we will generate local
equations for the generalized polar varieties of the affine complete intersection varietyS. To
this end (and having in mind the algorithmic applications of our geometric considerations
to real affine polar varieties described in Section4) we may restrict our attention to the case
whereH is the hyperplane at infinity ofP n (defined by the equationX0 = 0) and where
the given non-degenerate hyperquadricQ is defined by a quadratic formR, which can be
represented as follows:

R(X0, . . . , Xn) := X0
2 +

n∑
k=1

2ckX0Xk +
n∑

k=1

Xk
2

with c1, . . . , cn belonging toC or R, according to the context. Observe that this representa-
tion ofR implies the hyperquadricsQandQ∩ H to be non-degenerate inP n andH, respec-
tively. Further, observe thatQ ∩ H is defined by the quadratic formR0(X1, . . . , Xn) :=∑n

k=1X
2
k ∈ R [X1, . . . , Xn]. Therefore, the real varietyQ ∩ HR is represented by a pos-

itive definite quadratic form that induces the usual euclidean distance onAn
R. Let us note

that the special shape ofR (and, in particular, the positive definiteness of the quadratic
formR0 representingQ ∩ HR) does not restrict the generality of the arguments which will
follow. These may be applied mutatis mutandis to any non-degenerate hyperquadric whose
intersection with the hyperplane at infinityH is still non-degenerate.

Fix now 1� i�n − p and choose for each 1�j�n − p − i + 1 a pointAj = (aj,0 :
. . . : aj,n) of P n with aj,0 = 0 or aj,0 = 1 andaj,1, . . . , aj,n generic (our genericity
conditions will become evident in the sequel). By this choice, we may assume that the
pointsA1, . . . , An−p−i+1 span an(n−p− i)-dimensional linear subvarietyK := Kn−p−i

of the projective spaceP n.
Let us consider an(f1, . . . , fp)-regular pointM = (x0 : . . . : xn) of V with x0 �= 0 and

M /∈ K. Then one easily sees that the(n−p−i)-dimensional linear subvariety〈M,K〉∩ H

is spanned by then − p − i + 1 linearly independent points

x0A1 − a1,0M , . . . , x0An−p−i+1 − an−p−i+1,0M.

Let Y1, . . . , Yn be new indeterminates and let� := ∑n
k=1XkYk,� ∈ R [X1, . . . , Xn,

Y1, . . . , Yn], denote the (polarized) bilinear form associated with the hyperquadricQ ∩ H .
For 1�j�n − p − i + 1, let&j ∈ C [X1, . . . , Xn] be defined by

&j := &
(x0,...,xn)
j := �(x0 aj,1 − aj,0 x1, . . . , x0 aj,n − aj,0 xn, X1, . . . , Xn)
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andGj ∈ C [X0, X1, . . . , Xn] by

Gj := G
(x0,...,xn)
j := x0 &

(x0,...,xn)
j (X1, . . . , Xn) − X0 &

(x0,...,xn)
j (x1, . . . , xn).

Then the linear forms&1, . . . , &n−p−i+1 define the(p + i − 2)-dimensional linear variety
(〈M,K〉 ∩ H)∗ in H and are therefore linearly independent. Moreover, the linear forms
G1, . . . ,Gn−p−i+1 vanish atM and at any point of(〈M,K〉 ∩ H)∗. Hence, they vanish
at any point of the(p + i − 1)-dimensional linear variety〈M, (〈M,K〉 ∩ H)∗〉. From
the linear independence of&1, . . . , &n−p−i+1 one easily deduces the linear independence
of the linear formsG1, . . . ,Gn−p−i+1. ThereforeG1, . . . ,Gn−p−i+1 describe the linear
variety〈M, (〈M,K〉∩ H)∗〉 used in (1) to define the generalized polar varietŷWK(V ) (see
Section 2.1).

Observe now that for any 1�j�n−p− i + 1 the linear formG(x0,...,xn)
j can be written

as

G
(x0,...,xn)
j = −(X0 − x0) &

(x0,...,xn)
j (x1, . . . , xn)

+x0 &
(x0,...,xn)
j (X1 − x1, . . . , Xn − xn)

= −(X0 − x0) &
(x0,...,xn)
j (x1, . . . , xn)

+x0

n∑
k=1

(x0 aj,k − aj,0 xk)(Xk − xk).

Without loss of generality suppose thatx0 = 1 holds. Thenx := (x1, . . . , xn) is an
(F1, . . . , Fp)-regular point ofS = V ∩ An and the polynomialG(1,x1,...,xn)

j depends only
on the variablesX1, . . . , Xn. Therefore, it makes sense to consider the Jacobian

T (i) := T (i)(X1, . . . , Xn) := J (F1, . . . , Fp,G
(1,x1,...,xn)
1 , . . . ,G

(1,x1,...,xn)
n−p−i+1 ),

whose entries belong to the polynomial ringC [X1, . . . , Xn]. Observe that the polynomial
matrixT (i) is of the following explicit form, namely

T (i) =




�F1
�X1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn

a1,1 − a1,0X1 · · · a1,n − a1,0Xn

.

.

.

.

.

.

.

.

.

an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn




with a1,0, . . . , an−p−i+1,0 being elements of the set{1,0}.
Moreover, observe that the condition

TM(V ) /� 〈M, (〈M,K〉 ∩ H)∗〉
from (1) is equivalent to the vanishing of all(n − i + 1)-minors of the((n − i + 1) × n)-
matrixT (i) at the pointx. Therefore the polynomialsF1, . . . , Fp and the(n− i+1)-minors
of T (i) define the generalized affine polar varietŷWK(S) outside of the locusSsing (recall
that by assumption all smooth points ofSare(F1, . . . , Fp)-regular). LetW be the closed
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subvariety ofAn defined by these equations. Then any irreducible component ofŴK(S)

is an irreducible component ofW. In particular, we havêWK(S) ∩ Sreg = W ∩ Sreg, and
ŴK(S) = W if the affine varietyS is smooth. Note, thati is the expected codimension of
ŴK(S) = ŴKn−p−i (S) in S. These considerations lead to the following conclusion:

Lemma 3. Any irreducible component of̂WK(S) = ŴKn−p−i (S) has codimension at most
i in S.

Proof. Let us denote bya the ideal of the coordinate ringC [S] of the affine varietyS,
generated by all(n− i+1)-minors of the((n− i+1)×n)-matrix induced byT (i) in C [S].
Let C be a given irreducible component of the affine polar varietyŴK(S) and letp be the
ideal of definition ofC in C [S]. Thenp is an isolated prime component of the determinantal
ideala. From[17], Theorem 3 (see also [38, Theorem 13.10]) we deduce that the height
of the prime idealp is bounded byi. This means that the codimension ofC in S is at
mosti. �

In the further analysis of the generalized affine polar varietyŴK(S) we shall distinguish
from time to time two cases, namely the case that the linear projective varietyK = Kn−p−i ,
spanned by the given pointsA1, . . . , An−p−i+1 of P n, is contained in the hyperplane at
infinity H of P n, and the case thatK is not contained inH. If K is contained inH, we have
a1,0 = · · · = an−p−i+1,0 = 0 and ifK is not contained inH, we may suppose without loss
of generality thatan−p−i+1,0 = 1 holds.

Let us now discuss the particular case thatK = Kn−p−i is contained in the hyperplane
at infinity H of P n. Let S be the Zariski-closure of the affine varietyS in the projective
spaceP n and letL := K∗. ThusL is a(p+ i−2)-dimensional linear projective subvariety
of H, the projective varietyS is of pure codimensionp in P n and none of the irreducible
components ofS is contained inH. Furthermore, we haveK = L∗ andS = S ∩ An. From
(2) we deduce now that̂WK(S) = WL(S) holds. This implies

ŴK(S) = ŴK(S) ∩ An = WL(S) ∩ An = WL(S). (7)

ThereforeŴK(S) is theclassicpolar variety associated with the(p + i − 2)-dimensional
linear subvarietyL of the hyperplane at infinityH of P n.

We now return to the analysis of the general situation. Let be given a complex((n−p−
i + 1) × (n + 1))-matrix

b :=



b1,0 · · · b1,n

.

.

.

.

.

.

.

.

.

bn−p−i,0 · · · bn−p−i,n
bn−p−i+1,0 · · · bn−p−i+1,n




withbn−p−i+1,0 = an−p−i+1,0, . . . , bn−p−i+1,n = an−p−i+1,n and withb1,0, . . . , bn−p−i,0
being elements of the set{1,0} and suppose thatbhas maximal rankn−p− i+ 1 and that
the entriesan−p−i+1,n−i+1, . . . , an−p−i+1,n are generic with respect to the other entries of
b (e.g.,a := (aj,k) 1� j � n−p−i+1

0� k� n
is such a((n − p − i + 1) × (n + 1))-matrix).
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LetK(b) be the linear subvariety ofP n spanned by then− p − i + 1 projective points

(b1,0 : · · · : b1,n), . . . , (bn−p−i+1,0 : · · · : bn−p−i+1,n).

