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We exhibit a new method for showing lower bounds for time-space tradeoffs
of polynomial evaluation procedures given by straight-line programs. From the
tradeoff results obtained by this method we deduce lower space bounds for polyno-
mial evaluation procedures running in optimal nonscalar time. Time, denoted by L,
is measured in terms of nonscalar arithmetic operations and space, denoted by S,
is measured by the maximal number of pebbles (registers) used during the given
evaluation procedure. The time-space tradeoff function considered in this paper is
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LS2. We show that for ``almost all'' univariate polynomials of degree at most d our
time-space tradeoff functions satisfy the inequality LS2� d

8 . From this we conclude
that for ``almost all'' degree d univariate polynomials, any nonscalar time optimal
evaluation procedure requires space at least S�c 4

- d, where c>0 is a suitable
universal constant. The main part of this paper is devoted to the exhibition of
specific families of univariate polynomials which are ``hard to compute'' in the sense
of time-space tradeoff (this means that our tradeoff function increases linearly in the
degree). � 2000 Academic Press

Key Words: pebble game; time-space tradeoff; straight-line program; elimination
theory.

1. INTRODUCTION

Computer oriented algorithmics often requires simultaneos optimization
of more than one complexity measure. Although it is not easy to capture
the programming reality in a theoretical model one feels compelled at least
to attempt an effort in this direction. In this sense the present paper is
devoted to the interplay between the (computational) issue of time and
(necessary) space in the particular case of (numeric) evaluation of univariate
polynomials. Our theoretical model is that of arithmetic circuits represented
by directed acyclic graphs (DAGs) on which we play a pebble game (see
the surveys [45, 49, 6]). Thus arithmetic operations are counted at unit
cost and an intermediate result of our computation, mathematically being
represented by a rational function, occupies just one unit of memory space
when it is stored. More specifically when measuring time we shall take only
nonscalar multiplications�divisions into account, linear operations, in parti-
cular additions, are free. This coarsening of the computational model is due
to technical reasons and acceptable since we are interested just in lower
bounds for the tradeoff between computation time and memory space
necessary to evaluate a given univariate polynomial. A particularity of our
model is that any polynomial can be evaluated in constant memory space
(as one easily sees when analyzing Horner's rule, see also [4, 38] for more
general results in this direction). However computation time cannot be
compressed arbitrarily in polynomial evaluation, the logarithm of the
degree being a universal lower bound. This motivates the study of time-
space tradeoffs or alternatively the behaviour of memory space under the
assumption of a time optimal algorithm. As said before our basic algo-
rithmic model for time and space is that of a pebble game played on an
arithmetic circuit represented by a DAG. There exists another model well
suited for our purpose, which is not considered here, namely that of a
branching program (see [6]). The reason for the omission of this model is
that straight-line programs, although less relevant in computer science than
branching programs, are better suited for the technical tools we are going
to apply in this paper. These technical tools come mainly from geometric
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and arithmetic intersection theory (see, e.g., [25, 18, 17, 27, 40, 34] and the
references cited therein). For a similar reason (uniformity assumptions do
not help for our techniques) we do not consider modeling of time and
space by Turing machines.

Straight-line programs have been used in the past extensively in order to
show lower bounds for time-space tradeoffs of many problems of different
computational nature and taste. Examples of such problems with signifi-
cant results are: sorting [57], language recognition [16], algebraic
problems such as convolution, matrix-vector products and discrete Fourier
transform [57, 47], binary integer multiplication [48], matrix multiplica-
tion and inversion, iterated matrix multiplication [24, 31, 46], range
queries [61, 58]. The general question, namely whether it is possible to
find efficient tradeoffs between time and space while pebbling an arbitrary
(not necessarily computation) DAG was considered and negatively
answered in [35, 42, 44].

The rather combinatorial branching program model is powerful enough
to produce relevant lower bounds for time-space tradeoffs of algebraic
problems. Results in this direction can be found in [63], where lower bounds
for the time-space tradeoff of the discrete Fourier transform in the branching
program model are established, and in [1], where such lower bounds for
a large list of computational problems are given. This problem list includes
the task of computing the convolution of two vectors, computing a matrix-
vector product, matrix multiplication, matrix inversion, computing the
product of three matrices and integer multiplication. Lower bounds for
time-space tradeoffs in the branching program model are known in the case
of the following counting problems: sorting [9, 7], element distinctness
[8, 62] and finding unique elements [3].

In this paper we are concerned with the time-space complexity of evaluating
univariate polynomials and the computation model we use is that of straight-
line programs (or DAGs) together with pebble games played on them. Our
method for obtaining lower bounds for time-space tradeoffs for polynomial
evaluation is based on a geometrical interpretation of the notion of a straight-
line program of given nonscalar time L and space S (see Section 2, Definitions
2, 3, and Lemmata 4, 5, 6).

First of all let us observe that the computation DAG associated to Horner's
rule for the evaluation of an univariate polynomial P of degree d can be
pebbled using exactly two pebbles in total time 2d and nonscalar time d.
Let L and S denote nonscalar time and space used by the Horner algo-
rithm for the evaluation of the polynomial P. With this notation we obtain
the following obvious time-space tradeoff upper bound for the evaluation
of the polynomial P:

L } S2=4 } d.
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Using a simple counting argument we show in Section 2 that this upper
bound is, asymptotically, exact for almost all univariate degree d polyno-
mials. In analogy with [55, 30, 20, 26] we call such polynomials hard to
compute in terms of tradeoff.

In Section 3 we develop a global strategy which we shall follow in Section
4 to exhibit specific families of univariate polynomials which are hard to
compute in the sense of time-space tradeoff. The new aspect of our strategy
consists in a problem adapted analysis of the height of points lying on the
fiber of a given Q-definable algebraic morphism of affine spaces. The
conclusions of this analysis constitute our main tool to establish time-space
tradeoffs for univariate polynomials with integer coefficients (see Proposi-
tion 9). The case of polynomials with algebraic coefficients is treated using
an adaptation of the degree method of [30] (see also [29, 27]). The
following time-space tradeoff lower bounds are presented in Section 4:

(1) Polynomials with integer coefficients of the form �0� j�d 2 j !X j

have a time-space tradeoff LS2=0(d ).
(2) Polynomials with integer coefficients of the form >1� j�d (X&22 j

)
have a time space tradeoff LS2=0(d�log2 d).

(3) Polynomials with algebraic coefficients of the form �1� j�d - pj X j

have a time-space tradeoff LS2=0(d�log2 d ). (Here pj denotes the j th
prime number.)

(4) Polynomials with algebraic coefficients of the form
>1� j�d (X&- pj ) have a time-space tradeoff LS2=0(d�log2 d).

In all these examples L denotes the number of nonscalar multiplications�
divisions and S the number of pebbles (registers) used when evaluating the
polynomial under consideration by a given straight-line program. Our
time-space tradeoff results imply that any nonscalar time optimal algorithm
which evaluates any of the mentioned polynomial families needs roughly space
S=0( 4

- d) (see Proposition 26). Finally let us observe that to our knowledge
our method is the first one which is able to produce time-space tradeoff lower
bounds for algebraic computation problems with just one output.

2. TIME AND SPACE FOR ARITHMETIC CIRCUITS

In this section we discuss how the complexity measures time and space
can be suitably represented in our basic model of computation, namely the
random access model of straight-line programs (also called arithmetic circuits).
Intuitively one would say that computational time and space of a straight-line
program find a natural representation playing a pebble game on the underlying
computation graph (see, e.g., [6]). However, this combinatorial definition of
our complexity measures is not well suited for the application of geometric
methods to proofs of lower complexity bounds��the main subject of this paper.
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For this reason we are going to transform the pebble game complexity model
first in a register allocation model and then the register allocation model in
a geometric model of computation.

2.1. From the Pebble Game Complexity Model to the Register Allocation
Model

Let K be an infinite field and let X1 , ..., Xn be indeterminates over K. By
K[X1 , ..., Xn] we denote the ring of n-variate polynomials over K and by
K(X1 , ..., Xn) its fraction field.

Let F be an element of K(X1 , ..., Xn), i.e., a rational function over the
field K in the variables X1 , ..., Xn . Let us recall the following standard
notions of algebraic complexity theory (see [10; 56; 54; 26; 19; 40; 12,
Chap. 4]).

Definition 1. A straight-line program in K(X1 , ..., Xn) which computes
the rational function F is a sequence ;=(Q1 , ..., Qr) of elements of the field
K(X1 , ..., Xn) with the following properties

(1) Qr=F,

(2) for any 1�\�r, the rational function Q\ belongs to K _ [X1 , ..., Xn]
or there exist 1�\1 , \2<\ and an arithmetic operation op\ in [+, &, V, �]
such that Q\=Q\1

op\ Q\2
holds.

The rational functions Q1 , ..., Qr are called intermediate results of the
straight-line program ; and the rational function F=Qr is called final
result or output of ;. In the sequel we shall assume without loss of generality
that all intermediate results Q1 , ..., Qr of ; are non-zero.

To a given straight-line program ;=(Q1 , ..., Qr) in K(X1 , ..., Xn) we
associate as usually a labeled directed acyclic graph (computation DAG for
short) which we denote by 1(;) and which we call the computation graph
of the straight-line program ;. The computation graph 1(;) has r vertices
called nodes (or gates). Each node of 1(;) has indegree 0 or 2 and is
labeled by an element of K _ [X1 , ..., Xn] in the first case and by an
arithmetic operation in the latter case. Nodes of indegree 0 are called
source nodes of 1(;). Source nodes labeled by a variable X1 , ..., Xn are
called input nodes and source nodes labeled by an element of K are called
parameter nodes. The elements of K occurring in that way are called
parameters of the computation graph 1(;) (or of the straight-line program ;).

The nodes of 1(;) are numbered by 1�\�r. If for a node \ of 1(;)
there exist nodes 1�\1 , \2<\ and an arithmetic operation op\ such that
Q\=Q\1

op\ Q\2
holds, then the node \ is labeled by op\ , its indegree is 2

and 1(;) contains directed edges leading from the vertices \1 and \2 to the
vertex \ (the nodes \1 and \2 are called predecessor nodes of \). The nodes
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which are not source nodes are called internal nodes of 1(;). The node r
is called output node of the computation graph 1(;).

To each node \ of 1(;) we associate the rational function Q\ appearing
in the sequence ; as intermediate result. This rational function is recursively
computed by the graph 1(;) starting with the source nodes. In particular
the rational function which corresponds to the output node r is Qr=F.

We call a node \ of 1(;) nonscalar if it has the following property: the
node \ has indegree 2, the arithmetic operation op\ is a multiplication
or division and the intermediate results Q\1

, Q\2
of ; associated to the

predecessors nodes \1 , \2 of \ satisfy the condition Q\1
, Q\2

� K if op\ is
a multiplication and the condition Q\2

� K if op\ is a division.
On the directed acyclic graph 1(;) we may play a pebble game subject

to the following rules (see [6]):

(P1) any source node can be pebbled,
(P2) if the predecessor nodes of a given node \ of 1(;) are both

pebbled, then \ can be pebbled by a new pebble or just by moving a pebble
from one of the predecessor nodes to \,

(P3) a pebble can always be removed from a pebbled node of 1(;).

