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Wepresent a newalgorithm to compute the integral closure of a re-
duced Noetherian ring in its total ring of fractions. A modification,
applicable in positive characteristic, where actually all computa-
tions are over the original ring, is also described. The newalgorithm
of this paper has been implemented in Singular, for localizations of
affine rings with respect to arbitrary monomial orderings. Bench-
mark tests show that it is in general much faster than any other
implementation of normalization algorithms known to us.
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1. Introduction

Computing the normalization of a ring is a major tool in commutative algebra, with applications in
algebraic geometry and singularity theory. The first general algorithmswere proposed by Stolzenberg
(1968) and Seidenberg (1970, 1975). However, the tools involved, such as extensions of the ground
field and addition of new indeterminates, make them unsuitable for most practical applications.
In recent years several new and more practicable algorithms using Groebner bases have been

proposed. The basic approach, continuing the line of the works mentioned before, is to compute an
increasing chain of rings from the original ring to its normalization. This is carried out in the works of
Traverso (1986), Vasconcelos (1991, 1998), Brennan and Vasconcelos (2001). To our knowledge none
of these algorithms has been implemented and it remains unclear how practical they are. Also de Jong
(1998), Decker et al. (1999) follow this path, applying as a new ingredient a criterion for normality due
to Grauert and Remmert (1971). In Decker et al. (1999), they report an effective implementation of
their algorithm in Singular (Greuel et al., 2009b). It became the standard algorithm for normalization
in computer algebra systems, being now implemented also inMacaulay2 (Grayson and Stillman, 2009)
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andMagma (Bosma et al., 1997). A good review onmost of these algorithms can be found in Swanson
and Huneke (2006, Chapter 15).
Another approach, presented in Gianni and Trager (1997), is to use Noether normalization, reduce

the problem to the one-dimensional case, and apply existing special algorithms for that case (Ford,
1987; Cohen, 1993). Unfortunately, we do not know of any implementation of these algorithms.
A more recent approach, taken in Leonard and Pellikaan (2003) and Singh and Swanson (2008),

is to compute a decreasing chain of finitely generated modules over the original ring containing the
normalization. Their algorithmworks only in the case when the base field is of positive characteristic
p, where they can use the Frobenius map. It has been implemented inMacaulay2 and Singular, and it
turns out to be very fast for small p. However, the computation of the Frobeniusmakes it impracticable
when p is large.
There are also very efficient methods for computing the normalization in some special cases. For

example, for toric rings, one can apply fast combinatorial techniques, as explained in Bruns and Koch
(2001).
The algorithm we propose in this paper is a general algorithm, and it is based on de Jong (1998)

and Decker et al. (1999). In their algorithm, as we mentioned before, they construct an increasing
chain of affine rings. They enlarge the rings by computing the endomorphism ring of a test ideal (see
below), adding new variables for each module generator of the endomorphism ring and dividing out
the relations among them. Then the algorithm is applied recursively to this new affine ring. Due to the
increasing number of variables and relations, this can produce a big slow-down in the performance of
the algorithmalreadywhen thenumber of intermediate rings is 2 or 3. For a larger number, this usually
makes the algorithm unusable, as the Groebner bases of the ideals of relations grow extensively. Our
approach avoids the increasing complexity when enlarging the rings, benefiting from the finitely
generated A-module structure of the normalization. We are able to do most computations over the
original ring without adding new variables or relations.
The main new results of this paper are presented in Section 3. In Section 4, we describe the

algorithm and show, as an application, how the δ-invariant of the ring can be computed. Section 5
contains several benchmark examples and a comparison with previously known algorithms, while
Section 6 is devoted to an extension of the algorithm to non-global monomial orderings.

2. Basic definitions and tools

Let A be a reduced Noetherian ring.2 The normalization Ā of A is the integral closure of A in the total
ring of fractions Q (A), which is the localization of A with respect to the non-zerodivisors on A. A is
called normal if A = Ā.
The conductor of A in Ā is C = {a ∈ Q (A) | aĀ ⊂ A} = AnnA(Ā/A).