Observe thatK(b) is (n−p− i)-dimensional and thatK(a) = Kn−p−i holds. For the sake
of notational succinctness let us use, for 1�j�n−p− i+1 and 1�k�n, the abbreviation

r
(b)
j, k(Xk) := bj, k − bj,0Xk.

We consider now the polynomial((n − i + 1) × n)-matrix

T
(i)
b =




�F1
�X1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn

r
(b)
1,1(X1) · · · r

(b)
1,n(Xn)

.

.

.

.

.

.

.

.

.

r
(b)
n−p−i+1,1(X1) · · · r

(b)
n−p−i+1,n(Xn)



.

Observe thatT (i)
a = T (i) holds.

Let s ∈ {n − i, n − i + 1}. For any ordered sequence(k1, . . . , ks) of different elements
of the set{1, . . . , n} we denote byM(b)({k1, . . . , ks}) := M(b)(k1, . . . , ks) the minor that
corresponds to the firsts rows and to the columnsk1, . . . , ks of the matrixT (i)

b .
Let us fix an ordered sequenceI of n − i different elements of the set{1, . . . , n}, say

I := (1, . . . , n − i), and let us consider the upper(n − i)-minor

m(b) := M(b)(I ) := det




�F1
�X1

· · · �F1
�Xn−i

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn−i

r
(b)
1,1(X1) · · · r

(b)
1,n(Xn−i )

.

.

.

.

.

.

.

.

.

r
(b)
n−p−i,1(X1) · · · r

(b)
n−p−i,n

(Xn−i )




of the matrixT (i).
Note thatm(b) depends only on the entriesbj,k, 1�j�n − p − i, 0�k�n − i, of the

matrixb. In what follows, we will assume thatb satisfies the additional conditionm(b) �= 0.
Let us assume, without loss of generality, that the polynomial(p × p)-matrix


�F1
�X1

· · · �F1
�Xp

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xp




is non-singular. Then, in particular, the genericity of the entriesaj,k of the ((n − p −
i + 1) × (n + 1))-matrix a implies thatm(a) is a nonzero element of the polynomial ring
C [X1, . . . , Xn]. Therefore the matrixa satisfies this condition.
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The Exchange Lemma of[3] implies that, for any ordered sequence(k1, . . . , kn−i+1) of
different elements of the set{1, . . . , n}, the identity

m(b) M(b)(k1, . . . , kn−i+1)

=
∑

l∈{k1,...,kn−i+1}\{1,...,n−i}
�l M(b)({k1, . . . , kn−i+1} \ {l})

×M(b)(1, . . . , n − i, l) (8)

holds with�l ∈ {−1,0,1}, for any indexl ∈ {k1, . . . , kn−i+1} \ {1, . . . , n − i}.
Let us abbreviateM(b)

n−i+1 := M(b)(1, . . . , n − i + 1), M
(b)
n−i+2 := M(b)(1, . . . , n −

i, n− i + 2), , . . . ,M(b)
n := M(b)(1, . . . , n− i, n). Assume now that there is given a point

x of Ssatisfying the conditionsm(b)(x) �= 0 and

M
(b)
n−i+1(x) = · · · = M(b)

n (x) = 0. (9)

Then we infer from (8) thatM(b)(k1, . . . , kn−i+1)(x) = 0 holds for any ordered sequence
(k1, . . . , kn−i+1) of different elements of the set{1, . . . , n}. This means that all(n− i+1)-
minors of the matrixT (i)

b vanish at the pointx. Sincem(b)(x) �= 0 impliesx ∈ Sreg, we
conclude thatx belongs to the polar varietŷWK(b)(S). On the other hand, any pointx of
ŴK(b)(S) satisfies condition (9). Therefore, the polar varietyŴK(b)(S) is defined by the

equationsF1, . . . , Fp,M
(b)
n−i+1, . . . ,M

(b)
n outside of the locusV (m(b)).

LetZn−i+1, . . . , Zn be new indeterminates and consider the((n − i + 1) × n)-matrix


�F1
�X1

· · · �F1
�Xn−i

�F1
�Xn−i+1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn−i

�Fp
�Xn−i+1

· · · �Fp
�Xn

r
(b)
1,1(X1) · · · r

(b)
1,n−i

(Xn−i ) r
(b)
1,n−i+1(Xn−i+1) · · · r

(b)
1,n(Xn)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r
(b)
n−p−i,1(X1) · · · r

(b)
n−p−i,n−i

(Xn−i ) r
(b)
n−p−i,n−i+1(Xn−i+1) · · · r

(b)
n−p−i,n

(Xn)

r
(b)
n−p−i+1,1(X1) · · · r

(b)
n−p−i+1,n−i

(Xn−i ) Zn−i+1 − bn−p−i+1,0Xn−i+1 · · · Zn − bn−p−i+1,0Xn



.

Let M̃(b)
n−i+1, M̃

(b)
n−i+2, . . . , M̃

(b)
n denote the(n − i + 1)-minors of this matrix obtained by

successively selecting the columns 1, . . . , n − i, n − i + 1, then 1, . . . , n − i, n − i + 2,
up to, finally, the columns 1, . . . , n− i, n. LetUb := An \ V (m(b)) and observe thatUb is
non-empty sincem(b), by assumption, is a non-zero polynomial.

Now we consider the following morphism of smooth, affine varieties

�(b)
i : Ub × Ai → Ap × Ai ,

defined by

�(b)
i (x, z) :=

(
F1(x), . . . , Fp(x), M̃

(b)
n−i+1(x, z), . . . , M̃

(b)
n (x, z)

)
for any pair of pointsx ∈ Ub, z ∈ Ai .
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Lemma 4. The origin (0, . . . ,0) of the affine spaceAp × Ai is a regular value of the
morphism�(b)

i .

Proof. Without loss of generality, we may assume that the fibre(�(b)
i )−1(0, . . . ,0) is non-

empty. Consider an arbitrary point(x, z) of (�(b)
i )−1(0, . . . ,0) with x ∈ Ub andz ∈ Ai

and observe that the JacobianJ (�(b)
i )(x, z) of �(b)

i at the point(x, z) has the form




�F1
�X1

(x) · · · �F1
�Xn

(x) 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�Fp
�X1

(x) · · · �Fp
�Xn

(x) 0 · · · 0

∗ · · · ∗ m(b)(x) · · · 0
.
.
.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

∗ · · · ∗ 0 · · · m(b)(x)



.

Sincex belongs toUb, we conclude that the firstp rows of J (�(b)
i )(x, z) areC-linearly

independent and thatm(b)(x) �= 0 holds. Therefore,J (�(b)
i )(x, z) has maximal rankp+ i.

Thus (x, z) is a regular point of�(b)
i . Since(x, z) is an arbitrary element of the fibre

(�(b)
i )−1(0, . . . ,0), we conclude finally that(0, . . . ,0) is a regular value of�(b)

i . �

Applying now the Weak–Transversality Theorem of Thom–Sard (see e.g.[15]) to �(b)
i ,

we deduce from Lemma 4 that there exists a residual dense set� of Ai such that, for any
point z ∈ �, the polynomials

F1, . . . , Fp, M̃
(b)
n−i+1(X1, . . . , Xn, z), . . . , M̃

(b)
n (X1, . . . , Xn, z)

of C [X1, . . . , Xn] intersect transversally in any of their common zeros outside of the
positive codimensional, Zariski closed locusAn \ Ub. From the genericity of the entries
bn−p−i+1,n−i+1 = an−p−i+1,n−i+1, . . . , bn−p−i+1,n = an−p−i+1,n of the matrixT (i)

b we
deduce that we may assume, without loss of generality, that the point� := (an−p−i+1,n−i+1

, . . . , an−p−i+1,n) belongs to the set�. Observing now thatM(b)
n−i+1 = M̃

(b)
n−i+1

(X1, . . . , Xn, �), . . . ,M
(b)
n = M̃

(b)
n (X1, . . . , Xn, �) holds, we conclude that the equations

F1, . . . , Fp,M
(b)
n−i+1, . . . ,M

(b)
n intersect transversally at any point of̂WK(b)(S) not belong-

ing to the locusV (m(b)) and that such points exist.
We have therefore shown the following statement:

Lemma 5. Let the notations and assumptions be as before. Then the polynomial((n− i +
1) × n)-matrixT (i)

b satisfies the following condition:

TheequationsF1, . . . , Fp, M
(b)
n−i+1, . . . ,M

(b)
n define thegeneralizedpolar varietŷWK(b)

(S) outside of the locusV (m(b)) and intersect transversally in any point of the affine variety
ŴK(b)(S) \ V (m(b)). In particular, ŴK(b)(S) \ V (m(b)) is empty or a smooth, complete
intersection variety of dimensionn − p − i.
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Observe that all upper(n − i)-minors ofT (i) vanish at a given(F1, . . . , Fp)-regular
pointxof Sif and only if xbelongs to the polar varietŷWKn−p−i−1(S) which is contained in
ŴK(S) = ŴKn−p−i (S). Applying now Lemma5 to any upper(n − i)-minor of the matrix
T (i) = T

(i)
a we conclude:

Proposition 6. For any(F1, . . . , Fp)-regular point x ofŴKn−p−i (S) \ ŴKn−p−i−1(S) there
exist indices1�k1 < · · · < kn−i �n with the following property:
Letm := M({k1, . . . , kn−i})be theupper(n−i)-minor of thepolynomial((n−i+1)×n)-

matrix T (i) determined by the columns(k1, . . . , kn−i ), let {1, . . . , n} \ {k1, . . . , kn−i} =
{kn−i+1, . . . , kn} and letMn−i+1 := M({k1, . . . , kn−i , kn−i+1}),Mn−i+1 := M({k1, . . . ,

kn−i , kn−i+2}), . . . ,Mn := M({k1, . . . , kn−i , kn}). Then theminorm does not vanish at the
point x and the equationsF1, . . . , Fp,Mn−i+1, . . . ,Mn intersect transversally at x. More-
over, the polynomialsF1, . . . , Fp, Mn−i+1, . . . ,Mn define the polar varietŷWKn−p−i (S)

outside of the locusV (m).