The pebble game finishes when the output node of 1(;) is pebbled. In
general various distinct pebble games can be played on a given computa-
tion graph 1(;). That means that the computation graph 1(;) typically
does not admit just one pebble game, or with other words: pebble games
are not uniquely determined by the underlying DAG.

For a particular pebble game on a given computation graph 1(;) we
have the following complexity measures:

(C1) a space measure given by the maximum number of pebbles used
at any moment of the game,

(C2) a total time measure given by the number of pebble placements
performed during the game following rules (P1) and (P2),

(C3) a nonscalar time measure given by the number of pebble place-
ments on the nonscalar nodes of 1(;) performed during the game following
the rule (P2).

We extend our notion of straight-line program as follows: from now on
we shall understand by a straight-line program an arithmetic circuit ; in the
sense of Definition 1 together with a fixed pebble game played on its computa-
tion graph 1(;). We use the same notation, namely ;, for the new mathematical
object: the straight-line program together with a fixed pebble game.

We introduce the following combinatorial complexity model which
reflects sequential time and space in our arithmetic setting:

Definition 2. Let F # K(X1 , ..., Xn) be a rational function. A straight-
line program in the field of rational functions K(X1 , ..., Xn) which evaluates
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F using total time T, nonscalar time L and space S is a straight-line program
; for F in the sense of Definition 1 together with a pebble game played on 1(;)
in total time T, nonscalar time L and space S, where these complexity
measures are determined following the conditions (C2), (C3), and (C1).

In this way we obtain a purely combinatorial complexity model measuring
total and nonscalar time and space playing a pebble game on a computation
DAG. Next, we are going to construct a register allocation model for our
general purpose of deriving lower bounds on time-space tradeoffs for poly-
nomial evaluation.

Suppose that there is given a straight-line program ; as above together
with its computation graph 1(;). Suppose furthermore that there is given
a pebble game on 1(;) which uses S pebbles say 1, ..., S and which can be
played in total time T on the graph 1(;). In what follows we think the
pebble game given as a time sequence of T register allocation instructions
in which the new variables R1 , ..., RS appear as names of registers. The
register allocation instructions are labeled by the symbols (1), ..., (T ). We
introduce them as follows:

1. If at time 1�t�T of the game a source node \ of 1(;) is pebbled
following rule (P1) by pebble 1� j�S, then the register allocation instruc-
tion (t) has the form

Rj :=Xi

in case that node \ is labeled by the input variable Xi . In case that node
\ is labeled by the parameter : # K the register allocation instruction (t)
has the form

Rj :=:.

2. If at time 1�t�T of the game the internal node \ of 1(;) is
pebbled following rule (P2) by pebble 1� j�S, then the register allocation
instruction (t) has the form

Rj :=Rk op\ Rl ,

where op\ is the arithmetic operation associated with the node \ and
1�k, l�S are the pebbles already placed on the predecessor nodes \1 , \2

of \.

According to the register allocation rules just introduced we may
redefine the notion of a straight-line program of total time T (respectively
nonscalar time L) and space S in the following way:

Definition 3. A straight-line program ; in K(X1 , ..., Xn) using total
time T and space S is a sequence of register allocation instructions labeled
(1), ..., (T ) such that for each 1�t�T instruction (t) is one of the follow-
ing two types:
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(i) Rj :=a with a # K _ [X1 , ..., Xn] and 1� j�S,

(ii) Rj :=Rk op Rl with op # [+, &, V , �] and 1�k, l, j�S.

Here R1 , ..., RS are the (distinct) register variables the straight-line program
; uses.

The total time used by the straight-line program ; is therefore the number
T of register allocation instructions it contains. The nonscalar time used by
; (or its nonscalar length) is the number of register allocation instructions
of the form (ii) occurring in ; which are subject to the following restric-
tions: the arithmetic operation op is a multiplication or division, the
contents of the registers Rk , Rl��to be introduced below��do not belong
to the parameter domain K in case op is a multiplication and the content
of the register Rl does not belong to K if op is a division. In the sequel we
shall write L(;) for the nonscalar time and S(;) for the space used by the
straight-line program ;.

Given a straight-line program ; in the sense of Definition 3 one may
define in the most obvious way for any time instance 1�t�T and any
register Rj with 1� j�S its content Rt

j as a rational function of K(X1 , ..., Xn)
obtained applying step by step the register allocation instructions (1), ..., (T ).
In case that register j remains unspecified in this way at time t we define
its content as the constant value 1 of the field K. Thus at any time any register
content is the constant value 1 # K or a rational function of K(X1 , ..., Xn)
which appears as intermediate result of the underlying arithmetic circuit ;
in the sense of Definition 1. We call (R t

j)1� j�S, 1�t�T the computation
matrix of the straight-line program ;.

2.2. From the Register Allocation Model to the Geometric Complexity Model

In this subsection we introduce a geometric model of polynomial evaluation
which reflects computational time and space when arithmetic operations
are counted at unit cost. This model is somewhat coarse with regard to
upper complexity bounds but it is well suited for the inference of lower
bounds for the intrinsic time-space tradeoff function of a series of explicit
polynomials which��we guess��are studied for the first time under the
aspect of time versus space.

Our method to obtain lower bounds on time-space tradeoffs for polynomial
evaluation is based on a geometrical interpretation of the notion of a straight-
line program which uses nonscalar time and space not exceeding some prefixed
quantities L and S, respectively. In the sequel we restrict ourselves to the case
n :=1. This means that we are only dealing with univariate polynomials and
rational functions defined over the field K. We denote by X :=X1 the only
variable of the polynomials and rational functions occurring as intermediate
results in the straight-line programs we are considering from now on.
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First of all let us observe that the computation graph associated with
Horner's rule for a univariate degree d polynomial F # K[X] can be pebbled
in total time 2d and nonscalar time d using exactly two pebbles. Let L and
S denote nonscalar time and space used by the Horner algorithm which
evaluates the polynomial F. Then L and S satisfy the tradeoff relation
LS2=4d.

This consideration leads us to the following question: given any polyno-
mial F # K[X] of degree at most d, do there exist straight-line programs ;
in K(X) using nonscalar time L(;) and space S(;) such that the time-space
tradeoff LS2(;) :=L(;) S 2(;) is considerably smaller than d? Using a
simple counting argument we shall find that the answer to this question is
negative. This means that there exists a universal constant c>0 such that
(in some precise sense) almost all polynomials F # K[X] of degree bounded by
d have the property that any straight-line program ; in K(X) evaluating F
has a time-space tradeoff LS2(;) satisfying the inequality

LS2(;)�cd

(see Theorem 7 below). In the sequel we shall abreviate such a statement
as

LS2(F )=0(d ).

Similarly as in [55, 26] we say that a family of univariate degree d poly-
nomials (Fd)d # N is hard to compute in terms of time-space tradeoff if there
exists a constant c$>0 such that any family of arithmetic circuits (;d)d # N

in K[X] with ;d evaluating the polynomial Fd satisfies the following time-
space tradeoff inequality

LS2(;d)�d c$.

In the sequel we shall abreviate such a statement as

LS2(Fd)=d 0(1).

The geometrical method we are going to develop allows us to exhibit
specific families of univariate polynomials which are hard to compute in
this sense.

Let L and S be fixed natural numbers and let us suppose that we are
given a straight-line program ; which computes the rational function
F # K(X) in nonscalar time L(;)�L and space S(;)�S.

In order to homogenize notations let us start the computation formally
at time zero fixing for 1� j�S the content R0

j of each register Rj as R0
j :=0.

Besides of space we shall take into account only nonscalar time as com-
plexity measure. Nonscalar time will be indicated by the new parameter l

10 ALDAZ ET AL.



which ranges from 1 to L. Moreover, we shall use two extra registers R&1

and R0 whose contents at any time instance 0�l�L are fixed as R l
&1 :=1

and R l
0 :=X. Since in the nonscalar model K-linear operations are free and

since we take in the straight-line program ; only nonscalar operations into
account, we may describe ; by a recursive sequence of register allocation
instructions (I l

j) of the following type: for 1� j�S and 1�l�L the
instruction (I l

j) has the form

Rl
j :=\ :

&1�k�S

a ( j, l )
k R l&1

k + op \ :
&1�k�S

b ( j, l )
k R l&1

k + ,

where op is a multiplication or division and where the a ( j, l )
k and b ( j, l )

k are
suitable elements of K.

The output F of ; is given by a final register allocation instruction (I ),
namely

F := :
&1�k�S

ckRL
k

with the ck being suitable elements of K.
The elements a ( j, l )

k , b ( j, l )
k , ck of K occurring in these register allocation

instructions are called the parameters of the straight-line program ;. More-
over, the intermediate results of ; are given by the computation matrix

M(;) :=(R l
j)&1� j�S, 0�l�L .

The circuit ; itself is determined by its parameters and the indication which
arithmetic operation, multiplication or division, is applied in each register
allocation instruction (I l

j).
We observe here that the register allocation instructions (I l

j) do not
exactly reflect a pebble game on the computation graph 1(;) since in our
modeling all registers are assumed to change their contents simultaneously.
Nevertheless, in a pebble game at any time instance only one register is
affected and not all of them simultaneously.

Therefore, the modeling of a computation in K(X) using given nonscalar
time L and space S by register allocation rules of type (I l

j) and of type (I )
with 1� j�S and 1�l�L is somewhat coarser than the modeling given
by Definition 2 and 3. This means that in this way there may appear
rational functions as ``outputs of the computations'' which cannot be
evaluated by a straight-line program which uses only nonscalar time L and
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space S. Since our final aim is to prove lower bounds for the tradeoff
between nonscalar time and space required to compute certain univariate
polynomials, this coarsening of the complexity model will not affect the
correctness of our results which we shall state in the sense of Definitions 2
and 3.

Let us also remark that the complexity model we have selected is some-
what arbitrary even within its own category. A moment's reflection shows
that at least two alternative complexity models of the same type are
thinkable. The first alternative model includes some parallelism admitting
S simultaneous nonscalar multiplications�divisions at each step. Although
this alternative complexity model is at first glance more general than the
one we have chosen for our presentation, the time-space tradeoff lower
bounds we are going to prove in this paper remain the same for this
alternative model.

The second alternative model is more restrictive than ours. It allows only
the change of just one register at each step and requires that this step
represents a nonscalar multiplication�division. This second alternative com-
plexity model produces slightly different time-space tradeoff lower bounds
from those we are going to show (although the proving methods would be
essentially the same). Whereas the time-space tradeoff function we are
going to consider in this paper is always of the type LS2, this second alter-
native complexity model yields a tradeoff function of type LS. It is surely
a question of taste or personal preference, but in view of our proving
methods the complexity model we have selected for this paper appears the
most natural to us.

Let the quantities L and S be fixed. Let us think the parameters a ( j, l )
k ,

b( j, l )
k , ck occurring for &1�k�S, 1� j�S and 1�l�L in the register

allocation instructions (I l
j) and (I) as varying, i.e., let us replace these

parameters by new indeterminates. Then the entries of the computation
matrix M(;) and the rational function F representing intermediate results
and output of the straight-line program ; become rational expressions in
the parameters of the circuit ; (and of course in the variable X).