Lemma 2.1. Ā is a finitely generated A-module if and only if C contains a non-zerodivisor on A.
Proof. If p ∈ C is a non-zerodivisor then Ā ∼= pĀ ⊂ A is module-finite over A, since A is Noetherian.
Conversely, if Ā is module-finite over A then any commonmultiple of the denominators of a finite set
of generators is a non-zerodivisor on A contained in C . �

We recall the Grauert and Remmert criterion of normality.

Proposition 2.2. Let A be a Noetherian reduced ring and J ⊂ A an ideal satisfying the following
conditions:

(1) J contains a non-zerodivisor on A,
(2) J is a radical ideal, and
(3) N(A) ⊂ V ( J), where

N(A) = {P ⊂ A, prime ideal | AP is not normal}

is the non-normal locus of A.

2 We assume that all rings are commutative with 1 and that morphisms map 1 to 1.
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Then A is normal if and only if A ∼= HomA( J, J), via the canonical map which maps a ∈ A to the
multiplication by a.

Definition 2.3. An ideal J ⊂ A satisfying properties (1)–(3) is called a test ideal (for the normalization)
of A. A pair ( J, p)with J a test ideal and p ∈ J a non-zerodivisor on A is called a test pair for A.

By Lemma 2.1, test pairs exist if and only if Ā is module-finite over A. We can choose any radical
ideal J such that p ∈ J ⊆

√
C .

Our algorithm computes the normalization of A when a test pair for A is known. If A is a reduced,
finitely generated k-algebra with k a perfect field, then C contains a non-zerodivisor which can
be computed by using the Jacobian ideal (see Lemma 4.1 and Remark 4.6). The same holds for
localizations of such k-algebras w.r.t. any monomial ordering. Indeed, our algorithm is slightly more
general, working whenever the Jacobian ideal does not vanish.
If A is not normal, we get a proper ring extension A ( HomA( J, J) =: A1.
If A1 is not normal, which is checked by applying Proposition 2.2 to A1, we obtain a new ring A2 by

that same proposition, which then has to be tested for normality, and so on. That is, we get a chain of
inclusions of rings

A ⊂ A1 ⊂ A2 ⊂ · · ·

(with Ai = A[t1, . . . , tsi ]/Ii, Ii ideal, and natural maps ψi : A ↪→ Ai).
If, at some point, we get a normal ring AN , then AN ∼= Ā by Lemma 2.6. This guarantees that, if Ā is

a finitely generated A-module, the chain will become stationary with AN normal, giving an algorithm
to compute the normalization.
The fact which makes the whole algorithm practicable is the isomorphism

HomA( J, J) ∼= 1/p · (pJ :A J),

allowing us to compute HomA( J, J) over A. This fact, not contained in de Jong (1998), was found by
the first-named author during the implementation of the algorithm in Singular and first published in
Decker et al. (1999) (see also Greuel and Pfister (2008, Lemma 3.6.1) and Gianni and Trager (1997) for
related statements). We shall prove a generalization of this isomorphism in Lemma 3.1, which will be
needed in the new algorithm.
The following lemma describes the A-algebra structure of 1/p · (pJ :A J). This will allow us to

compute the normalization of A recursively.

Lemma 2.4. Let A be a reduced Noetherian ring, and ( J, p) a test pair for A. Let {u0 = p, u1, . . . , us} be a
system of generators for the A-module pJ :A J . If t1, . . . , ts denote new variables, then tj 7→ uj/p, 1 ≤ j ≤ s,
defines an isomorphism of A-algebras

A1 := A[t1, . . . , ts]/I1
∼=
−→

1
p
(pJ :A J),

where I1 is the kernel of the map tj 7→ uj/p from A[t1, . . . , ts] → 1
p (pJ :A J).

See Greuel and Pfister (2008, Lemma 3.6.7) for the computational aspects of this lemma.