Fix for the moment 1�j�n−p−i+1 and letEj be the(n−p−i−1)-dimensional linear
projective subvariety ofP n spanned by the pointsA1, . . . , Aj−1, Aj+1, . . . , An−p−i+1. In
particular, we haveEn−p−i+1 = Kn−p−i−1.

From the generic choice of the complex numbersaj,k, 1�j�n− p − i + 1, 1�k�n

we infer that Proposition6 remains still valid if we replace in its statement the upper
(n − i)-minor m = M(k1, . . . , kn−i ) by the (n − i)-minor of T (i) given by the rows
1, . . . , p+ j −1, p+ j +1, . . . , n−p− i+1 and the columnsk1, . . . , kn−i and the polar
varietyŴKn−p−i−1(S) by ŴEj

(S).
Let �i := ⋂

1� j �n−p−i+1 ŴEj
(S). Then�i is contained inŴKn−p−i+1(S) and Propo-

sition 6 implies that, outside of the locus�i , the polar varietyŴKn−p−i (S) is smooth and
of pure codimensioni in S. It is not too difficult to deduce from Proposition 6 that the codi-
mension of�i in Sis at least 2i+1. Hence, forn−p−1

2 < i�n−p, the algebraic variety�i

is empty and therefore, the polar varietŷWKn−p−i (S) is smooth in any of its(F1, . . . , Fp)-
regular points. In the next subsection we will show this property ofŴKn−p−i (S) for any
0� i�n − p (see Theorem 10 below).

Finally, let us consider the casei := n−p. Observe thatT (n−p) is a((p+1)×n)-matrix
which contains the JacobianJ (F1, . . . , Fp) as its firstp rows. Thus, for any(F1, . . . , Fp)-
regular pointx of ŴK0(S), there exists an upperp-minor m of T (n−p) with m(x) �= 0.
Therefore, we definêWK−1 as the empty set. Thus, in particular,�n−p is empty and this
implies thatŴK0(S) is smooth and of pure codimension(n− p) outside of the locusSsing
(cf. Lemma 7 below).

3.2. Geometric conclusions

The geometric main outcome of this section is Theorem 10 below, which is a basic result
for generalized affine polar varieties in the reduced complete intersection case. The proof
of this result requires three fundamental technical statements, namely Lemmas 7, 9 and
Proposition 8 below. For the rest of this section let the assumptions and notations be as
before.
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Lemma 7. The generalized polar varietŷWK0(S) is empty or of(expected) codimension
n − p in S (i.e., ŴK0(S) contains at most finitely many points). Moreover, ŴK0(S) is
contained inSreg.

Proof. Without loss of generality, we may assume thatŴK0(S) is non-empty. Consider an
irreducible componentC of ŴK0(S). Since the(F1, . . . , Fp)-regular points of̂WK0(S) are
Zariski dense in̂WK0(S), we conclude thatC ∩ Sreg is non-empty.

Observe that̂WK−1(S) is empty. From Proposition6 we conclude now that any point
of ŴK0(S) ∩ Sreg is isolated. ThereforeC consists of a single point that belongs toSreg.
This implies that the algebraic varietŷWK0(S) is contained inSreg and of pure codimension
n − p in S. �

Proposition 6 and Lemma 7 imply our next result.

Proposition 8. Suppose that the generalized affine polar varietyŴKn−p−i (S) is non-empty.
ThenŴKn−p−i (S) is of purecodimension i inS(and therefore, thecodimensionof̂WKn−p−i (S)

in S coincides with the expected one). Moreover, for each irreducible component C of
ŴKn−p−i (S) there exists an upper(n − i)-minor m ofT (i) such that m does not vanish
identically on C. In particular, no irreducible component of̂WKn−p−i (S) is contained in
ŴKn−p−i−1(S).

Proof. Let C be an irreducible component of̂WKn−p−i (S). Suppose for the moment that
all upper(n − i)-minors ofT (i) vanish identically onC. Then Proposition6 implies that
C is contained inŴKn−p−i−1(S). From Lemma 7 we deduce that there exists an index
0�j < n−p− i such thatC is contained in̂WKj (S), but not inŴKj−1(S). SinceC ∩ Sreg

is Zariski dense inC, there exists a pointx ∈ C ∩ Sreg\ ŴKj−1(S). From Proposition 6 we
infer that there is a single irreducible componentC′ of ŴKj (S) that contains the pointx.
Moreover, this irreducible component has codimensionn−p− j > i in Sand containsC.
Thus the codimension ofC in Sis strictly larger thani. On the other hand, Lemma 3 implies
thatC has codimension at mosti in S. From this contradiction we deduce that there exists
an upper(n − i)-minormof T (i) that does not vanish identically onC.

Therefore,C \ V (m) is non-empty. From Proposition 6 we deduce now that the codi-
mension ofC in S is exactlyi. Hence, the generalized affine polar varietyŴKn−p−i (S) is of
pure codimensioni in S.

Observe that the same arguments are valid for the polar varietyŴKn−p−i−1(S). Thus
ŴKn−p−i−1(S) is of pure codimension(i+1) in S. Consequently, the irreducible component
C of ŴKn−p−i cannot be contained in̂WKn−p−i−1(S). �

Let us remark that, for a generic choice of the parametersaj, k , 1�j�n−p, 1�k�n,
Propositions 6 and 8 yield a local description of the generalized polar varieties of a given
complete intersection variety by polynomial equations.

Moreover, it is not too difficult to conclude from Propositions 6 and 8 that in the case,
whereSandŴKn−p−i (S) are non-empty and smooth, the ideal generated inC [X1, . . . , Xn]
by F1, . . . , Fp and all(n − i + 1)-minors ofT (i) is Cohen–Macaulay and radical. This is
a consequence of the main result of [16]. On the other hand, this ideal theoretic conclusion
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of Propositions6 and 8 ensures already the correctness of the main algorithmic results
described in Section 4, namely Theorems 13 and 14 below (see [4] for details).

In what follows, we shall use the notations that we are going to introduce now.
LetA∗

1 := (a∗
1,0 : · · · : a∗

1,n), . . . , A
∗
n−p−i := (a∗

n−p−i,0 : · · · : a∗
n−p−i,n), A

∗
n−p−i+1 :=

(a∗
n−p−i+1,0 : · · · : a∗

n−p−i+1,n) be then − p − i + 1 points ofP n whose coordinates are
defined bya∗

1,0 := 0, . . . , a∗
n−p−i,0 := 0, a∗

n−p−i+1,0 = an−p−i+1,0 and, for 1�j�n −
p − i + 1 and 1�k�n, by

a∗
j,k :=



aj,k − an−p−i+1,k if 1�j�n − p − i and aj,0 = 1,
aj,k if 1�j�n − p − i and aj,0 = 0,
an−p−i+1,k if j = n − p − i + 1.

Note that we have alwaysA∗
n−p−i+1 = An−p−i+1 andA∗

1 = A1, . . . , A
∗
n−p = An−p in the

case thata1,0 = · · · an−p−i+1,0 = 0 holds. Let us recall from Section3.1 that the condition
a1,0 = · · · an−p−i+1,0 = 0 is equivalent to the conditionKn−p−i ⊂ H and that we have
by assumptionan−p−i+1,0 = 1 in the caseKn−p−i �⊂ H . Observe that then − p − i + 1
pointsA∗

1, . . . , A
∗
n−p−i+1 span the linear projective subvarietyKn−p−i of P n and that their

coordinatesa∗
j,k, 1�j�n − p − i + 1, 1�k�n, are generic. Moreover,̂WKn−p−i (S) is

defined, outside of the singular locus ofS, by the vanishing of the polynomialsF1, . . . , Fp
and of all(n − i + 1)-minors of the((n − i + 1) × n)-matrix

�(i) =




�F1
�X1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn

a∗
1,1 · · · a∗

1,n

.

.

.

.

.

.

.

.

.

a∗
n−p−i,1 · · · a∗

n−p−i,n

a∗
n−p−i+1,1 − a∗

n−p−i+1,0X1 · · · a∗
n−p−i+1,n − a∗

n−p−i+1,0Xn



.

We denote the polynomial((n− i)× n)-matrix of the firstn− i rows of�(i) by �̌
(i)

. From
Proposition8 we deduce that the Zariski closure of all(F1, . . . , Fp)-regular points ofSat

which all (n − i)-minors of�̌
(i)

vanish constitutes a (classic) polar varietyW̌i+1 which is
contained inŴKn−p−i (S) and is empty or has pure codimensioni + 1 inS.