In this way the straight-line program ; becomes a generic computation
scheme of nonscalar time L and space S which is uniquely determined by
the quantities L and S and the choice of the arithmetic operation (multi-
plication or division) done for each 1� j�S and 1�l�L in the register
allocation instruction (I l

j).
We are going to simplify somewhat further our computation scheme of

nonscalar time L and space S. For this purpose we introduce for each
1� j�S and 1�l�L a new parameter d ( j, l ) which will be interpreted as
follows: the value to be assigned to the parameter d ( j, l) is 1 if the arithmetic
operation occurring in the instruction (I l

j) as op is a multiplication and the
value is 0 if this arithmetic operation is a division.
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Now we replace for each 1� j�S, 1�l�L the register allocation
instruction (I l

j) by the following new one which we denote by (J l
j):

R l
j=\ :

&1�k�S

a ( j, l )
k R l&1

k + } \d ( j, l ) \ :
&1�k�S

b ( j, l)
k R l&1

k +
+(1&d ( j, l )) \ :

&1�k�S

b ( j, l )
k R l&1

k +
&1

+ .

(Let us observe that taking in the register allocation instruction (J l
j) the

inverse of the subexpression �&1�k�S b ( j, l )
k R l&1

k is consistent with our
general assumption that the computations we consider do not contain the
rational function zero as intermediate result.) Again we represent each
parameter d ( j, l ) by a new indeterminate.

In this way we obtain a new generic computation scheme which depends
only on the nonscalar time L and the space S. The parameters of this new
computation scheme are a( j, l )

k , b ( j, l)
k , d ( j, l) and ck with &1�k�S, 1� j�S

and 1�l�L.
Let us analyze how the output F depends on these parameters if F is a

polynomial belonging to K[X]. To this end we use an idea going back to
[55] (see also [50]).

In order to state the following technical result we recall that the weight
of a polynomial with integer coefficients is the sum of the absolute values
of its coefficients.

Lemma 4. Let d, L, S be given natural numbers, let N :=8LS2 and let
Z1 , ..., ZN be new indeterminates. There exist polynomials Pd , ..., P0 #
Z[Z1 , ..., ZN] of degree and weight bounded by

deg Pi�i(2L&1)+2

and

weight Pi�(6(S+1)) (i+1)L
,

with 0�i�d, such that the morphism of affine spaces

8d, L, S : K N � Kd+1

defined by these polynomials has the following property: for any polynomial
F # K[X] of degree at most d which can be computed by a straight-line
program in K(X) using at most nonscalar time L and space S, there exists
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a (nonempty) cofinite subset UF of K such that for any element ' # UF the
point ( fd ('), ..., f0(')) # Kd+1 given by the representation

F= :
0�i�d

f i (')(X&') i

belongs to the image of the morphism 8d, L, S .

Proof. Let ; be an arbitrary straight-line program in K(X) which com-
putes a given polynomial F # K[X] of degree at most d using nonscalar
time L and space S. We suppose that ; is given as before by a sequence
of register allocation instructions (J l

j) with 1� j�S and 1�l�L and a
final instruction (I ). Thus the intermediate results of ; are rational func-
tions R l

k # K(X) with &1�k�S and 0�l�L which satisfy the following
recursive relations:

v R l
&1=1 for any 0�l�L,

v R l
0=X for any 0�l�L,

v R0
j =0 for any 1� j�S,

and

v R l
j=\ :

&1�k�S

a ( j, l )
k R l&1

k + } \d ( j, l ) \ :
&1�k�S

b ( j, l)
k R l&1

k +
+(1&d ( j, l )) \ :

&1�k�S

b ( j, l )
k R l&1

k +
&1

+ (1)

for any 1� j�S and any 1�l�L.

Finally the output polynomial F # K[X] is representable as

F= :
&1�k�S

ckRL
k . (2)

Here a ( j, l)
k , b ( j, l )

k , d ( j, l ), ck are suitable elements of K with &1�k�S,
1� j�S and 1�l�L, namely the parameters of the straight-line program ;.

Each of the rational functions �&1�k�S a( j, l)
k Rl&1

k and �&1�k�S b( j, l)
k R l&1

k

occurring as subexpressions in Eq. (1) are defined and different from zero
in all points of some cofinite subset UF of K. Since by assumption K
is infinite the set UF is nonempty. Let ' be an arbitrary point of UF and
let 1� j�S and 1�l�L. Then the rational functions R l&1

&1 , ..., R l&1
S ,

�&1�k�S a( j, l)
k R l&1

k and �&1�k�S b ( j, l)
k Rl&1

k are defined and different from
zero in '. By a suitable change of the parameters a ( j, l )

j , b ( j, l )
j and ck in Eqs. (1)

and (2) we may assume without loss of generality that �&1�k�S a( j, l )
k Rl&1

k (')
=1 and �&1�k�S b ( j, l )

k R l&1
k (')=1 holds. The parameter d ( j, l ) takes by
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assumption only the values 0 or 1. This implies that the rational function
Rl

j is defined in ' and that R l
j(')=1 holds. This enables us to represent R l

j

as a formal power series in X&' with coefficients in K. More precisely we
may write the rational function R l

j uniquely as power series

R l
j=1+ :

i�1

R l
j, i(X&') i

with coefficients R l
j, i belonging to the field K. Observe that R l

0=X has
also a power series representation of the form R l

0='+(X&')='+
�i�1 R l

0, i (X&') i with R l
0, 1=1 and R l

0, i=0 for i>1. From our assump-
tions we deduce

:
&1�k�S

a ( j, l )
k R l&1

k = :
&1�k�S

a ( j, l )
k R l&1

k, 0 (')+ :
0�k�S

a ( j, l )
k :

i�1

R l&1
k, i (X&') i

=1+ :
0�k�S

a ( j, l )
k :

i�1

R l&1
k, i (X&') i (3)

and similarly

:
&1�k�S

b ( j, l)
k R l&1

k =1+ :
0�k�S

b ( j, l)
k :

i�1

R l&1
k, i (X&') i. (4)

Equation (4) implies

\ :
&1�k�S

b ( j, l )
k R l&1

k +
&1

=1+ :
v�1

\& :
0�k�S

b ( j, l )
k :

i�1

R l&1
k, i (X&') i+

v

.

This enables us to express Eq. (1) in terms of power series. For 1� j�S
and 1�l�L we have

1+ :
i�1

R l
j, i (X&') i

=\1+ :
0�k�S

a ( j, l)
k :

i�1

Rl&1
k, i (X&') i+

} \d ( j, l ) \1+ :
0�k�S

b ( j, l )
k :

i�1

R l&1
k, i (X&') i+

+(1&d ( j, l )) \1+ :
v�1

\& :
0�k�S

b ( j, l )
k :

i�1

R l&1
k, i (X&') i+

v

++ . (5)
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From Eq. (5) we deduce inductively that the coefficients R l
j, i are polyno-

mial expressions which integer coefficients in the parameters a ( j $, l $)
k , b ( j $, l $)

k ,
d ( j $, l $) of the straight-line program ; where the range of k, j $ and l $ is
0�k�S, 1� j $�S and 1�l $�l. These polynomial expressions depend
only on L and S and are independent of the particular choice of ' and of
the particular straight-line program ;.

Since no ambiguity may appear, we shall denote such a polynomial expres-
sion by the same symbol as the power series coefficient that it represents,
namely R l

j, i .
Comparing coefficients in Eq. (5) we see that each coefficient R l

j, i is up
to sign a sum of monomial expressions of one of the following two types,

(d ( j, l ))= `
1�v�+

b ( j, l )
kv

R l&1
kv , iv

(6)

or

a ( j, l)
k+

R l&1
k+ , i+

(d ( j, l ))= `
1�v<+

b ( j, l )
kv

R l&1
kv , iv

, (7)

with �1�v�+ iv=i, 1�iv�i, 1�+�i, 0�kv�S and = # [0, 1].
From this observation we deduce the following recursive degree bound:

deg R l
j, i�max {++1+ :

1�v�+

deg R l&1
kv , iv

:

:
1�v�+

iv=i, 1�iv�i, 1�+�i, 0�kv�S= . (8)

From our construction one deduces immediately that for any 0�k�S
and any i�1 the estimate

deg R0
k, i�0 (9)

holds.
Solving the recurrence relations (8) and taking into account the initial

conditions (9) yields

deg R l
j, i�i(2l&1)+1 (10)

for any 1� j�S, 1�l�L and i�1.
We are going to estimate the weight of the polynomials R l

j, i . To this aim
observe that the number of monomial expressions (6) and (7) appearing in
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Rl
j, i does not exceed 3(2(S+1)) i. From this remark we deduce the follow-

ing recursive weight bound:

weight R l
j, i�3(2(S+1)) i max { `

1�v�+

weight R l&1
kv , iv

:

:
1�v�+

iv=i, 1�iv�i, 1�+�i, 0�kv�S= . (11)

By direct inspection one verifies easily that for any 1�l�L and any
1� j�S the estimate

weight R l
j, 1�4l (S+1) l (12)

holds.
Solving the recurrence relations (11) for i>1 and taking into account

the initial conditions weight R0
k, v�1, with 0�k�S and v�1, yields

weight R l
j, i�3(i l&1)�(i&1)(2(S+1)) i(i l&1)�(i&1)�(6(S+1)) (i+1) l&1. (13)

The coefficients R l
j, i of the power series occurring in Eq. (5) are polyno-

mial expressions over the integers in the 2LS2+3LS parameters a ( j, l )
k ,

b( j, l )
k , d ( j, l ) with 0�k�S, 1� j�S and 1�l�L. Thus we shall consider

them as (2LS2+3LS)-variate polynomials over the integers.
The polynomial F # K[X] is of degree at most d and has therefore a

finite Taylor series expansion in (X&'), say

F= :
0�i�d

f i (')(X&') i

with coefficients fi (') belonging to the field K.
From Eq. (2) we deduce

F= :
0�i�d

f i (')(X&') i= :
&1�k�S

ckRL
k

=\c&1+c0'+ :
1�k�S

ck++ :
0�k�S

ck \ :
i�1

RL
k, i (X&') i+

=\c&1+c0'+ :
1�k�S

ck++ :
i�1

\ :
0�k�S

ckRL
k, i+ (X&') i.
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This implies

fi (')= :
0�k�S

ckRL
k, i (14)

for 1�i�d and

f0(')=c&1+c0'+ :
1�k�S

ck (15)

for i=0.
Observe that Eq. (14) is independent of the parameter c&1 . This allows

us to consider c&1+c0 ' just as a new parameter c from which the straight-
line program ; depends and which replaces the old parameter c&1 . In this
sense we can rewrite Eq. (15) as

f0(')=c+ :
1�k�S

ck . (16)

The right hand side of Eqs. (14) and (16) are polynomial expressions in
the 2LS2+3LS+S+2�8LS2 parameters c, ck , a ( j, l )

k , b ( j, l )
k , d ( j, l ) with

0�k�S, 1� j�S and 1�l�L. These polynomial expressions depend
only on L and S and they are independent of the choice of the point ' # UF .