Example 2.5. Let I =
〈
x2 − y3

〉
⊂ k[x, y] and A = k[x, y]/I . We take the test pair ( J, p), with

J := 〈x, y〉A (the radical of the singular locus of A) and p := x (see Algorithm 1). Then pJ :A J =
〈
x, y2

〉
A

and 1/p · (pJ :A J) = 1/x ·
〈
x, y2

〉
A
∼= A1 := A[t]/I1, where I1 = 〈t2 − y, yt − x, y2 − xt〉A[t]. The

isomorphism is given by t 7→ y2/x.

The following easy lemma gives a normalization criterion for ring extensions. It provides a
convenient way to prove the correctness of our normalization algorithm, or anymodification, because
it is independent of the intermediate steps.

Lemma 2.6. Let ψ : A → B be a map between reduced Noetherian rings satisfying the following
conditions:
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(1) ψ is injective,
(2) ψ is finite, and
(3) B is contained in Q (ψ(A)).

Then ψ induces isomorphisms Q (A)→ Q (B) and Ā→ B̄. In particular, if B is integrally closed, then Ā is
isomorphic to B.

Proof. Since A ↪→ B is injective, so is Q (A) ↪→ Q (B), and hence Ā ↪→ B̄. The isomorphism
Q (A) → Q (B) is clear by 3. The finiteness of ψ implies that B (and therefore B̄) is integral over A.
Since ψ(A) ⊆ B ⊆ B̄ ⊆ Q (B) = Q (ψ(A)), we conclude that B̄ is the normalization of ψ(A), which
immediately implies the isomorphism Ā→ B̄. �

3. Computing over the original ring

It has already beennoticed bymany authors (see for example the comments preceding Prop. 6.65 of
Vasconcelos (2005)) that the chain of ringsmentioned in the previous section, or similar constructions
where the number of variables and relations increase in each step, behaves poorly in practice. (See
also Remark 5.1.)
There has been therefore a search for algorithms carrying out most of the computations in the

original ring. In Vasconcelos (2000), the author proposes using

B =
⋃
n≥1

HomS(In, In),

where S is a hypersurface ring over which A is finite and birational and I is the annihilator of the
S-module A/S. However, as mentioned in that same paper, computing B is still the hard part of the
algorithm and there is no indication on how to do it.
In this section we show that a chain of rings as used in Decker et al. (1999) can be constructed

doing most computations over the original ring. In this way we obtain an algorithm that is usually
much faster in practice.
The purpose of this section is not only to show that the computations over the original ring are

possible. The proofs which we provide show also how these computations can be done and thus
prepare the algorithms presented in the next section.
We start with a generalization of the isomorphism from the previous section, expressing HomA

( J, J) as an ideal quotient, to be used later. We formulate a more general version than needed. For a
related statement see Swanson and Huneke (2006).

Lemma 3.1. Let A be a reduced (not necessarily Noetherian) ring, Q (A) its total ring of fractions, and I, J
two A-submodules of Q (A). Assume that I contains a non-zerodivisor p on A.

(1) The map

Φ : HomA(I, J)
∼=
−→

1
p
(pJ :Q (A) I) = J :Q (A) I, ϕ 7→

ϕ(p)
p
,

is independent of the choice of p and an isomorphism of A-modules.
(2) If J ⊂ A then

pJ :Q (A) I = pJ :A I.

Proof. (1) Let q ∈ I be another non-zerodivisor on A. Write p = p1/p0 and q = q1/q0, with p0, q0
non-zerodivisors contained in A and p1, q1 ∈ A.
Then c := p0q0 ∈ A is a non-zerodivisor and cp, cq ∈ A with cpq ∈ I . Since ϕ ∈ HomA(I, J) is

A-linear, we can write

cpϕ(q) = ϕ(cpq) = cqϕ(p),

whence ϕ(p)/p = ϕ(q)/q in Q (A), showing thatΦ is independent of p.
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Moreover, for any f ∈ I , we have

ϕ(p)
p
· f =

ϕ(cp)
cp
· f =

ϕ(cpf )
cp
=
cpϕ(f )
cp
= ϕ(f ) ∈ J;

in particular, ϕ(p) · f ∈ pJ . This shows that the image Φ(ϕ) is in 1/p · (pJ :Q (A) I). It also shows that
ϕ(p) = 0⇔ ∀ f ∈ I ϕ(f ) = 0⇔ ϕ = 0 and hence thatΦ is injective.
To see that Φ is surjective, let q ∈ Q (A) satisfy qI ⊂ J . Denote bymq ∈ HomA(I, J) the multiplica-

tion by q. ThenΦ(mq) = qp/p = q, showing thatΦ is surjective.
(2) During the proof of (1) we have seen that

pJ :Q (A) I = {ϕ(p) | ϕ ∈ HomA(I, J)}.