Let (k1, . . . , kp) be an arbitrary ordered sequence ofp different elements of the set
{1, . . . , n}. We denote byJ (k1,...,kp) thep-minor of the JacobianJ (F1, . . . , Fp) determined
by the columnsk1, . . . , kn.

Lemma 9. Suppose that the variablesX1, . . . , Xn are in general position with respect to
the affine variety S and that the generalized polar varietyŴKn−p−i (S) is non-empty. For
n− i+1�k�n,we denote byNk the(p+1)-minor determined by the columns1, . . . , p, k
of the polynomial((p + 1) × n)-matrix[

J (F1(Z), . . . , Fp(Z))

an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn

]
.
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Then there exists a point x of the affine variety S satisfying the conditions

J (1,...,p)(x) �= 0, Nn−i+1(x) = · · · = Nn(x) = 0.

Proof. For 1�j�n − p − i and 1�k�n, consider the generic linear form�∗
j :=∑

1� l�n a
∗
j,lXl and let�k = (�k,1, . . . , �k,n) be a point ofAn such that�1, . . . , �p+1

and�1, . . . , �n constitute aC-vector space basis of the(p + 1)-dimensional subspace of
An defined by the generic linear forms�∗

1, . . . ,�
∗
n−p−i and of the affine spaceAn, re-

spectively. We denote the transposed matrix of(�j,k)1� j,k�n by B. From the genericity
of the linear forms�∗

1, . . . ,�
∗
n−p−i+1 we deduce that�1, . . . , �p+i form a generic set of

points ofAn. Without loss of generality, we may assume that the same is true for the points
�1, . . . , �n. For 1�k�n, letZk := ∑

1� l�n �̃k,lXl , where(�̃k,1, . . . , �̃k,n) is thekth row
of the inverse of the matrixB.

LetZ := (Z1, . . . , Zn) and observe thatZ represents a generic coordinate transformation
of the affine spaceAn. Following the context, we will considerZ1, . . . , Zn to be new
variables or linear forms inX1, . . . , Xn. By F1(Z), . . . , Fp(Z) we denote the polynomials
F1, . . . , Fp rewritten in the new variablesZ1, . . . , Zn and by

J (F1(Z), . . . , Fp(Z)) :=
(

�Fh(Z)
�Zk

)
1�h�p
1� k� n

the Jacobian ofF1, . . . , Fp with respect to the variablesZ1, . . . , Zn. For 1�h�p and
1�k�n we have then

�Fh
�Zk

(Z) =
n∑
l=1

�k, l
�Fh
�Xl

. (10)

In that what follows, we shall consider the entriesZ1, . . . , Zn of Z to be linear forms in
the variablesX1, . . . , Xn. Consequently, the entries of the JacobianJ (F1(Z), . . . , Fp(Z))

will be considered elements of the polynomial ringC [X1, . . . , Xn]. Taking into account
that�1, . . . , �p+i−1 form a basis of theC-vector space defined by the linear forms

�∗
1 =

n∑
l=1

a∗
1,lXl , . . . , �∗

n−p−i =
n∑
l=1

a∗
n−p−i,lXl,

we deduce from identities (10) that the matriceš�
(i)
B and�(i)B are of the form

�̌
(i)
B =

[
J (F1(Z), . . . , Fp(Z))

On−p−i, p+i (∗) n−p−i, n−p−i

]
and

�(i)B =

 J (F1(Z), . . . , Fp(Z))

On−p−i, p+i (∗) n−p−i, n−p−i

�1 − �1Z1 · · · �n − �nZn


 ,

whereOn−p−i, p+i denotes the((n−p−i)×(p+i))-zero matrix,(∗) n−p−i, n−p−i indicates
a suitable((n − p − i) × (n − p − i))-matrix with generic complex entries,�1, . . . ,�n
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are generic complex numbers and�1, . . . , �n are complex numbers satisfying the condition
�1 = · · · = �n = 0 in the casean−p−i+1 = 0 and�1 �= 0, . . . , �n �= 0 in the case
an−p−i+1,0 = 1. Without loss of generality we may assume that�1 = · · · �n = an−p−i+1,0
holds. Let us therefore abbreviate� := �1.

The genericity of the matrix(∗)n−p−i, n−p−i implies that the(n− i)-minors of the matrix

�̌
(i)
B, that are not identically zero, are scalar multiples of thep-minors selected between

the columns 1, . . . , p+ i of the JacobianJ (F1(Z), . . . , Fp(Z)), and vice versa. Hence, the
ideal generated by thesep-minors inC [X1, . . . , Xn] coincides with the ideal generated by

all (n− i)-minors of�̌
(i)
B, and therefore also with the ideal generated by all(n− i)-minors

of the matrix�̌
(i)

(observe that the matrixB is generic and consequently regular).
Therefore allp-minors selected between the columns 1, . . . , p + i of the Jacobian

J (F1(Z), . . . , Fp(Z)) vanish at a(F1, . . . , Fp)-regular poinťx ofSif and only if all (n−i)-

minors of�̌
(i)

do so, i.e., if and only if̌x belongs to the classic polar variety̌Wi+1. Since
W̌i+1 is an affine subvariety of̂WKn−p−i (S) which is either empty or of pure codimension
i + 1 in Sand since by Proposition8 the generalized polar varietŷWKn−p−i (S) is of pure
codimensioni in S, we conclude that there exists a pointx of ŴKn−p−i (S) which does not
belong toW̌i+1.

Since the pointxdoes not belong to the polar variety̌Wi+1, we may assume without loss
of generality that thep-minorJ (1,...,p)

Z of the matrixJ (F1(Z), . . . , Fp(Z)) determined by
the columns 1, . . . , p does not vanish atx. Consider now the((p + 1) × n)-matrix

T (Z) =
[

J (F1(Z), . . . , Fp(Z))

�1 − �Z1 · · · �n − �Zn

]

and denote byN(Z)
n−i+1, . . . , N

(Z)
n the (p + 1)-minors ofT (Z) obtained by successively

selecting the columns 1, . . . , p, p + 1, then 1, . . . , p, p + 2, up to, finally, the columns
1, . . . , p, p + i.

The same argument as above implies that the(n−i+1)-minors of the matrix�(i)B that are
not identically zero, are scalar multiples of the(p+1)-minors selected between the columns
1, . . . , p+ i of the polynomial((p+ 1)× n)-matrixT (Z). Therefore these(p+ 1)-minors
generate the ideal of all(n− i + 1)-minors of the polynomial((n− i + 1)× n)-matrix�(i)

which on their turn define the generalized polar varietyŴKn−p−i (S) outside of the singular
locus ofS. This implies that the polynomialsF1(Z), . . . , Fp(Z) andN(Z)

n−i+1, . . . , N
(Z)
n

vanish at the pointz := Z(x), whereasJ (1,...,p)
Z does not.

We may easily rearrange the coordinate transformationZ = (Z1, . . . , Zn) in such a way
that the polynomialsN(Z)

n−i+1, . . . , N
(Z)
n become the(p+ 1)-minors of the matrixT (Z) ob-

tained by successively selecting the columns 1, . . . , p, n− i + 1, then 1, . . . , p, n− i + 2
up to, finally, the columns 1, . . . , p, n. Since the entries�1, . . . ,�n of the matrixT (Z) and
the coefficients of the coordinate transformationZ = (Z1, . . . , Zn) are generic, the conclu-
sion of the lemma follows now easily replacing the variablesZ1, . . . , Zn by X1, . . . , Xn,
the parameter� by an−p−i+1,0, the parameters�1, . . . ,�n by an−p−i+1,1, . . . , an−p−i+1,n

and observing thatJ (1,...,p)
X = J (1,...,p) and thatN(X)

n−i+1 = Nn−i+1, . . . , N
(X)
n = Nn

holds. �



B. Bank et al. / Journal of Complexity 21 (2005) 377–412 399

Theorem 10. Let the assumptions and notations be as at the beginning of Section3.Then
the following assertions are true:
(i) The affine polar varietŷWKn−p−i (S) is smooth in any of its(F1, . . . , Fp)-regular points.

Suppose that the variablesX1, . . . , Xn are in general position with respect to S. Then
for any p-minor J of the JacobianJ (F1, . . . , Fp) the ideal of definition of the affine
varietyŴKn−p−i (S) \ V (J ) in C [X1, . . . , Xn]J , the localization ofC [X1, . . . , Xn] by
thepolynomial J, is generatedbyF1, . . . , Fp andall(n−i+1)-minors of thepolynomial
matrixT (i).

(ii) Suppose that thepolar varietŷWKn−p−i (S) is non-empty. If anypoint ofS is(F1, . . . , Fp)-
regular, thenŴKn−p−i (S) is smoothand its(radical) ideal of definition inC [X1, . . . , Xn]
is generated byF1, . . . , Fp and by all(n− i+1)-minors of the polynomial matrixT (i).
In particular, this ideal is unmixed and regular.