Let N :=8LS2 and let Z1 , ..., ZN be new indeterminates. From Eqs. (10),
(13), (14), and (16) we deduce that there exist polynomials P0 , ..., Pd #
Z[Z1 , ..., ZN] such that for any 0�i�d degree and weight of Pi can be
estimated by

deg Pi�i(2L&1)+2

and

weight Pi�(6(S+1)) (i+1)L&1 (S+1)�(6(S+1)) (i+1)L

and such that the following holds: for any polynomial F # K[X] of degree
at most d which can be evaluated by a straight-line program using at most
nonscalar time L and space S there exists a (nonempty) cofinite set UF in
K such that for any value ' # UF there is a point z # KN with

F= :
0�i�d

f i (')(X&') i= :
0�i�d

Pi (z)(X&') i.
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Let now

8d, L, S : K N � Kd+1

be the morphism of affine spaces defined by 8d, L, S(z) :=(Pd (z), ..., P0(z))
for arbitrary z # KN. This morphism has all the properties announced in the
statement of Lemma 4. K

In our applications we shall need a more comprehensive formulation of
Lemma 4 in which the generic value ' and the cofinite set UF it belongs to
do not appear anymore explicitely. Such a formulation can easily be
obtained by including the generic value ' in the list of parameters of the
hypothetical straight-line program ; analyzed in the proof of Lemma 4.
From this observation we deduce our next result.

Lemma 5. Let d, L, S be given natural numbers, let N :=8LS2+1 and
let Z1 , ..., ZN be new indeterminates. There exist polynomials Pd , ..., P0 #
Z[Z1 , ..., ZN] of degree and weight bounded by

2(Ld+1)

and

(12(S+1)) (d+1) L

respectively such that the morphism of affine spaces

8d, L, S : K N � Kd+1

defined by these polynomials has the following property: for any polynomial
F # K[X] of degree at most d which can be computed by a straight-line program
using at most nonscalar time L and space S, the point ( fd , ..., f0) # Kd+1 given
by the representation F=�0�i�d fiX i belongs to the image of 8d, L, S .

In the sequel we shall identify any polynomial F=�0�i�d fiX i # K[X]
of degree at most d with its coefficient vector ( fd , ..., f0) which we consider
as a point of the affine space Kd+1. In this sense a statement like ``F # Kd+1''
should be understood as ``( fd , ..., f0) # Kd+1.''

From Lemma 4 we deduce the following geometric consequences which
represent our main tool in deriving lower bounds for the intrisic time-space
tradeoff of univariate polynomials (compare with [30]).

Lemma 6. Let d, L, S be given natural numbers. There exists a Zariski
closed, irreducible and Q-definable subset Wd, L, S of K d+1 such that the
following conditions are satisfied:
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(i) dim Wd, L, S�8LS2.

(ii) deg Wd, L, S�(2(Ld+1))8LS2
.

(iii) The coefficient vector of any polynomial F # K[X] of degree at
most d which can be evaluated by a straight-line program in K(X) using at
most nonscalar time L and space S belongs to the algebraic variety Wd, L, S .

Proof. Let W :=Wd, L, S be the Zariski-closure in Kd+1 of the image of
the morphism 8 :=8d, L, S of Lemma 4. One sees immediately that W is a
Zariski closed irreducible subset of the affine space Kd+1. This subset is
also Q-definable since the morphism 8 is given by the polynomials Pd , ..., P0

which have integer coefficients. For the rest of the proof let us interprete 8
as a morphism of affine varieties which maps KN into W. In this interpreta-
tion 8 is dominant. This implies dim W�N=8LS2. Therefore the algebraic
variety W=Wd, L, S satisfies condition (i).

Let us verify condition (ii). Let r :=dim W. Since the morphism 8 is
dominant there exists a nonempty, Zariski open subset of W which is
contained in im8, the image of 8. Therefore we may deduce from [25]
that there exist r affine hyperplanes H1 , ..., Hr of Kd+1 which intersect im 8
in deg W many points. Let M=H1 & } } } & Hr & im 8. By assumption we have
*M=deg W. From Lemma 4 one deduces immediately that 8&1(H1), ...,
8&1(Hr) are hypersurfaces of K N of degree at most 2(Ld+1). Let

C :=[C : C is an irreducible component of 8&1(H1) & } } } & 8&1(Hr)].

By the Be� zout Inequality (see [25, 18]) we have

*C� :
C # C

deg C�(2(Ld+1))r�(2(Ld+1))8LS2
,

where deg C denotes the (geometric) degree of the irreducible closed subset
C of KN.

For any C # C the Zariski closure of the image 8(C) is an irreducible
subset of Kd+1 contained in M, hence a point of M. Since the set M is
contained in im 8 we conclude

deg Wd, L, S=deg W=*M�*C�(2(Ld+1))8LS2
.

Finally we are going to verify condition (iii). Let F=�0�i�d fiX i #
K[X] be a polynomial of degree at most d which can be evaluated by a
straight-line program in K(X) using at most nonscalar time L and space S.
For any ' # K let F=�0�i�d f i (')(X&') i be the Taylor expansion of F in
X&'. The vector ( fd ('), ..., f0(')) depends in a polynomial way on the
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parameter '. Let U :=UF be the nonempty, cofinite subset introduced in
Lemma 4. For any ' # U we have

( fd ('), ..., f0(')) # im 8d, L, S=im 8/W,

by this lemma. Since U is infinite and W is Zariski closed in Kd+1 we
conclude that ( fd , ..., f0)=( fd (0), ..., f0(0)) belongs to the algebraic variety
W=Wd, L, S . K

From Lemma 6 we deduce now our first complexity result. This result
characterizes the intrinsic time-space tradeoff complexity of ``almost all''
univariate polynomials of degree at most d generalizing thus the main
outcome of [41] and showing that Horner's rule is asymptotically optimal
in terms of time-space tradeoffs.

Theorem 7. Let d be a given natural number. There exists a nonempty
Zariski open subset U of Kd+1 such that for any polynomial F # K[X] of
degree at most d with F # U the tradeoff estimate LS2(F )� d

8 holds.

Proof. Let d be fixed. For any positive rational number t�d we
consider the Zariski closed subset Wd, t of Kd+1 defined by

Wd, t := .

LS2�t
L, S # N

Wd, L, S .

From Lemma 6(i) we deduce

dim Wd, t�max[dim Wd, L, S : L, S # N, LS2�t]�8t.

Thus for t := d
8 we have

dim Wd, d�8�d.

This implies that the Zariski open set U :=Kd+1"Wd, d�8 is nonempty.
From Lemma 6(iii) we deduce finally that for any polynomial F of K[X]
whose degree does not exceed d and which belongs to the set U the tradeoff
estimate LS2(F )� d

8 holds. K

Following [41] there exists a constant c>0 such that any polynomial
F # K[X] of arbitrary degree d can be evaluated by a straight-line program
in K[X] in nonscalar time not exceeding c - d. Combining this result with
Theorem 7 we are able to make the following conclusion:

Corollary 8. There exists a constant c$>0 with the following property:
let d be a given natural number and let U be the nonempty Zariski open subset
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of Kd+1 introduced in Theorem 7. Then for any polynomial F # K[X] of degree
at most d satisfying the condition F # U and for any straight-line program ;
in K(X) which evaluates F in optimal nonscalar time the space S(;) required
by the procedure ; is bounded from below by

S(;)�c$ 4
- d.

We may paraphrase the content of Corollary 8 as follows: almost all
polynomials of K[X] of degree at most d require space c$ 4

- d if they are
evaluated optimally with respect to nonscalar time. On the other hand
following [41] there exists a constant c">0 such that almost all polyno-
mials of K[X] of degree at most d need nonscalar time c" - d for their
evaluation. This explains in which sense Theorem 7 contains the best
possible generic time-space tradeoff result we may hope for.

3. TOOLS FROM GEOMETRIC ELIMINATION AND
INTERSECTION THEORY

In this paper we shall often face situations like the following one: assume
that there is given a polynomial F # K[X] of degree d. Only from the
knowledge of the coefficients of F we have to deduce a lower bound for the
quantity LS2 where L and S are arbitrary natural numbers satisfying the
condition F # Wd, L, S or the condition F # im 8d, L, S with Wd, L, S and 8d, L, S

defined as in Lemma 6 and Lemma 5 respectively. These two Lemmas
establish a relation between the size of the complexity parameters L and S
and the degree or height of the algebraic variety Wd, L, S or the algebraic
morphism 8d, L, S . Therefore we need a tool which allows us to estimate
these geometric invariants, namely degree and height of Wd, L, S and 8d, L, S

respectively from the knowledge of just one specific point belonging to the
algebraic variety Wd, L, S or to the image of the morphism 8d, L, S . We are
going to develop such a tool making use of suitable Nullstellensa� tze and
Be� zout Inequalities from geometric and arithmetic elimination and inter-
section theory (compare [41, 55, 50, 30, 20, 29, 26, 54, 53, 36, 27, 39, 2]
for a similar viewpoint).

In this technical section we are going to explain the results of elimination
and intersection theory we shall apply in the sequel. Let us start recalling
that the height of a polynomial with integer coefficients is the maximum
absolute value of its coefficients. Similarly the logarithmic height of this
polynomial is the maximum bit length of its coefficients. The logarithmic
height of a polynomial over the integers is therefore roughly speaking the
logarithm at base two of its height plus one.

The main result of this section is the following one:
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Proposition 9. Let N, d, D and ' be given natural numbers and let
8 :=(Pd , ..., P0): CN � Cd+1 be a morphism of affine spaces with P0 , ..., Pd

being polynomials belonging to Z[Z1 , ..., ZN]. Let F be a given point of Zd+1.
Consider the 8-fiber V :=8&1(F ) of the point F as a Q-definable Zariski closed
subvariety of CN. Suppose that V is nonempty. Let h1 , ..., hs # Z[Z1 , ..., ZN]
be polynomials satisfying the following conditions:

(1) V=[z # CN : h1(z)=0, ..., hs(z)=0],

(2) max[deg hi : 1�i�s]�D, and
(3) max[logheight hi : 1�i�s]�'.

Then, there exists a point %=(%1 , ..., %N) of the fiber V satisfying the estimate

log2 max[ |% i | : 1�i�N]�DcN(log2 s+'),

where c>0 is a suitable universal constant.

The rest of this section is devoted to the proof of this result. To this aim
we need a series of intermediate technical results from geometric elimina-
tion theory. The first one is a suitable form of an effective Nullstellensatz.

In order to keep exposition more transparent we have choosen a ``classical''
version of this type of result implying rather coarse lower complexity bounds
in our applications. Such Nullstellensatz versions can be found in [11, 13,
14, 32].

Let us remark that recent ``intrinsic'' Nullstellensa� tze as in [23, 21, 22,
33, 52] would allow a slight improvement of our tradeoff bounds.