Hence, the claimed equality holds if and only if ϕ(p) ∈ A for all ϕ ∈ HomA(I, J), which is clearly true
if J ⊂ A. �

Recall the chain of extension rings from the previous section, A ⊂ A1 ⊂ A2 ⊂ · · · . We have seen
that we can compute the normalization of A by computing the normalization of Ai (Lemma 2.6). The
next proposition explains how to obtain a test pair in Ai from a given test pair in A. This is the only
computation to be carried out in Ai.

Proposition 3.2. Let A be a reduced Noetherian ring and A′ = A[t1, . . . , ts]/I ′ a finite extension ring, with
natural inclusionψ : A ↪→ A′. If ( J, p) is a test pair for A then setting J ′ =

√
〈ψ( J)〉A′ , ( J ′, ψ(p)) is a test

pair for A′.

Proof. Let C be the conductor of A in Q (A) and C ′ the conductor of A′ in Q (A′). We know that N(A′) =
V (C ′), N(A) = V (C) and ψ(C) ⊂ C ′. Therefore V (C ′) ⊂ V (C), which proves that N(A′) ⊂ N(ψ(A))
sinceψ(A) ∼= A. We have N(A) ⊂ V ( J) by definition of J , and hence N(A′) ⊂ V (ψ( J)). Nowψ(p) ∈ J ′
is a non-zerodivisor on A′ and ( J ′, ψ(p)) is a test pair for A′. �

Example 3.3. Recall Example 2.5. We started with A = k[x, y]/〈x2 − y3〉 and test pair ( J, p) =
(〈x, y〉, x) and obtained A1 := A[t]/I1 ∼= 1/d1 · U1, where I1 = 〈t2 − y, yt − x, y2 − xt〉, d1 = x
and U1 = 〈x, y2〉A.
We now compute J1 =

√
〈ψ1( J)〉A1 =

√
〈x, y〉A1 = 〈x, y, t〉A1 = 〈t〉A1 (since t

2
= y and t3 = x in

A1). Therefore (〈t〉, x) is a test pair for A1.

For the remainder of this section, let R be a Noetherian ring, I ⊂ R a radical ideal and A = R/I .
We are mainly interested in R = k[x1, . . . , xn]with k a field (which the reader may assume in the

following), or R = k[x1, x2, . . . , xn]> with> an arbitrary monomial ordering. However, the proposed
method works quite generally, whenever a test pair is known.
In the newalgorithm,wewill compute idealsU1,U2, . . . ,UN ofA andnon-zerodivisors di ∈ Ui, 1 ≤

i ≤ N , on A such that

A ⊂
1
d1
U1 ⊂

1
d2
U2 ⊂ · · · ⊂

1
dN
UN = Ā.

From the construction we know that 1/di · Ui is a finitely generated R-algebra and hence there is a
surjection

Ri := R[t1, t2, . . . , tsi ] �
1
di
Ui, tj 7→ uj,

where {di, u1, . . . , usi} is a set of R-module generators of Ui. If Ii denotes the kernel of this map, we get
a ring map

ϕi : Ai := Ri/Ii
∼=
−→

1
di
Ui ⊂ Q (A).

(Note that the definition of Ii is now slightly different from the one given in Lemma 2.4.)
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Example 3.4. Carrying on with Example 3.3, we compute ϕ1( J1) = ϕ1(〈t〉).
Note that ϕ1(t) = y2/x. However, the A-module 〈y2/x〉A ( ϕ1(〈t〉). For example, we have seen that

y ∈ 〈t〉A1 and clearly ϕ1(y) = yx/x, but yx 6∈ 〈y
2
〉A.