Proof. Assertion (ii) is an immediate consequence of assertion (i). Therefore we will show
only assertion (i). Without loss of generality we may assume thatŴkn−p−i (S) is non-empty
and that the variablesX1, . . . , Xn are in general position with respect toS. For 1�j�n−
p − i and 1�k�n, let Zj,k be new indeterminates and let us consider the polynomial
((n − p − i + 1) × n)-matrix

T̃ (i) =




�F1
�X1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn

Z1,1 · · · Z1,n

.

.

.

.

.

.

.

.

.

Zn−i+1,1 · · · Zn−i+1,n
an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn




whose entries belong to the polynomialC-algebra

Ri := C [Zj,k, Xk | 1�j�n − p − i, 1�k�n]
We denote byai the ideal generated byF1, . . . , Fp and all (n − p − i + 1)-minors of
T̃ (i) in Ri and by radai the radical ideal ofai . Let �i := V (ai ) be the closed subvariety
of the affine spaceA(n−p−i)×n × An defined by the vanishing ofF1, . . . , Fp and of all
(n − p − i + 1)-minors ofT̃ (i) and let�i : �i → A(n−p−i)×n be the morphism of affine
varieties induced by the canonical projection ofA(n−p−i)×n × An ontoA(n−p−i)×n. Then
theC-algebraRi/radai is isomorphic to the coordinate ringC [�i] of �i .

Let us consider an arbitrary pointz = (zj,k) 1� j � n−p−i
1� k� n

of A(n−p−i)×n and, in analogy with

the notation of Lemma5, let us writeK(z) for be the linear projective variety spanned by the
n−p− i+1 points(0 : z1,1 : · · · : z1,n), . . . , (0 : zn−p−i,1 : · · · : zn−p−i,n), (an−p−i+1,0 :
an−p−i+1,1 : · · · : an−p−i+1,n) in P n. Then the fibre�−1

i (z) is canonically isomorphic to
the generalized polar varietŷWK(z)(S). In particular,ŴK(z)(S) is non-empty if and only if
zbelongs to the image of�i .

We consider now the pointa∗ = (a∗
j,k) 1� j � n−p−i

1� k� n
of A(n−p−i)×n whose coordinates

are generic. Observe thatK(a∗) = Kn−p−i holds. SinceŴKn−p−i (S) is by assumption
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non-empty, we conclude that the pointa∗ belongs to the image of�i . From the genericity
of the coordinates of the pointa∗ we deduce now that the morphism of affine varieties
�i : �i → A(n−p−i)×n is dominating and from Proposition8 we infer that the dominating
irreducible components of�i are of pure codimensionp + i in A(n−p−i)×n.

Let Ai := C [Zj,k | 1�j�n − p − i, 1�k�n] andBi := Ri/ai . Since�i : �i →
A(n−p−i)×n is dominating andRi/radai is isomorphic toC [�i], we may considerAi as
a C-subalgebra ofBi .

Let (k1, . . . , kp) be an arbitrary ordered sequence ofp different elements of the set
{1, . . . , n}. Then

�
(k1,...,kp)

i := {(z, x) ∈ �i | z ∈ A(n−p−i)×n, x ∈ An, J (k1,...,kp)(x) �= 0}

is an open, affine subvariety of�i whose coordinate ring is isomorphic to(Ri/rad

ai )J (k1,...,kp). We denote by�
(k1,...,kp)

i : �
(k1,...,kp)

i → A(n−p−i)×n the morphism of affine

varieties induced by�i and we writeB(k1,...,kp)

i for the localization of theRi-algebraBi by
the polynomialJ (k1,...,kp) of Ri .

For any pointz in A(n−p−i)×n we denote bynz the ideal of definition ofz in Ai and by

(Ai )nz , (Bi )nz and(B(k1,...,kp)

i )nz the localizations ofAi , Bi andB(k1,...,kp)

i at the maximal

idealnz, respectively (here we considerBi andB(k1,...,kp)

i asAi-algebras). LetU (k1,...,kp)

i

be the set of all pointszof A(n−p−i)×n such that(Bi )nz is a smooth(Ai )nz -algebra. From

[33, Corollary 8.2], we infer thatU (k1,...,kp)

i is a Zariski-open subset ofA(n−p−i)×n.
In order to simplify notations we suppose without loss of generality thatk1 = 1, . . . , kp =

p holds. Since, by assumption, the variablesX1, . . . , Xn are in general position with respect
toSwe haveJ (1,...,p) �= 0.

We are going to show thatU (1,...,p)
i is non-empty. To this end let us consider the complex

((n− p − i)× n)-matrixb = (bj,k) 1� j � n−p−i
1� k� n

defined for 1�j�n− p − i and 1�k�n

by

bj,k :=
{

0 if k �= p + j ,

1 if k = p + j .

Let b̃ = (b̃j,k) 1� j � n−p−i+1
0� k� n

be the complex((n − p − i + 1) × n)-matrix defined for

1�j�n − p − i and 1�k�n by

b̃j,k :=


bj,k if 1�j�n − p − i and 1�k�n ,

0 if 1�j�n − p − i and k = 0 ,
an−p−i+1,k if j = n − p − i + 1 and 0�k�n .

One verifies easily, with the notations of Section 3.1, the identitym(b̃) = J (1,...,p), that the
complex((n − p − i + 1) × n)-matrix b̃ satisfies the assumptions of Lemma5 and that

m(b̃)(x) = J (1,...,p)(x) �= 0 holds, for any pointx of An with (b, x) ∈ �
(k1,...,kp)

i . Observe

now that the�(1,...,p)i -fibre of the pointb is canonically isomorphic to the affine variety
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ŴK(b)(S) \ V (J (1, . . . , p)). Therefore we have

ŴK(b)(S) \ V (m(b)) � (�(1,...,p)i )(−1)(b).

From Lemma5 we deduce now thatnb andai generate in(Ri )J (1,...,p) the trivial or a

complete intersection ideala(b)i that defines the�(1,...,p)i -fibre of the pointb ∈ A(n−p−i)×n

and that this fibre is empty or a smooth complete intersection variety of dimensionn−p−i.
Observe now that(�(1,...,p)i )(−1)(b) is defined by the vanishing ofF1, . . . , Fp and of all
(n − i + 1)-minors of the polynomial((n − i + 1) × n)-matrix



�F1
�X1

· · · �F1
�Xp

�F1
�Xp+1

· · · �F1
�Xn−i

�F1
�Xn−i+1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xp

�Fp
�Xp+1

· · · �Fp
�Xn−i

�Fp
�Xn−i+1

· · · �Fp
�Xn

0 · · · 0 1 · · · 0 0 · · · 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 0 · · · 1 0 · · · 0
�1(X1) · · · �p(Xp) �p+1(Xp+1) · · · �n−i (Xn−i ) �n−i+1(Xn−i+1) · · · �n(Xn)



,

where�k(Xk) denotes the linear forman−p−i+1,k − an−p−i+1,0Xk, for 1�k�n. From

Lemmas5 and 9 we deduce now easily that(�(1,...,p)i )(−1)(b) is non-empty. Therefore, the

ideala(b)i is generated by a regular sequence which consists of the canonical generators of

nb and suitable elements ofai . Consider now an arbitrary pointy = (b, x) of �
(k1,...,kp)

i

with x in An. Letny be the ideal of definition ofy in Ri and observe thatnb = Ai ∩ny and
ai ⊂ ny holds and thatJ (1, . . . , p) is not contained inny . Thus(Ri )J (1,...,p) is a subring of

(Ri )ny and(a(b)i )ny is a complete intersection ideal of the local ring(Ri )ny . From [38, 6.16,
Corollary] and the Exchange Lemma of [3] we deduce now thatai generates in(Ri )ny a
complete intersection ideal and that(Ri/ai )ny = (Bi )ny has Krull dimension(n+1)(n−p−
i). In particular,(Bi )ny is Cohen–Macaulay. Sincey is an arbitrary element of the�(1,...,p)i -

fibre of the pointb of A(n−p−i)×n, we deduce that(B(1,...,p)
i )nb is an equidimensional

Cohen–Macaulay ring of Krull dimension(n+1)(n−p−i). Moreover,B(1,...,p)
i /B(1,...,p)

i ·nb
is an equidimensional regularC-algebra of Krull dimensionn − p − i, isomorphic to the
coordinate ring of the�(1,...,p)i -fibre of the pointb of A(n−p−i)×n. Observing that(Ai )nb
is a regular localC-algebra of Krull dimensionn(n − p − i) contained in(Bi )nb , we

deduce from [38, 8.23, Theorem 31.1] that(B(1,...,p)
i )nb is a flat(Ai )nb -algebra. Taking into

account thatB(1,...,p)
i /B(1,...,p)

i · ny is an equidimensional regularC-algebra we infer now
from [33, Theorem 8.1] and Nakayama’s Lemma (or from [38, 8.23, Theorem 37.7]) that
(Bi )nb is a smooth(Ai )nb -algebra. This implies that the pointb ∈ A(n−p−i)×n belongs to

the setU (1,...,p)
i . Therefore,U (1,...,p)

i is a non-empty Zariski open subset of the affine space
A(n−p−i)×n.