Theorem 10 (Effective Nullstellensatz). Let D�3 and N�3 be given
natural numbers and let h1 , ..., hs # Z[Z1 , ..., ZN] be polynomials of degree
at most D. Consider the ideal I=(h1 , ..., hs) generated by these polynomials
in Q[Z1 , ..., ZN]. Then the ideal I is trivial (i.e., I=(1)) if and only if
there exists polynomials g1 , ..., gs # Q[Z1 , ..., ZN] satisfying the degree
bound

max[deg gi : 1�i�s]�DN&D

such that the Be� zout identity

1= :
1�i�s

g ihi (17)

holds.

For a proof of this result see [32, 17, 43]. The bound on the degree of
the polynomials g1 , ..., gs in Theorem 10 allows us to reduce the question
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of the emptyness of the algebraic variety V defined by the polynomials
h1 , ..., hs to the question of solving an inhomogeneous system of linear
equations of size DN2

_sDN2
over the rational numbers. The entries of this

linear equation system are given by the coefficients of the polynomials
h1 , ..., hs . This linear system of equations allows us to compute a suitable
polynomial of bounded degree which expresses a certain elimination
property of the variety V. This observation leads us to the next result.

Lemma 11. Let D�3 and N�3 be given natural numbers and let V be
a Q-definable Zariski closed subset of CN having positive dimension r.
Suppose that V is given as the locus of zeroes of finitely many polynomials
in Z[Z1 , ..., ZN] of degree at most D. Let us introduce for 1�i�r and
1� j�N+1 new indeterminates Ti, j and polynomials

Li :=Ti, 1Z1+ } } } +Ti, NZN+Ti, N+1 .

Under these assumptions there exists a non-zero polynomial E # Z[Ti, j ;
1�i�r, 1� j�N+1] of degree at most DN 2 having the following property:
for any matrix t=(ti, j)1�i�r, 1� j�N+1 of Cr_(N+1) defining r affine linear
polynomials

L1(t, Z1 , ..., ZN)=t1, 1 Z1+ } } } +t1, NZN+t1, N+1 ,

b

Lr(t, Z1 , ..., ZN)=tr, 1Z1+ } } } +tr, N ZN+tr, N+1 ,

the intersection of V with the affine linear subspace of CN given by these
polynomials, namely

V & [z # CN : L1(t, z)=0, ..., Lr(t, z)=0],

is nonempty if the (consistent) Zariski open condition E(t){0 holds.

Notation 12. For the rest of this section let us fix the notations

T :=(Ti, j)1�i�r, 1� j�N+1 and Z :=(Z1 , ..., ZN).

Proof of Lemma 11. By hypothesis there exist finitely many, say s,
polynomials h1 , ..., hs # Z[Z1 , ..., ZN] of degree at most D which define the
variety V. Since r is the (positive) dimension of V there exists a nonempty
Zariski open subset U of Cr_(N+1) such that for any t # U the intersection

V & [z # CN : L1(t, z)=0, ..., Lr(t, z)=0],
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contains at least one point (see, e.g., [25, Lemma 1]). This implies that the
ideal J generated by the polynomials h1 , ..., hs , L1 , ..., Lr in the polynomial
ring Q(T )[Z] is proper. From Theorem 10 we deduce therefore that there
cannot exist polynomials g1 , ..., gr+s # Q(T )[Z] such that for any 1�k
�r+s the polynomial gk has the form

gk(Z) := :
&1+ } } } +&N�DN&D

Y (k)
&1 , ..., &N

Z&1
1

} } } Z&N
N

with coefficients Y (k)
&1 , ..., &N

in the field Q(T ) and such that the Be� zout
identity

1= g1(Z) h1(Z)+ } } } + gs(Z) hs(Z)

+gs+1(Z) L1(T, Z)+ } } } + gs+r(Z) Lr(T, Z) (18)

holds in Q(T )[Z].
We may interpret the (inconsistent) polynomial identity (18) as an

inhomogeneous linear equation system in the unknowns Y (k)
&1, ..., &N

appearing
as coefficients of the ``potential'' polynomials g1 , ..., gr+s in the variables
Z1 , ..., ZN . This equation system has roughly size DN2

_sDN2
and its matrix,

which we denote by A, contains as entries only coefficients of the polynomials
h1 , ..., hs and L1 , ..., Lr with respect to the variables Z1 , ..., ZN .

Thus the matrix A is built up by integers and indeterminates Ti, j . Let us
write

A } Y=B (19)

for the inhomogeneous linear equation system representing the polynomial
identity (18). Here B and Y are column vectors of length at most DN2

and
sDN2

respectively, all entries of B are 0 except one which is 1, and Y is the
column vector of unknowns of the system. These unknowns can be written
as Y (k)

&1, ..., &N
with 1�k�r+s and &1+ } } } +&n�DN. The inconsistency of

the polynomial identity (18) implies the inconsistency of the linear equa-
tion system (19). Therefore the rank of the matrix A is strictly smaller than
the rank, say m, of the matrix A* obtained by adding to the matrix A the
column vector B. This means that A* contains a regular m_m minor with
nonzero determinant E # Z[T] whereas all m_m minors of A are singular.
This determinant E(T ) expresses a suitable elimination property of the
algebraic variety defined in Cr_(N+1)_CN by the polynomials h1(Z), ...,
hs(Z), L1(T, Z), ..., Lr(T, Z) if we project this variety into the affine space
Cr_(N+1). The following arguments contain the precise sense of this state-
ment and its justification: for any t # Cr_(N+1) such that E(t){0 holds the
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linear equation system we obtain from (19) specializing the generic matrix
T into t is inconsistent. In view of Theorem 10 this means that the ideal
generated by the polynomials h1(Z), ..., hs(Z), L1(t, Z), ..., Lr(t, Z) in the
polynomial ring C[Z] is proper. Therefore the variety

V & [z # CN : L1(t, z)=0, ..., Lr(t, z)=0]

=[z # CN : h1(z)=0, ..., hs(z)=0, L1(t, z)=0, ..., Lr(t, z)=0]

is nonempty.
Observe now that the entries of the matrix A* are constants or linear

polynomials of Z[T] and that it contains at most DN2
rows what implies

m�DN2
. Therefore the degree of the polynomial E(T ) is bounded by DN2

.
K

Lemma 11 represents the main step in the proof of the next result.

Lemma 13. Let D�3 and N�3 be natural numbers and let V be a Q-defin-
able Zariski closed subset of CN having positive dimension r. Suppose that V is
given as the locus of zeroes of finitely many polynomials of Z[Z1 , ..., ZN] of
degree at most D. Then there are r affine linear polynomials L1 , ..., Lr #
Z[Z1 , ..., ZN] of logarithmic height bounded by N(N+1) log2 D, such that
for any 1�k�r the algebraic variety

V & [z # CN : L1(z)=0, ..., Lk(z)=0]

is nonempty of dimension r&k.

We observe here that the results of [34, Subsect. 4.8] imply an improve-
ment of the estimate for the logarithmic height of the affine linear polynomials
L1 , ..., Lr in Lemma 13 to cN log2 D where c>0 is a suitable universal
constant. However we prefer to work with the coarser height bound in the
statement of Lemma 13, since the impact of the mentioned improvement on
our complexity results is rather modest and since this coarse bound is
much easier to prove.

In the following proof we shall make again use of the matrix

T :=(Ti, j)1�i�r, 1� j�N+1

of indeterminates Ti, j introduced above.

Proof of Lemma 13. Applying Lemma 11 we construct recursively in
the dimension r of the variety V affine linear polynomials L1 , ..., Lr # Z[Z]
satisfying the requirements of the lemma to show.
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Before starting this recursive construction let us observe that the
assumption V being given by N-variate polynomials of degree at most D
and the Be� zout Inequality (see, e.g., [25, Theorem 1; 18, Example 8.4.6])
imply together that the degree of V is bounded by DN (in the sequel we
shall denote the degree of V by deg V).

Let us first consider the case r :=1.
Since deg V�DN holds we may choose a set 1 of at most DN points of

V such that for each irreducible component of maximal dimension r=1 of
V there exists at least one point in this component belonging to 1. Let

Q := `
(#1 , ..., #N) # 1

(#1T1, 1+ } } } +#NT1, N+T1, N+1) # C[T1, 1 , ..., T1, N+1]

and let E1 # Z[T1, 1 , ..., T1, N] be the elimination polynomial of Lemma 11.
Thus QE1 is a nonzero polynomial of C[T1, 1 , ..., T1, N+1] of degree at
most DN 2

+DN<DN(N+1). Therefore there exists in the set

[(t1, 1 , ..., t1, N+1) # ZN+1 : max[ |t1, j | : 1� j�N+1]�DN(N+1)]

a point (t1, 1 , ..., t1, N+1) such that QE1(t1, 1 , ..., t1, N+1){0 holds. Let L1 :=
t1, 1 Z1+ } } } +t1, NZN+t1, N+1 . From Q(t1, 1 , ..., t1, N+1){0 we deduce
that the affine hyperplane [z # CN : L1(z)=0] cuts properly all irreducible
components of V of maximal dimension r=1 and E1(t1, 1 , ..., t1, N+1){0
implies that V & [z # CN : L1(z)=0] is nonempty. Therefore by the Dimen-
sion Theorem (see, e.g., [51]) the dimension of the algebraic variety
V & [z # CN : L1(z)=0] is r&1=0. Moreover the logarithmic height of the
affine linear polynomial L1 satisfies the requirements in the conclusion of
Lemma 13.

In the general case r>1 we proceed similarly. We assume inductively
that we are able to find for any closed subvariety of CN of dimension r&1
which is definable by polynomials of Z[Z1 , ..., ZN] of degree at most D, a
set of r&1 affine linear polynomials of Z[Z1 , ..., ZN] satisfying the
requirements in the conclusion of Lemma 13.

Again we choose a set 1 of at most DN points of V such that for each
component of maximal dimension r of V there exists at least one point in
this component belonging to 1.

Let

Q := `
(#1, ..., #N) # 1

(#1T1, 1+ } } } +#NT1, N+T1, N+1) # C[T1, 1 , ..., T1, N+1]
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and let Er # Z[T] be the elimination polynomial of Lemma 11. Thus QEr

is again a nonzero polynomial of C[T] of degree strictly less than DN(N+1).
Therefore there exists in the set

[(ti, j)1�i�r, 1� j�N+1 # Zr_(N+1) :

max[ |ti, j | : 1�i�r, 1� j�N+1]�DN(N+1)]

a point t=(ti, j)1�i�r, 1� j�N+1 such that QEr(t){0 holds. Let L1 :=
t1, 1 Z1+ } } } +t1, NZN+t1, N+1 . From Q(t)=Q(t1, 1 , ..., t1, N+1){0 we
deduce that the affine hyperplane [z # CN : L1(z)=0] cuts properly all
components of V of maximal dimension r. On the other hand, if we write
T* for the matrix obtained from T replacing the first row vector (T1, 1 , ...,
T1, N+1) in T by (t1, 1 , ..., t1, N+1), we are able to infer from Er(t){0 that
the (r&1)(N+1)-variate polynomial Er(T*) is nonzero. From Lemma 11
one deduces easily that any selection of r&1 affine linear polynomials of
C[Z1 , ..., Zn] whose coefficients satisfy the nonempty Zariski open condi-
tion Er(T*){0 define a nonempty intersection with the algebraic variety
W :=V & [z # CN : L1(z)=0]. This implies that W is nonempty and that
dim W=r&1 holds. On the other hand W is definable by polynomials of
Z[Z1 , ..., ZN] of degree at most D. Thus applying the induction hypothesis
to the variety W we find affine linear polynomials L2 , ..., Lr # Z[Z1 , ..., ZN]
of logarithmic height bounded by N(N+1) log2 D such that for any
2�k�r the Zariski closed subset

W & [z # CN : L2(z)=0, ..., Lk(z)=0]

=V & [z # CN : L1(z)=0, ..., Lk(z)=0]

is nonempty of dimension dim W&(k&1)=(r&1)&(k&1)=r&k. Putting
all this information together we see that the affine linear polynomials L1 , ..., Lr

satisfy the requirements in the conclusion of Lemma 13. K

In order to finish the proof of Proposition 9 we need now the following
result which estimates the absolute value of the coordinates of the isolated
points of a Q-definable Zariski closed subset of the affine space CN.