This shows that in order to obtain A-module generators of ϕi( Ji) it is not enough to compute the
images of the generators of Ji. In Algorithm 2, we will show how to compute the generators. In this
example, it turns out that ϕ1(〈t〉) = 〈yx/x, y2/x〉 as an A-module.

Once we have computed a test pair ( Ji, pi) in Ai, the next step is to compute the quotient pJi :Ai Ji.
The following theorem shows that this computation can be carried out in the original ring A.

Theorem 3.5. Set A = R/I and let A′ = A[t1, . . . , ts]/I ′ be a finite ring extension. Let ψ and ϕ be the
inclusion maps ψ : A ↪→ A′, ϕ : A′ ↪→ Q (A). Let ( J, p) be a test pair for A and ( J ′, p′) be a test pair for

A′, with p′ = ψ(p). Let U,H be ideals of A and d ∈ A be such that ϕ(A′) =
1
d
U and ϕ( J ′) =

1
d
H. Then

(p′J ′) :A′ J ′ =
1
d
(dpH :A H).

Proof. The proof is an easy consequence of Lemma 3.1. Omitting ϕ and ψ in the following notations
and applying Lemma 3.1 to p ∈ J ⊂ A, we get

(p′J ′) :A′ J ′ = (p′J ′) :Q (A) J ′ = pH :Q (A) H,

since Q (A′) = Q (A) and J ′ = 1/d · H .
On the other hand, we can apply Lemma 3.1 to dp ∈ H ⊂ A and get

1
d
(dpH :A H) =

1
d
(dpH :Q (A) H) = pH :Q (A) H. �

Using Theorem 3.5 together with the previous results, once we have computed an intermediate
ring Ai, we can compute Ai+1, the next ring in the chain. If Ai = Ai+1, we have finished and Ai is the
normalization of the original ring A, by Lemma 2.6. If not, we proceed by induction to compute the
normalization.
We continue with the above example.

Example 3.6. We have p = d1 = x and H1 = 〈xy, y2〉A. We compute d1pH1 :A H1 = x2〈xy, y2〉 :A
〈xy, y2〉 = 〈x2, xy2〉.
Then

HomA1( J1, J1) ∼=
1
x2
〈x2, xy2〉 =

1
x
〈x, y2〉.

This is equal to A1. Therefore, the ring A1 was already normal, and hence equal to the normalization
of A.

Modification 3.7. We have seen that the only computation performed in Ai is the radical of ψi( J).
However, when the characteristic of the base field is q > 0 it is possible also to compute this radical
over the original ring. For this, we use the Frobenius map, as described in Matsumoto (2001).
Let G = ψi( J) ⊂ Ai. By definition,

Ji =
√
G = {f ∈ Ai | f m ∈ G for somem ∈ N}.

Mapping to Q (A), we obtain

ϕi( Ji) =
{
f̃ /di

∣∣∣∣ f̃ ∈ Ui, ( f̃ /di)m ∈ ϕi(G) for somem ∈ N
}
=

⋃
m≥1

Gm,

where Gm :=
{
f̃ /di

∣∣∣∣ f̃ ∈ Ui, ( f̃ /di)m ∈ ϕi(G)}. Then
diGq = { f̃ ∈ Ui | f̃ q ∈ d

q
i ϕi(G)}.
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Now d qi ϕi(G) is an ideal of A and diGq is the so-called q-th root of d
q
i ϕi(G). This ideal can be

computed over A using the Frobenius map (see Matsumoto (2001)).
By iteratively computing the q-th root of the output, until no newpolynomials are added,we obtain

ϕi( Ji), as desired.
Computing the radical in this way, we get another algorithm (in positive characteristic) which

is similar to the one proposed in Singh and Swanson (2008). In their algorithm they start with the
inclusion Ā ⊂ 1

c A, where c is an element of the conductor, and compute a decreasing chain of A-
modules

1
c
A =

1
c
U ′0 ⊃

1
c
U ′1 ⊃ · · · ⊃

1
c
U ′N = Ā.