LetUi be the intersection of all (non-empty, Zariski open) setsU (k1,...,kp)

i , where 1�k1 <

· · · < kp�n. ThenUi is a non-empty Zariski open subset ofA(n−p−i)×n. Since the coor-
dinates of the pointa∗ = (a∗

j,k) of A(n−p−i)×n are generic, we may assume without loss
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of generality thata∗ belongs toUi . Therefore, for any ordered sequence(k1, . . . , kp) of

p different elements of the set{1, . . . , n}, the ring (B(k1,...,kp)

i )na∗ is a smooth(Ai )na∗ -

algebra. This implies thatB(k1,...,kp)

i /B(k1,...,kp)

i · na∗ is a regularC-algebra and there-

fore reduced. ThisC-algebra is the coordinate ring of the�
(k1,...,kp)

i -fibre of the point
a∗ of A(n−p−i)×n which is canonically isomorphic tôWK(a∗)(S) \ V (J (k1, . . . , kp)) =
ŴKn−p−i (S) \ V (J (k1, . . . , kp)).

SinceB(k1,...,kp)

i is the localization of theRi-algebraBi by the polynomialJ (k1, . . . , kp)

of Ri , we infer now from the identityBi = Ri/ai that the ideal of definition of the
affine varietyŴKn−p−i (S) \ V (J (k1, . . . , kp)) in C [X1, . . . , Xn]J (k1,...,kp) is generated by
F1, . . . , Fp and all(n− i+ 1)-minors of the polynomial matrixT (i) (observe that the ideal
generated by the(n − i + 1)-minors ofT (i) equals the ideal generated by the(n − i + 1)-
minors of�(i) and that�(i) is obtained from̃T (i) by specializing for each pair of indices
1�j�n − p − i and 1�k�n the variableZj,k to the complex numbera∗

j,k).

Moreover, the coordinate ring of the varietŷWKn−p−i (S)\ V (J (k1, . . . , kp)) is isomor-

phic to the regularC-algebraB(k1,...,kp)

i /B(k1,...,kp)

i · na . Therefore,ŴKn−p−i (S) \ V (J (k1
, . . . , kp)) is a smooth, locally closed, affine subvariety ofAn. This implies that the gener-
alized polar varietŷWKn−p−i (S) is smooth in any of its(F1, . . . , Fp)-regular points. �

In the case of affine, classic polar varieties (i.e., in the caseKn−p−i ⊂ H ) Propositions
6 and 8 and Theorem 10 are nothing but a careful reformulation of [3, Theorem 1].

In terms of standard algebraic geometry, Theorem 10 implies the following result:

Corollary 11. Let S be a smooth, pure p-dimensional closed subvariety ofAn. Let K be a
linear, projective subvariety ofP n of dimension(n − p − i) with 1� i�n − p. Suppose
that K is generated byn − p − i + 1 many pointsA1 = (a1,0 : · · · : a1,n), . . . , Aj =
(aj,0 : · · · : aj,n), . . . ,An−p−i+1 = (an−p−i+1,0 : · · · : an−p−i+1,n) of P n with aj,0 = 0
or aj,0 = 1 andaj,1, . . . , aj,n generic for any1�j�n−p− i + 1.ThenŴK(S) is either
empty or a smooth variety of pure codimension i in S.

Proof. By assumption,S is smooth and of pure codimensionp in An. Therefore, the al-
gebraic varietyS is locally definable by radical complete intersection ideals of heightp in
C [X1, . . . , Xn]. Therefore we may apply a suitably adapted local version of Propositions6
and 8 and Theorem 10 to the varietyS. ThusŴK(S) is locally empty or a smooth variety of
pure codimensioni in S. This implies the corresponding global properties ofŴK(S). �

Observe that Corollary 11 remains mutatis mutandis true if we replace in its formulation
the affine varietySby the projective varietyV and ifV is smooth.

Remark 12. One obtains a slightly more elementary but less transparent proof of Theorem
10 (and hence of Corollary 11) by a suitable refinement of Lemma 9.

For an alternative proof of Corollary 11 for classic polar varieties we may reason as
follows: Suppose for the moment that the linear projective varietyKn−p−i is contained
in the hyperplane at infinityH of P n and letLp+i−2 := (Kn−p−i )∗. Then (7) implies
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the identityŴKn−p−i (S) = WLp+i−2(S). In other words,ŴKn−p−i (S) is a classic polar
variety.

In the Grassmannian of(n − p)-dimensional subspaces ofAn we consider now the
Schubert variety	i associated with the multiindex(1, . . . ,1) ∈ Zi−1 and with the linear
projective varietyLp+i−2. Then it is not too difficult to see that the classic polar variety
ŴKn−p−i (S) = WLp+i−2(S) is obtained as the image under the Nash modification of the fibre
product of the Gauss map ofSreg and the canonical embedding of	i into the corresponding
Grassmannian. Applying Kleiman’s Transversality Lemma[31] to this situation, one infers
now easily Corollary 11 (cf. [47, Corollaire 1.3.2 and Définition 1.4] or [39] for this kind
of reasoning).

In the context of the present paper, this elegant geometric argument has two disadvantages:
• We lose control over the equations which define the polar varietyŴKn−p−i (S).
• The general case of polar varieties requires a different use of Schubert varieties.

4. Real polynomial equation solving

The geometric and algebraic results of Sections2 and 3 allow us to enlarge the range
of applications of the new generation of elimination procedures for real algebraic varieties
introduced in [2,3].

Let S be a purep-dimensional andQ-definable, closed algebraic subvariety of then-
dimensional, complex, affine spaceAn

C and suppose thatS is given byp polynomial equa-
tionsF1, . . . , Fp of degree at mostd, forming a regular sequence inQ[X1, . . . , Xn].Assume
that, for any 1�k�p, F1, . . . , Fk generate a radical ideal. Moreover, suppose that the real
algebraic varietySR := S ∩ An

R is non-empty and smooth.
In this section we are going to explain how the geometric and algebraic results of

Sections 2 and 3 together with [30], Theorem 4.4, lead to aprobabilisticelimination pro-
cedure that finds an algebraic sample point for each connected component ofSR. The
complexity of this algorithm will be ofintrinsic type, depending on the maximal geometric
degree of the dual polar varieties ofSthat are associated with the external flag of a generic,
Q-definable flag contained in the hyperplane at infinityH of then-dimensional, projective
spaceP n

C.
In order to describe this algorithm, let us first discuss these polar varieties and then the

data structure and the algorithmic model we are going to use.
Let us choose a rational pointu = (u1, . . . , un) of An \ SR with generic coordinates

u1, . . . , un and, generically in the hyperplane at infinityH, a flagL of Q-definable, linear
subvarieties ofP n

C, namely

L : L0 ⊂ L1 ⊂ · · · ⊂ Lp−1 ⊂ · · · ⊂ Ln−2 ⊂ Ln−1 ⊂ P n
C

with Ln−1 = H . LetQu be the hyperquadric ofP n
C defined by the quadratic form

Ru(X0, X1, . . . , Xn) := X2
0 − 2

∑
1�k�n

ukX0Xk +
∑

1�k�n

X2
k .

Observe that the hyperquadricsQu andQu ∩ H are non-degenerate inP n
C andH, re-

spectively, and thatQu ∩ HR is represented by the positive definite quadratic formR0
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(X1, . . . , Xn) = ∑
1�k�n X

2
k that introduces the usual euclidean distance onAn

R. One
verifies immediately that the point(1 : u1 : · · · : un) ∈ P n spans, with respect to the
hyperquadricQu, the dual space ofLn−1 = H .

Let us consider the external flagK associated withL, namely

K : P n
C ⊃ K

n−1 ⊃ K
n−2 ⊃ · · · ⊃ K

n−p−1 ⊃ · · · ⊃ K
1 ⊃ K

0
,

with K
n−p−i := (Lp+i−1)∨, for 1� i�n − p, and with an arbitrarily chosen irrelevant

part

K
n−1 ⊃ K

n−2 ⊃ · · · ⊃ K
n−p

.

Observe thatK
0

consists of the rational point(1 : u1 : · · · : un) ∈ P n.
Let 1� i�n−p and recall that the(p+i−1)-dimensional,Q-definable, linear subvariety

Lp+i−1 was chosen generically in the hyperplane at infinityH of P n
C. Therefore,K

n−p−i
is

an(n− p − i)-dimensional,Q-definable, linear subvariety ofP n
C, which we may imagine

to be spanned byn − p − i + 1 rational points

A1 = (a1,0 : · · · : a1,n), . . . , An−p−i+1 = (an−p−i+1,0 : · · · : an−p−i+1,n)

of P n
C with a1,1 = u1, . . . , a1,n = un andaj,1, . . . , aj,n generic, for 2�j�n−p− i + 1,

anda1,0 = 1, a2,0 = · · · = an−p−i,0 = 0. Observe that the pointubelongs toK
n−p−i ∩An

and is not contained inSR. Thus Proposition2 implies that the real affine dual polar variety
Ŵ

K
n−p−i (SR) contains at least one algebraic sample point of each connected component

of SR.
In particular, the complex affine dual polar varietŷW

K
n−p−i (S) is not empty. From the

generic choice of the pointuand of the flagL we deduce now that Proposition 6, Lemma 7,
Proposition 8 and Theorem 10 are applicable to the dual polar varietyŜi := Ŵ

K
n−p−i (S).