Proposition 14. Let N, D, ' and s be given natural numbers with D�N
and let h1 , ..., hs be polynomials of degree at most D and logarithmic height
at most ' belonging to Z[Z1 , ..., ZN]. Let V be the Zariski closed subset of
CN defined by these polynomials, i.e., let

V :=[z # CN : h1(z)=0, ..., hs(z)=0].

28 ALDAZ ET AL.



Then any isolated point % :=(%1 , ..., %N) of V satisfies the estimate

max[log2 |% i | : 1�i�N]�Dc$N(log2 s+'),

where c$>0 is a suitable universal constant.

For a proof of this result see [34, Corollary 7]. We are now able to show
Proposition 9:

Proof of Proposition 9. Let r :=dim V. Since V is nonempty by assump-
tion we have 0�r�N. In case r=0 all points of V are isolated and we may
apply directly Proposition 14 to get a point % of V satisfying the required
estimate. Let us therefore suppose r>0. From Lemma 13 we deduce that there
exist r affine linear polynomials in Z[Z1 , ..., ZN], say L1 , ..., Lr , of logarithmic
height at most N(N+1) log2 D such that

W :=V & [z # CN : L1(z)=0, ..., Lr(z)=0]

=[z # CN : h1(z)=0, ..., hs(z)=0, L1(z)=0, ..., Lr(z)=0]

is a zero-dimensional algebraic subvariety of CN. In particular W is non-
empty. The variety W is defined by s+r�s+N polynomials which belong
to Z[Z1 , ..., ZN] and which have degree at most D and logarithmic height
at most max[', N(N+1) log2 D]. Let %=(%1 , ..., %N) be any point of W.
Applying Proposition 14 to the variety W we deduce the estimate

max[log2 |% i | : 1�i�N]�Dc$N(log2 (s+N)

+max[', N(N+1) log2 D])

�DcN(log2 s+'),

where c>0 is a suitable universal constant (here we use the assumption
D�N). Since W is contained in V the point % belongs to the variety V.
Moreover the absolute values of the coordinates of % satisfy the require-
ments in the conclusion of Proposition 9. K

4. POLYNOMIALS WHICH ARE HARD TO COMPUTE

In this last section we are going to exhibit some examples of specific
time-space tradeoff hard families of univariate polynomials. In these examples
we shall be able to exhibit significant lower bounds for the space requirements
of any nonscalar time optimal procedure which evaluates these polynomials.
We may divide our examples in two main groups following the criterion

29TIME-SPACE TRADEOFFS



whether the polynomials under consideration are given by their coefficients
or by their roots. The interest of the latter group of examples is motivated
by the search for lower complexity bounds in geometric elimination theory
where the representation of polynomials given by their roots arises naturally
(see [27]). A second division of our examples in two classes will be given
by the distinction whether the polynomials under consideration have
algebraic or only rational coefficients. We have tried to find an almost
unified presentation for these example classes.

4.1. Polynomials Given by Their Coefficients

We present in this section a series of techniques for showing lower bounds
for time-space tradeoffs and apply them to specific families of polynomials
with integer and algebraic coefficients. We start with two particular families
of polynomials with integer coefficients and show that these families are
hard to compute in terms of time-space tradeoff. Then the same kind of
result is proved for a specific family of polynomials with algebraic coef-
ficients. Finally we show that there exist many families of polynomials with
[0, 1]-coefficients which are hard to compute in terms of time-space
tradeoff.

4.1.1. Polynomials with Integer Coefficients. In [55] there are presented
several explicit families of polynomials with integer coefficients which are
shown to be hard to compute in the sense of sequential time complexity.
This kind of result is extended and improved in [50, 54]. We apply
Proposition 9 in order to obtain time-space tradeoff results in the spirit of
the above cited references.

Example 15. Let F1 :=(Fd)d # N be the family of polynomials Fd # Z[X]
of degree d defined by

Fd := :
0� j�d

2 j !X j.

Then this family F1 is hard to compute in the sense of time-space tradeoff.
More precisely, we have

LS2(Fd)=0(d ).

Proof. Let d be fixed and let F :=Fd . Furthermore, let L and S be
arbitrary natural numbers such that the polynomial F can be computed by
a straight-line program in Q(X), using non-scalar time L and space S. Thus
the polynomial F belongs to the image of the morphism

8 :=8d, L, S :=(Pd , ..., P0) : CN � Cd+1
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introduced in Lemma 5, with N :=8LS 2+1 and P0 , ..., Pd # Z[Z1 , ..., ZN].
(Remember that we identify the polynomial F # Z[X] with the point

( fj)0� j�d :=(2 j!)0� j�d

of Cd+1 given by the vector of coefficients of F.) We observe that ( f j)0� j�d

is the only point of Cd+1 contained in the algebraic variety

[( fd , ..., f0) # Cd+1 : f0&2=0, f1& f0=0, ..., fd& f d
d&1=0].

Let Z=(Z1 , ..., ZN) and consider the polynomials Q0 , ..., Qd # Z[Z]
defined by Q0(Z) :=P0(Z)&2 and Qj (Z) :=Pj (Z)&P j

j&1(Z) with 1� j�d.
Note that the 8-fiber V :=8&1(F ) of the point F # Cd+1 is the algebraic set

V=[z # CN : Q0(z)=0, ..., Qd (z)=0].

Let

D :=max[deg Qi : 0� j�d]

and

' :=max[logheight Qj : 0� j�d].

From Lemma 5 we deduce that

deg Qj� j } deg Pj�2j(Ld+1)�2d(Ld+1)

holds for 0� j�d.
This implies

D�2d(Ld+1). (20)

Furthermore, from Lemma 5 we conclude

logheight Q0�2+log2 weight P0

�2+(d+1)L log2 (12(S+1)),
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and

logheight Qj�1+log2 weight Pj+log2 (weight Pj&1) j

�1+( j+1) log2 (12(S+1)) (d+1) L

�1+(d+1)L+1 log2 (12(S+1))

for 1� j�d. This implies the height bound

'�1+(d+1)L+1 log2 (12(S+1)). (21)

Applying Proposition 9 to the algebraic variety V above and taking into
account the degree and height estimates (20) and (21), we conclude that V
contains a point %=(%1 , ..., %N) satisfying the estimate

log2 max[ |%i | : 1�i�N]�DcN(log2 (d+1)+')],

where c>0 is a suitable universal constant. Let us write |%| :=max[ |%i | :
1�i�N]. In order to finish the proof let us consider for 0� j�d the j th
coefficient fj of the polynomial F. Since the image of the point % under the
morphism 8 is F, we have fj=Pj (%) for 0� j�d. Thus, by Lemma 5 the
absolute value of fj is bounded as

log2 | fj |�log2 weight Pj+deg Pj } log2 |%|

�(d+1)L log2 (12(S+1))+2(Ld+1) DcN(log2 (d+1)+').

From Horner's rule we deduce that we may assume without loss of generality
that LS2�c1 d holds for a suitable universal constant c1 . Combining this
observation with the estimates (20) and (21) for D and ', we conclude that
the absolute values of the coordinates f0 , ..., fd of the polynomial F satisfy
the inequalities

d !�max[log2 | f j | : 0� j�d]�d c2 N,

where c2>0 is a suitable universal constant. Thus we obtain d!�d c2N on
one hand and N=8LS2+1 on the other. This implies c3 d�LS 2 for a
suitable universal constant c3>0. Since L and S are the time and space
requirements of an arbitrary straight-line program evaluating the polyno-
mial F=Fd we finally obtain LS 2(Fd)=0(d ). K
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Example 16. Let F2 :=(Fd)d # N be the family of polynomials Fd # Z[X]
of degree d defined by

Fd := :
0� j�d

22 j X j.

Then this family F2 is hard to compute in the sense of time-space tradeoff.
More precisely, we have

LS2(Fd)=0 \ d
log2 d+ .

The proof of this bound can be established in the same way as in
Example 15. For given d, L, S # N one has to consider the algebraic variety

[( fd , ..., f0) # Cd+1 : f0&2=0, f1& f 2
0=0, ..., fd& f 2

d&1=0]

whose only point is the coefficient vector of the polynomial Fd . The
8d, L, S -fiber of this variety is defined by P0(Z)&2 and the polynomials
Pj (Z)&P2

j&1(Z) with 1� j�d. The remaining arguments are the same as
in the proof of the lower bound of Example 15.

Let us remark that Example 16 is analyzed in [55] where the sequential
time lower bound L(Fd)=0( 3

- d�log2 d ) is shown.

4.1.2. Polynomials with Algebraic Coefficients. In this subsection we
adapt two general methods for proving lower time-complexity bounds for
polynomials with non-rational coefficients to the context of time-space
tradeoffs. The first method we present was recently introduced by W. Baur
(see [2]). The description of a similar idea can be found in [12, Chap. 9,
Exercise 9.11].

Proposition 17. There exists a universal constant c>0 with the follow-
ing property: let D be a given natural number and let

F := :
0� j�d

fj X j

be a polynomial of degree at most d with complex coefficients. Suppose that
there exist polynomials g1 , ..., gm # Q[Yd , ..., Y0] of degree at most D, such
that the complex values g1( fd , ..., f0), ..., gm( fd , ..., f0) are Q-linearly inde-
pendent. Under these assumptions we have

LS2(F )�c }
log2 m

log2 d+log2 D
.
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Proof. Let be given an arbitrary straight-line program ; in C(X) which
evaluates the polynomial F in nonscalar time L and space S. As before we
deduce from Horner's rule that we may assume without loss of generality
that L�d holds. Let N :=8LS2+1 and $ :=2(Ld+1). Let Z1 , ..., ZN be
new indeterminates. Then by Lemma 5 there exist polynomials Pd , ..., P0 #
Z[Z1 , ..., ZN] of degree at most $ such that the coefficient vector ( fd , ..., f0)
of F is in the image of the morphism of affine spaces 8d, L, S : CN � Cd+1 given
by (Pd , ..., P0). Since by assumption the complex values g1( fd , ..., f0), ...,
gm( fd , ..., f0) are Q-linearly independent and since there exists a point
% # CN such that

( fd , ..., f0)=(Pd (%), ..., P0(%))

holds, we conclude that the polynomials g1(Pd , ..., P0), ..., gm(Pd , ..., P0)
must be Q-linearly independent too. Note that these polynomials have
degree bounded by $D. This implies that the Q-vector space

P :=[G # Q[Z1 , ..., ZN] : deg G�$D]

has dimension at least m. On the other hand we have

dim P=\N+$D
N +�($D)N.