Observe that̂Si isQ-definable and of pure codimensioni inS.According to the terminology
introduced in Section 2, we call̂Si the ith dual polar variety ofSassociated with the flag
K. Observe that̂Si is non-empty and intersects each connected component of the real
varietySR.

Thus, in particular,̂Sn−p is aQ-definable, zero-dimensional, algebraic variety that con-
tains an algebraic sample point for any connected component ofSR.

We will now analyse the dual polar varietŷSi more closely. For 2�j�n− p let �j :=∑
1� l�n aj,lXl and, for 1�k�n, let �k = (�k,1, . . . , �k,n) ∈ Q n such that�1 is a zero of

�2, �1 and�2 are zeros of�2 and�3 , . . . , �1, . . . , �p+1 are zeros of�2, . . . ,�n−p and
such that�1, . . . , �n form aQ-vector space basis ofQ n (recall that the coefficients of the
forms�2, . . . ,�n−p are generic). LetB be the transposed matrix of(�j,k)1� j, k�n. For

1�k�n, let Zk = ∑
1� j �n �̃k,jXj , where(�̃k,1, . . . , �̃k,n) is thekth row of the inverse

of the transposed matrix ofB. Let Z := (Z1, . . . , Zn). As in Section 3, consider now the
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polynomial((n − i + 1) × n)-matrix

T (i) =




�F1
�X1

· · · �F1
�Xn

.

.

.

.

.

.

.

.

.

�Fp
�X1

· · · �Fp
�Xn

a1,1 − a1,0X1 · · · a1,n − a1,0Xn

.

.

.

.

.

.

.

.

.

an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn



.

Observe thatT (i)B is of the following form:

T (i)B =
[

J (F1(Z), . . . , Fp(Z))
b1 − c1X1 · · · bp+i − cp+iXp+i bp+i+1 − cp+i+1Xp+i+1 · · · bn − cnXn

On−p−i, p+i (∗)n−p−i, n−p−i

]
,

whereb1, . . . , bn and the entries of(∗)n−p−i, n−p−i are all generic rational numbers and
wherec1, . . . , cn belong toQ \ {0}. For the sake of simplicity we shall suppose thatc1 =
· · · = cn = 1 (this assumption does not change the following argumentation substantially).

Thus the(n − i + 1)-minors of the matrixT (i)B, which are not identically zero, are
scalar multiples of the(p + 1)-minors selected among the columns 1, . . . , p + i of the
((p + 1) × n)-matrix


 :=
[
J (F1(Z), . . . , Fp(Z))

b1 − X1 · · · bn − Xn

]
and vice versa.

Consider now an arbitraryp-minormof the JacobianJ (F1(Z), . . . , Fp(Z)). For the sake
of definiteness let us suppose thatm is given by the columns 1, . . . , p. Forp+1�j�p+ i,
letMj be the(p + 1)-minor of the matrix
 given by the columns 1, . . . , p, j .

Then we deduce from the Exchange Lemma of[3] that, for any pointxofSwithm(x) �= 0,
the conditionMp+1(x) = · · · = Mp+i (x) = 0 is satisfied if and only if all(p + 1)-minors
of 
 vanish atx.

Taking into account thatm(x) �= 0 implies the(F1, . . . , Fp)-regularity of the pointx ∈ S,
we conclude that the equationsF1, . . . , Fp,Mp+1, . . . ,Mp+i define the dual polar variety
Ŝi outside of the locusV (m). Moreover, from Theorem 10 (i) we deduce that the (radical)
ideal of definition of the affine varietŷSi \ V (m) in Q[X1, . . . , Xn]m is generated by the
polynomialsF1, . . . , Fp,Mp+1, . . . ,Mp+i .

For 1�h�p, let Sh be the affine variety defined by the equationsF1, . . . , Fh. Denote
by degSh the geometricdegreeof Sh in the set-theoretic sense introduced in [25] (see also
[18,48]). Thus, in particular, we do not take into account multiplicities and components at
infinity for our notion of geometric degree. We call

� := max{max{degSh|1�h�p},max{deĝSi |1� i�n − p}}
thedegree of the real interpretation of the polynomial equation systemF1, . . . , Fp.

Taking into account the arguments used in the proof of Theorem10 and the genericity
of L in H we deduce from Propositions 6 and 8 that� does not depend on the choice of the
particular flagL.
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Since, by assumption, the degrees of the polynomialsF1, . . . , Fp are bounded byd, we in-
fer from the Bézout-Inequality of[25] the degree estimates degS�dp and degSh�dh�dp,
for any 1�h�p.

Let 1� i�n − p and recall from the beginning of Section 3.1 that each irreducible
component of the polar varietŷSi = W

K
n−p−i (S) is a(n − p − i)-dimensional irreducible

component of the closed subvariety ofAn defined by the vanishing ofF1, . . . , Fp and of all
(n− i + 1)-minors of the polynomial((n− i + 1)× n)-matrixT (i). Taking generic linear
combinations of these minors, one deduces easily from the Bézout inequality that degŜi is
bounded by

(degS) · (p(d − 1) + 1)i �dp+i pi �dn pn−p.

This implies the extrinsic estimate��dn pn−p.
We are now going to introduce a data structure for the representation of polynomials of

Q [X1, . . . , Xn] and describe our algorithmic model and complexity measures. Our elimi-
nation procedure will be formulated in the algorithmic model of (division-free) arithmetic
circuits and networks (arithmetic-boolean circuits) over the rational numbersQ.

Roughly speaking, a division-free arithmetic circuit� over Q is an algorithmic de-
vice that supports a step by step evaluation of certain (output) polynomials belonging
to Q [X1, . . . , Xn], sayF1, . . . , Fp. Each step of� corresponds either to an input from
X1, . . . , Xn, either to a constant (circuit parameter) fromQ or to an arithmetic operation
(addition/subtraction or multiplication). We represent the circuit� by a labelleddirected
acyclic graph (dag). The size of this dag measures the sequential time requirements of the
evaluation of the output polynomialsF1, . . . , Fp performed by the circuit�.

A (division-free) arithmetic network overQ is nothing else but an arithmetic circuit that
additionally contains decision gates comparing rational values or checking their equality,
and selector gates depending on these decision gates.

Arithmetic circuits and networks represent non-uniform algorithms, and the complexity
of executing a single arithmetic operation is always counted at unit cost. Nevertheless, by
means of well known standard procedures our algorithm will be transposable to the uniform
randombit model and will be implementable in practice as well. All this can be done in the
spirit of the general asymptotic complexity bounds stated in Theorems13 and 14 below.

Let us also remark that the depth of an arithmetic circuit (or network) measures theparallel
time of its evaluation, whereas its size allows an alternative interpretation as “number of
processors". In this context we would like to emphasize the particular importance of counting
only nonscalararithmetic operations (i.e., only essential multiplications), takingQ-linear
operations (in particular, additions/subtractions) for cost-free. This leads to the notion of
nonscalar size and depth of a given arithmetic circuit or network�. It can be easily seen
that the nonscalar size determines essentially the total size of� (which takes into account
all operations) and that the nonscalar depth dominates the logarithms of degree and height
of the intermediate results of�.

For more details on our complexity model and its use in the elimination theory we refer
to [8,19,26,32,37] and, in particular, to [23,35] (where also the implementation aspect is
treated).
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Now we are ready to formulate the algorithmic main result of this paper.

Theorem 13. Let n, p, d, �, L and & be natural numbers withd�2 and p�n. Let
X1, . . . , Xn, Y be indeterminates overQ.There exists an arithmetic networkN overQ,de-
pending on certain random parameters, with sizeÕ(

(
n
p

)
Ln4p2d2�2) and nonscalar depth

O(n(&+ lognd) log�), such thatN for suitable specializations of the random parameters
has the following properties:
Let F1, . . . , Fp be a family of polynomials in the variablesX1, . . . , Xn of a degree at

most d and assume thatF1, . . . , Fp are given by a division-free arithmetic circuit� in
Q[X1, . . . , Xn] of size L and nonscalar depth&. Suppose that the polynomialsF1, . . . , Fp
form a regular sequence inQ [X1, . . . , Xn] and thatF1, . . . , Fh generate a radical ideal for
any1�h�p. Moreover, suppose that the polynomialsF1, . . . , Fp define a closed, affine
subvariety S ofAn

C such thatSR is a pure p-codimensional, non-empty and smooth real
variety. Assume that the degree of the real interpretation of the polynomial equation system
is bounded by�. Then the algorithm represented by the arithmetic networkN starts from
the circuit� as input and computes the coefficients ofn + 1 polynomialsP,P1, . . . , Pn in
Q [Y ] satisfying the following conditions:
• P is monic and separable,
• 1�degP ��,
• max{degPk | 1�k�n} < degP ,
• the cardinality#Ŝ of the (non-empty) affine variety

Ŝ := {(P1(y), . . . , Pn(y)) | y ∈ C, P (y) = 0}
is at mostdegP , the affine varietŷS is contained in S and at least one point of each
connected component ofSR belongs tôS.