Taking into account L�d we deduce from this the estimate

m�($D)N=(2(Ld+1) D)8LS2+1�(2(d 2+1) D)8LS2+1.

Taking logarithms, we conclude that there exists a universal constant
c>0 such that

LS2�c }
log2 m

log2 d+log2 D

holds. Since ; was an arbitrary straight-line program in C(X) computing
the polynomial F in nonscalar time L and space S, Proposition 17 follows.

K

The second method for showing lower bounds for time-space tradeoffs of
polynomials with nonrational coefficients goes back to [30].
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Proposition 18. There exists a universal constant c>0 with the follow-
ing property: let D be a given natural number and let

F := :
0� j�d

fj X j

be a polynomial of degree at most d with complex algebraic coefficients. Let
\ be the cardinality of the orbit of the point ( fd , ..., f0) # Cd+1 under the action
of the group of automorphisms of C over Q. Suppose that there exist polyno-
mials g1 , ..., gm # Q[Yd , ..., Y0] of degree at most D, such that the locus of
common zeroes of these polynomials in Cd+1 is finite and contains the point
( fd , ..., f0). Under these assumptions we have

LS2(F )�c }
log2 \

log2 d+log2 D
.

Proof. Let ; be an arbitrary straight-line program in C(X) which evaluates
the polynomial F in nonscalar time L and space S. Observe that the coefficient
vector ( fd , ..., f0) of the polynomial F belongs to the algebraic subvariety
W :=Wd, L, S of Cd+1 introduced in Lemma 6. Let r :=dim W and observe
that r�8LS2 holds by the same lemma. We choose now r generic Q-linear
combinations

Bk :=; (k)
1 g1+ } } } +; (k)

m gm # Q[Yd , ..., Y0]

of the polynomials g1 , ..., gm with 1�k�r and coefficients ; (k)
1 , ..., ; (k)

m # Q.
The genericity of this choice and the fact that the polynomials g1 , ..., gm

define a nonempty finite subset (i.e., a zero-dimensional subvariety) of
Cd+1 imply together with r=dim W that the set

V :=W & [( yd , ..., y0) # Cd+1 : B1( yd , ..., y0)=0, ..., Br( yd , ..., y0)=0]

is finite. Observe that ( fd , ..., f0) # V holds and that B1 , ..., Br are polyno-
mials of Q[Yd , ..., Y0] of degree at most D.

Therefore V is a zero-dimensional Q-definable subvariety of Cd+1 which
contains the whole orbit of the point ( fd , ..., f0) under the action of the
automorphism group of C over Q. This implies \�*V=deg V.

From the Be� zout Inequality and Lemma 6(ii) we infer

deg V�deg W } Dr�deg W } D8LS2
�(2(Ld+1) D)8LS2

.
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As before we may assume without loss of generality that L�d holds.
Putting all this information together we obtain the estimate

\�(2(d 2+1) D)8LS2
.

Taking logarithms, we conclude that there exists a universal constant
c>0 such that LS2�c } (log2 \�(log2 d+log2 D)) holds.

Since ; was an arbitrary straight-line program in C(X) computing the
polynomial F in nonscalar time L and space S, Proposition 18 follows. K

Using Propositions 17 and 18 we are now going to exhibit two families
of polynomials with algebraic coefficients which are hard to compute in the
sense of time-space tradeoff. These families were already analyzed in [30]
and [20, Application 2] from the point of view of sequential time complexity.

Example 19. (1) Let F3 :=(Fd)d # N be the family of polynomials
Fd # R[X] of degree d defined by

Fd := :
1� j�d

- pj X j,

where pj denotes the jth prime number. Then this family F3 is hard to
compute in the sense of time-space tradeoff. More precisely, we have

LS2(Fd)=0 \ d
log2 d+ .

(2) Let F4 :=(Fd)d # N be the family of polynomials Fd # C[X] of
degree d defined by

Fd := :
1� j�d

e2?i� jX j

where e2?i�j stands for the (canonical) j th root of unity contained in C.
Then this family F4 is hard to compute in the sense of time-space tradeoff.
More, precisely, we have

LS2(Fd)=0 \ d
log2 d+ .

Proof. Let Yd , ..., Y0 be new indeterminates.
First we discuss the asymptotical lower bound for the family F3 . We are

going to apply Proposition 17.
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For any S�[1, ..., d] we consider the polynomial

gS := `
j # S

Y j # Q[Yd , ..., Y0].

Observe that the degree of gS is bounded by d. From [20] we deduce easily
that the family of complex values

(gS(- p1 , ..., - pd ) : S�[1, ..., d])

is Q-linearly independent. The lower bound for the time-space tradeoff of
the family F4 follows now easily from Proposition 17 setting m :=2d and
D :=d.

As for the family F3 , we will apply Proposition 18. Let us consider the
polynomials

g1 :=Y0 , g2 :=Y1&1, g3 :=Y 2
2&1, ..., gd+1 :=Y d

d&1.

Observe that these polynomials vanish at the point % :=(0, e2?i�1, ..., e2?i�d)
# Cd+1 which represents the coefficients of the d th member of the family
F4 , namely the polynomial Fd=�1� j�d e2?i�jX j. Moreover, the polyno-
mials g1 , ..., gd+1 belong to Q[Yd , ..., Y0] and have degree at most d. They
define a finite subset of Cd+1. Let \ be the cardinality of the orbit of the
point % under the action of the group of automorphisms of C over Q. Let
us denote by . the Euler function and by [1, ..., d] the least common
multiple of the numbers 1, ..., d. With this notation one sees easily that

\=[Q(e2?i�1, ..., e2?i�d) : Q]=.([1, ..., d])

holds. From the Prime Number Theorem (see, e.g., [15]) one infers

log2 \=log2 .([1, ..., d])=0(d).

The lower bound for the time-space tradeoff of the family F4 follows now
easily from Proposition 18 setting D :=d. K

4.1.3. Polynomials with [0, 1]-Coefficients. In this subsection we show
that almost all polynomials with [0, 1]-coefficients are hard to compute in
the sense of time-space tradeoff. The method we are going to use for the
proof of this result was applied in a slightly different way in [29] in order
to prove a lower bound for the nonscalar time complexity of these polyno-
mials. Let us introduce the following notation.
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For any natural number d let

LS 2
[0, 1](d ) :=max {LS 2 \ :

0� j�d

fjX j+ : ( fd , ..., f0) # [0, 1]d+1= .

Theorem 20. Let d�2 and k be natural numbers with d>k log2 d. Then
the following holds:

(i) *[( fd , ..., f0) # [0, 1]d+1 : LS2(�0� j�d fjX j)� 1
16 (d�log2 d&k)]

�2d�d k,

(ii) LS 2
[0, 1](d )� 1

16 (d�log2 d ).

Proof. Let be given natural numbers d, k, L, S subject to the conditions
d�2, d>k log2 d and LS2� 1

16 (d�log2 d&k). Observe that the set [0, 1]d+1

can be defined as the intersection of d+1 hypersurfaces of Cd+1 of degree 2,
namely as

[0, 1]d+1=[( fd , ..., f0) # Cd+1 : f 2
d& fd=0, ..., f 2

0& f0=0].

Applying [29, Proposition 2.3] and Lemma 6 of Section 2 we deduce from
the Be� zout Inequality the estimates:

*(Wd, L, S & [0, 1]d+1)�deg Wd, L, S } 2dim Wd, L, S�(4(Ld+1))8LS2

�(8Ld )8LS 2
�(8LS2d )8LS2

.

Taking logarithms and using the assumption LS2� 1
16 (d�log2 d&k), we

conclude

log2 (*(Wd, L, S & [0, 1]d+1))�8LS 2 log2 (8LS2d )

�
1
2 \

d
log2 d

&k+ log2 \1
2 \

d
log2 d

&k+ d+
�

1
2 \

d
log2 d

&k+ log2 \1
2

d 2 \ 1
log2 d

&
k
d++ .

Thus,

log2 (*(Wd, L, S & [0, 1]d+1))

�
1
2 \

d
log2 d

&k+\2 log2 d+log2 \1
2 \

1
log2 d

&
k
d+++ .
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From the assumption d>k log2 d we deduce 0< 1
2 (1�log2 d&k�d )<1. This

implies

log2 (*(Wd, L, S & [0, 1]d+1))�d&k log2 d.

From Lemma 6(iii) we infer now that

*{( fd , ..., f0) # [0, 1]d+1 : LS2 \ :
0� j�d

f jX j+�
1

16 \
d

log2 d
&k+=�

2d

d k

holds, i.e., assertion (i) of the theorem. Assertion (ii) follows from (i)
putting k :=0 and observing that the set [0, 1]d+1 has 2d+1 elements. K

4.2. Polynomials Given by Their Roots

The study of lower complexity bounds for the computation of families of
polynomials given by their roots is motivated by their relationship with the
intrinsic complexity of quantifier elimination procedures. Evidence for this
relationship can be found in [27, 40]. In this subsection we exhibit two
examples of families of polynomials given by their roots which are hard to
compute in terms of time-space tradeoff.

Let Yd&1 , ..., Y0 be new indeterminates and let

G :=Xd+Yd&1 Xd&1+ } } } +Y0

be the generic monic polynomial in the variable X with coefficients Yd&1 , ..., Y0 .
Furthermore let D(Yd&1 , ..., Y0) be the discriminant of the polynomial G
with respect to the variable X.

Lemma 21. Let F5 :=(Fd)d # N be the family of polynomials Fd # Z[X]
of degree d defined by

Fd := `
1� j�d

(X&22 j
).

Then Fd is the only monic polynomial F=Xd+ fd&1X d&1+ } } } + f0 of
degree d with real coefficients which satisfies the following four conditions:

(1) F(0){0, F(1){0, F(&1){0.

(2) D( fd&1 , ..., f0){0 (this means that F has only simple roots).

(3) The polynomial F has only real roots.
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(4) There exists a real number t0 with t2
0 {4 such that

(&1)d 4f0=t2
0

and

(&1)d } F(X) } F(&X) } (X2&4)=(X2&t2
0) } F(X2)

holds.

Proof. Putting t0 :=22d
one easily checks that the polynomial Fd

satisfies the four conditions of the lemma. Therefore it is sufficient to show
that there exists at most one monic polynomial F=Xd+ fd&1Xd&1

+ } } } + f0 # R[X] of degree d which satisfies the conditions. Suppose now
that such a polynomial F is given and fix a real number t0 which satisfies
the fourth condition with respect to this F. This condition implies that for
any root x of F either x2=t2

0 or F(x2)=0 holds. Thus for any root x of F
one of the following two cases may occur:

(i) there exists a natural number k with x2 k
=t2

0 , or

(ii) any element of the set S(x) :=[x2m
: m # N] is a root of F.

In case (ii) our assumptions on F imply that the set S(x) is infinite. This
rules out this case since F is monic. Therefore any root x of F satisfies (i).
One easily sees F(4)=0. Let r be a maximal nonnegative integer such that
22, 222

, ..., 22 r
are roots of F. From F(4)=0 and deg F=d one concludes

1�r�d. The maximality of r implies F(22 r + 1
){0 whence 22 r + 1

=t2
0=

(&1)d 4f0 . Thus we have |t0 |>1.
We are now going to show that r=d holds. Suppose that this is not the

case. Since by assumption F has only simple roots which are all real there
must exist d&r distinct real zeroes xr+1 , ..., xd of F not contained in the set
[22, 222

, ..., 22 r]. Thus the roots of F are the real numbers 22, 222
, ..., 22 r

,
xr+1 , ..., xd . This implies

22 r+1
=(&1)d } 4 } f0=4 } 22 } 22 2

} } } 22 r
} xr+1 } } } xd

and consequently >r<i�d x i=1.
Let r<m�d. Since the root xm of F satisfies (i) there exists a natural

number km such that x2km

m =t2
0 holds. Thus as |t0 |>1 we have |xm |>1 for

any r<m�d. But this contradicts our conclusion >r<i�d x i=1.
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That finishes the proof of the assertion r=d, saying that 22, 22 2
, ..., 22 d

are all roots of the monic polynomial F of degree d. With other words we
have

F= `
1� j�d

(X&22 j
)=Fd . K

Let n be a natural number and let X1 , ..., Xn be indeterminates over Z.
A subset S of Rn is called semialgebraic if there exists a finite set of poly-
nomials G/Z[X1 , ..., Xn] such that S is definable as a boolean expression
built up from atomic formulas of type G=0 or G>0 with G # G. In this
case we shall also say that S is G-definable semialgebraic. A semialgebraic
set has only finitely many connected components which are in turn semi-
algebraic (for more details see [5]).

In the sequel we shall use the following estimate which can be found in
[59] (compare also [28, Theorem 4]):

Proposition 22. There exists a universal constant c0>0 with the following
property: Let n, D, s, h be natural numbers and let G be a set of s polynomials
of Z[X1 , ..., Xn] having degree at most D and logarithmic height at most h,
which defines a semialgebraic subset S of Rn. Then the ball of Rn of radius
2h(sD) c0 n centered at the origin intersects with every connected component of S at
least in one point.

We are now ready to prove that the family F5 is hard to compute in the
sense of time-space tradeoff if we restrict ourselves to the field of parameters
K :=R (see Subsection 2.2):

Proposition 23. There exists a universal constant c>0 with the following
property: Let d, L, S be natural numbers and let

F := `
1� j�d

(X&22 j
).

Let # be a straight-line program in R(X) which computes the polynomial F
using nonscalar time L and space S. Then we have

LS2�c }
d

log2 d
.

Proof. Let us write F= fdX d+ fd&1Xd&1+ } } } + f0 with ( fd , ..., f0) #
Zd+1 and fd=1. Observe that F and ( fd&1 , ..., f0) satisfy the four condi-
tions of Lemma 21. We apply now Lemma 5 with K :=R. Following this
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result and its proof, there exist for N :=8LS2+1 polynomials Pd , ..., P0 #
Z[Z1 , ..., ZN] of degree at most 2(Ld+1) and weight at most (12(S+1))(d+1)L

such that the morphism of affine spaces 8d, L, S: RN � Rd+1 introduced in this
lemma maps the parameters of the straight-line program # on ( fd , ..., f0) # Zd+1.
Let (`1 , ..., `N) be the point of RN representing the parameters of #, let
8 :=8d, L, S and let V :=8&1(( fd , ..., f0)) be the 8-fiber of the integer
point ( fd , ..., f0). Since (`1 , ..., `N) is contained in V, we conclude that V is
nonempty. One verifies immediately that V is a semialgebraic subset of RN.
Let T, U1 , U2 , U3 , U4 , U5 be new indeterminates. Using the notation of
Lemma 21 we consider the following polynomial equation system,

Pd&1=0

P0U1&1=0

\ :
0� j�d

Pj+ U2&1=0

\ :
0� j�d

(&1) j Pj+ U3&1=0

D(Pd&1 , ..., P0) U4&1=0

(T 2&4) U5&1=0

(&1)d 4P0&T 2=0

(&1)d R(k) R(&k)(k2&4)=(k2&T 2) R(k2)

for 0�k�2d+2 with R :=PdX d+ } } } +P0 . Observe that the polynomials
occurring in the above system belong to the ring Z[Z1 , ..., ZN , T, U1 , ..., U5]
having degree at most D :=c$Ld 3 and logarithmic height at most h :=
c$(d+1)L+1 log2 (12(S+1)) for a suitable universal constant c$>0 and
that there are at most s :=c$d of them. These polynomials codify the four
conditions of Lemma 21. They define a semialgebraic subset W of RN_R6.
Let ?: RN_R6 � RN be the canonical projection which maps each point of
RN_R6 onto its first N components. From Lemma 21 and 5 one deduces
easily that ?(W)=V holds. In particular W is nonempty. Applying
Proposition 22 we see that W contains a point | :=(%1 , ..., %N , t, u1 , u2 ,
u3 , u4 , u5) # RN_R6 with

&|& :=(%2
1+ } } } +%2

N+t2+u2
1+u2

2+u2
3+u2

4+u2
5)1�2�2h(sD) c 0 (N+6)

,
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where c0>0 is the universal constant of this proposition. This implies that
the semialgebraic set contains a point % :=(%1 , ..., %N) # RN, namely %=?(|),
which satisfies

log2 |%|=log2 max[ |%i | : 1�i�N]�h(sD)c0 (N+6).

Without loss of generality we may suppose L�d. Therefore, taking into
account N=8LS2+1, s=c$d, D=c$Ld 3 and h=c$(d+1)L+1 log2 (12(S+1))
we conclude that there exists a universal constant c">0 such that the
estimate log2 |%|�d c"LS2

holds. Since the point % belongs to the 8-fiber V
of ( fd , ..., f0) we have (&1)d 22d+1&2=(&1)d >1� j�d 22 j

= f0=P0(%).
Reasoning as in the proof of the tradeoff lower bound of Example 15 we

obtain the inequalities

log2 | f0 |=2d+1&2�log2 weight P0+deg P0 } log2 |%|

�(d+1)L log2 (12(S+1))+2(Ld+1) d c"LS 2
.

Taking logarithms in these inequalities we deduce from L�d that there
exists a universal constant c>0 such that

LS2�c }
d

log2 d

holds. K

Example 24. Let as before F5 :=(Fd)d # N be the family of polynomials
Fd # Z[X] of degree d defined by

Fd := `
1� j�d

(X&22 j
).

Then this family F5 is hard to compute in the sense of time-space tradeoff.
More precisely we have

LS2(Fd)=0 \ d
log2 d+ .

Proof. The lower bound we claim in this example refers to straight-line
programs in C(X) and not in R(X) as in Proposition 23. However, one
deduces this lower bound easily from that proposition: it is sufficient to
observe that any straight-line program ; in C(X) which computes for given
d # N the polynomial Fd , can be transformed into a straight-line program
# which evaluates Fd in nonscalar time 5L(;) and space 4S(;) using only
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real parameters. One obtains this straight-line program # by computing the
real and imaginary part of each intermediate result of ; separately (note
that in view of [37] our time and space estimates for # are even rather
coarse). Our claim then follows easily from Proposition 23. K

We consider now a second example of a family of polynomials given by
their roots which is hard to compute in the sense of time-space tradeoff.
The polynomials of this second family will have algebraic coefficients. A
similar example was analyzed in [27] from the point of view of sequential
time complexity.

Example 25. Let F6 :=(Fd)d # N be the family of polynomials Fd # R[X]
of degree d defined by

Fd := `
1� j�d

(X&- pj ),

where pj denotes the jth prime number. Then this family F6 is hard to
compute in the sense of time-space tradeoff. More precisely we have

LS2(Fd)=0 \ d
log2 d+ .

Proof. The lower bound we claim follows by adapting an argument first
introduced in [2] to the context of time-space tradeoffs. Let d # N be given
and let F :=Fd . For 1� j�d we write _j for the j th elementary symmetric
function in d arguments and f j :=_ j (- p1 , ..., - pd ) for its value in the
point (- p1 , ..., - pd ) # Rd. We have

F= `
1� j�d

(X&- pj )=Xd& f1Xd&1+ } } } +(&1)d fd

for suitable real algebraic numbers f1 , ..., fd . Let X1 , ..., Xd and Y1 , ..., Yd be
new indeterminates and let 1� j�d. The polynomial Nj :=X 2j+1

1 + } } } +
X2 j+1

d is symmetric and hence there exists a (unique) polynomial Qj #
Z[Y1 , ..., Yd] of degree at most 2 j+1 such that

Nj (X1 , ..., Xd)=Qj (_1(X1 , ..., Xd), ..., _d (X1 , ..., Xd))

holds (see, e.g., [60]). Let bj be the real value

bj :=Qj ( f1 , ..., fd).
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One verifies immediately that

bj=Nj (- p1 , ..., - pd )= p j
1 - p1 + } } } + p j

d - pd

holds. Thus the values b1 , ..., bd can be written as Z-linear combinations of
the values - p1 , ..., - pd . The corresponding matrix is the nonsingular
Vandermonde matrix ( p j

k)1� j, k�d . This implies that there exist Q-linear
forms H1 , ..., Hd in d arguments such that - pj =Hj (b1 , ..., bd) holds for
1� j�d. For any set S�[1, ..., d] consider the polynomial

gS := `
j # S

H j (Q1(Y1 , ..., Yd), ..., Qd (Y1 , ..., Yd)).

Observe that deg gS�d(2d+1) and

gS( f1 , ..., fd)= `
j # S

- p j

holds. Thus

(gS( f1 , ..., fd) : S/[1, ..., d])

forms a family of 2d real values which are Q-linear independent. The lower
bound for the time-space tradeoff of the family F6 follows now easily from
Proposition 17 setting m :=2d and D :=d(2d+1). K

4.3. Space Lower Bounds for Time Optimal Evaluation

From Horner's rule follows that any univariate polynomial can be com-
puted in constant space (see in this context also [4]). Therefore space can
be arbitrarily small in polynomial evaluation if time is free.

However, restricting ourselves to time optimal procedures we obtain as
an immediate consequence of our tradeoff results the following statement
concerning space lower bounds (compare also Corollary 8):

Proposition 26. Let 1�i�6 and let Fi :=(F (i)
d )d # N be any of the

families of polynomials F (i)
d # C[X] introduced in the Examples 15, 16,

19, 24, 25. Then there exists a universal constant c>0 with the following
property: For any sequence (;d)d # N of arithmetic circuits in C(X) such that
;d evaluates the polynomial F (i)

d in nonscalar time L(;d)�- d the space
S(;d) used by ;d satisfies the lower bound

S(;d)�c }
4

- d

- log2 d
.
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For the case of the family F1 this bound can be even improved to

S(;d)�c } 4
- d.
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