Moreover, using sign gates the networkN produces at most#Ŝ sign sequences of elements
{−1,0,1} such that these sign conditions encode the real zeros of the polynomial P “à la
Thom” ([13]).

In this way, namely by means of the Thom encoding of the real zeros of P and by means
of the polynomialsP1, . . . , Pn, the arithmetic networkN describes the finite, non-empty
set

Ŝ ∩ Rn = {(P1(y), . . . , Pn(y)) | y ∈ R , P (y) = 0},
which contains at least one algebraic sample point for each connected component of the
real varietySR. For a given specialization of the random parameters, the probability of
failure ofN is smaller than1

2 and tends rapidly to zero with increasing n. The parameters
n, p, d, �, Land& represent an instance of a uniformprocedurewhich produces the network
N in timeÕ(

(
n
p

)
Ln4p2d2�2).

Taking into account the extrinsic estimate��dn pn−d of the beginning of this section
and the straightforward estimatesL�dn+1 and&� logd, we obtain the worst case bounds(
n
p

)
(npn−pdn)O(1) andO((n lognd)2) for the size and non-scalar depth of the networkN of

Theorem13. Thus, our worst case sequential time complexity bound meets the standards of
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todays most efficientdO(n)-time procedures for the problem under consideration (compare
[5,6] and also [9,10,14,24,27–29,41,42]).

Proof. Since we are going to describe a probabilistic procedure, we may assume without
loss of generality that we have already chosen a rational pointu of An \ SR and a flagL of
Q-definable linear subvarietiesP n

C, satisfying the genericity conditions considered at the
beginning of this section, and that the variablesX1, . . . , Xn are in general position with
respect toS. Therefore, we may use freely the previous notations.

For any choice ofp columns 1� i1 < · · · < ip�n and any indexj ∈ {1, . . . , n} \
{i1, . . . , ip} we denote bym(i1,...,ip) the p-minor of J (F1(Z), . . . , Fp(Z)) given by the
columns i1, . . . , ip and byM(i1,...,ip,j) the (p + 1)-minor of 
 given by the columns
i1, . . . , ip, j .

Let us recall that the dual varietŷSn−p is Q-definable and zero-dimensional. Moreover,
Ŝn−p is of degree (i.e., cardinality)� and contains an algebraic sample point for each
connected component ofSR.

Let us consider an arbitrary pointx of Ŝn−p. Sincex is (F1, . . . , Fp)-regular, there exist
indices 1� i1 < · · · < ip�n such thatm(i1,...,ip)(x) �= 0 holds. Letip+1, . . . , in be
an enumeration of the set{1, . . . , n} \ {i1, . . . , ip}. From Lemma 5 we deduce that then
equationsF1, . . . , Fp,M

(i1,...,ip,ip+1), . . . ,M(i1,...,ip,in) define the dual varietŷSn−p outside
of the locusV (m(i1,...,ip)). Moreover, they intersect transversally in any point ofŜn−p \
V (m(i1,...,ip)) and hence, also in the pointx.

Let 1�j�n − p. Observe that our argumentation at the beginning of this section im-
plies that the equationsF1, . . . , Fp,M

(i1,...,ip,ip+1), . . . ,M(i1,...,ip,ij ) define the dual po-
lar variety Ŝj outside of the locusV (m(i1,...,ip)). Moreover, the polynomialsF1, . . . , Fp,

M(i1,...,ip,ip+1) , . . . , M(i1,...,ip,ij ) generate a radical ideal inQ[X1, . . . , Xn]m(i1,...,ip) .
We are now in conditions to apply the main algorithm of [23] or [26] to the system

F1 = 0 , . . . , Fp = 0, M(i1,...,ip,ip+1) = 0 , . . . , M(i1,...,ip,in) = 0, m(i1,...,ip) �= 0,

and in fact, we are using a combination of both. This algorithm may be realized by
an arithmetic networkN(i1,...,ip) of sizeÕ(L n4p2d2�2) and non-scalar depthO(n (& +
lognd) log�) which produces as output(n + 1) polynomialsP (i1,...,ip), P

(i1,...,ip)

1 , . . . ,

P
(i1,...,ip)
n ∈ Q [Y ] satisfying the following conditions:

• P (i1,...,ip) is monic and separable,
• 1�degP (i1,...,ip)��,

• max{degP
(i1,...,ip)

k | 1�k�n} < degP (i1,...,ip),
• Ŝn−p \ V (m(i1,...,ip)) =

= {(P (i1,...,ip)

1 (y) , . . . , P
(i1,...,ip)
n (y)) | y ∈ C : P (i1,...,ip)(y) = 0}

(see[23, Theorem 1]). Now we repeat this procedure for each index set{i1, . . . , in} with
1� i1 < · · · < ip�n and simplify the outputs by iterated greatest common divisor com-
putations in the polynomialQ-algebraQ [Y ].

The final outcome is an arithmetic networkN1 of sizeÕ(
(
n
p

)
Ln4p2d2�2) and non-scalar

depthO(n (&+lognd) log�)which produces as output(n+1)polynomialsP,P1, . . . , P ∈
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Q [Y ] satisfying the following conditions:
• P is monic and separable,
• degP = #Ŝn−p��,
• max{degPk | 1�k�n} < degP ,
• Ŝ := Ŝn−p = {(P1(y), . . . , Pn(y)) | y ∈ C : P(y) = 0}.

We apply now to the polynomialP ∈ Q [Y ] any of the known, well parallelizable Computer
Algebra algorithms for the determination of all real roots of a given univariate polynomial,
where these roots are thought to be encoded “à la Thom” (see e.g.[13]). This subroutine
may be realized by an arithmetic networkN which uses sign gates and extends the network
N1. The size and the non-scalar depth ofN are asymptotically the same as those ofN1.

The estimation of the error probability of the probabilistic algorithm just described is
cumbersome and contains no substantial new ideas. It is not difficult to derive such an
estimation from the proof of [4, Theorem 11]. We omit these details here.�

Some of the ideas contained in the proof of Theorem 13 are implicitly used in [1,43] for
the purpose to find for any connected component ofSR an algebraic sample point. However,
the algorithm developed in loc.cit. is rewriting based, and, although a rigorous complexity
analysis is missing, its minor efficiency can easily be verified.

In the particular case that the real varietySR is compact, our method produces the fol-
lowing alternative complexity result:

Theorem 14. Let the notations and assumptions be as in Theorem13.Suppose that the real
varietySR is not only of pure codimension p, non-empty and smooth, but also compact. For
1�h�p, let Sh be the closed subvariety ofAn

C defined by the equationsF1, . . . , Fh. Let
L be the generic flag ofQ-definable, linear subvarieties ofP n

C introduced at the beginning
of this section, namely

L : L0 ⊂ L1 ⊂ · · · ⊂ Lp−1 ⊂ · · · ⊂ Ln−2 ⊂ Ln−1 ⊂ P n
C

withLn−1 = H . LetK be the internal flag associated withL, namely

K : P n ⊃ Kn−1 ⊃ Kn−2 ⊃ · · · ⊃ Kn−p−1 ⊃ · · · ⊃ K1 ⊃ K0.

For 1� i�n− p, let S̃i := ŴKn−p−i (S) = WLp+i−2(S) be the ith classic polar variety of S
associated with the internal flagK.
Finally, suppose that� is an upper bound for the geometric degrees of the affine varieties

S1, . . . , Sp andS̃1, . . . , S̃n−p. Under these assumptions the sameconclusions as inTheorem
13 hold true.

Theorem 14 is the algorithmic main result of [3], where its statement is slightly different.
Motivated by the outcome of Theorems 14 and 13 above, the following geometric result

was shown in [44]. This result is interesting on its own because of its mathematical and
algorithmic consequences.
Let the notations and assumptions be as in Theorem 14, however, dropping the require-

ment thatSR is compact. Suppose that the variablesX1, . . . , Xn are in generic positionwith
respect to the algebraic variety S. For each1� i < n − p, let �i : An

C → A
n−p−i

C be the
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projection given by the variablesX1, . . . , Xn−p−i . Furthermore, let� = (�1, . . . , �n−p)

be a randomly chosen point ofZn−p and let�(i) := (�1, . . . , �n−p−i ). Then, for each
1� i < n − p, the algebraic variety�−1

i (�(i)) ∩ S̃i is zero-dimensional or empty and the

finite set̃Sn−p ∪ ⋃
1� i<n−p(�

−1
i (�(i)) ∩ S̃i ) intersects any connected component ofSR.

This geometric result allows to extend the validity ofTheorem14 to the non-compact case,
however, its proof is somewhat different, because it requires the more general elimination
procedure of [36] for polynomial equation and inequation systems defining (locally closed)
algebraic subvarieties ofAn

C. From the point of practical computations it seems difficult
to compare the algorithm of Theorem 13 with the elimination algorithm described in [44].
On the one hand, one may expect that the degree associated with the real interpretation of
a polynomial equation system is typically smaller if this notion of degree is based on the
concept of classic polar varieties as in Theorem 14. On the other hand, the use of a more
general and intricate elimination algorithm may diminish this complexity gain.
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