In our algorithm we compute an increasing chain

A ⊂
1
d1
U1 ⊂ · · · ⊂

1
dN
UN = Ā.

The most difficult computational task for both algorithms is the Frobenius map. However, in our
algorithm we start with a small denominator d1, and therefore the computations might be in some
cases easier. This modification has not yet been tested.

4. Algorithms and application

We describe the algorithm in general terms. Since we compute an increasing sequence of subrings
of the integral closure, the algorithm terminates, for a Noetherian ring A, if and only if Ā is a finitely
generated A-module. By Lemma 2.1 this is equivalent to the existence of a test pair. We now deal with
the problem of constructing an initial test pair.
Lemma 4.1. Let k be a perfect field, and A = k[x1, x2, . . . , xn]/I with I = 〈 f1, f2, . . . , ft〉 a reduced
equidimensional ring of dimension r. Let M be the Jacobian ideal of I, that is, the ideal in A generated by
the images of the (n− r)× (n− r)-minors of the Jacobian matrix (∂ fi/∂xj)i,j. Then M is contained in the
conductor of A and contains a non-zerodivisor on A.
Proof. Let I = P1 ∩ P2 ∩ · · · ∩ Ps with P1, P2, . . . , Ps the minimal associated primes of I . Since
A is equidimensional, dim(A) = height(Pi) = r for 1 ≤ i ≤ s. Hence, the image of M in
Ai = k[x1, x2, . . . , xn]/Pi is contained in the Jacobian ideal Mi of Pi. By the Lipman–Sathaye theorem
(see Swanson and Huneke (2006) and Singh and Swanson (2008, Remark 1.5)), Mi and hence M are
contained in the conductor of Ai. Since Ā = Ā1 ⊕ Ā2 ⊕ · · · ⊕ Ās, M is then also in the conductor
of A. Moreover, the image of M in Ai is not zero since Ai is reduced. This follows from the Jacobian
criterion and by Serre’s condition for reducedness (see Greuel and Pfister (2008, Section 5.7)). As a
consequence,M is not contained in the union of theminimal associated primes ofA andhence contains
a non-zerodivisor on A. �

Note that both the Lipman–Sathaye theorem and the Jacobian criterion require k to be perfect.
The ideal J :=

√
M from the previous lemma can be used as an initial test ideal. To construct a test

pair, we need to find in addition a non-zerodivisor of A in J . An element p ∈ A is a non-zerodivisor
if and only if 0 :A 〈p〉 = 0; hence the non-zerodivisor test is effective. However, it is not sufficient
to apply the test to the generators of J . (For example, if I = 〈xy〉, the polynomials x, y generate J and
are zerodivisors on A, but x + y is not.) Since we cannot test all elements of J there seems to be a
problem to find a test pair if I is not prime. We address this problem as well as the perfectness and
the equidimensionality assumptions in Remark 4.6.
We first describe in Algorithm 1 how to compute the initial test pair ( J, p) in A, assuming that we

are able to find a non-zerodivisor.
Remark 4.2. Only for this step do we need the assumption that R = k[x1, x2, . . . , xn]> with k perfect
and that I is equidimensional. All further steps do not require this assumption.
If, by whatever means, an initial test pair ( J, p) for A is known, we can start with the computation of
U1 and then all further steps are correct, and the loop terminateswith the computation of Ā. Hence, for
any reduced ring A = R/I with given test pair ( J, p), the algorithm is effective when Gröbner bases,
ideal quotients, and radicals can be computed in rings of the form R[t1, t2, . . . , ts].
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Algorithm 1 Initial test pair ( J, p)
Input: I ⊂ R, an equidimensional radical ideal, with R = k[x1, x2, . . . , xn]> and k a perfect field.
Output: ( J, p) a test pair for A := R/I .
r := dim(I)
M ′ := the Jacobian ideal of I , i.e., the ideal in R generated by the

(n− r)× (n− r)-minors of the Jacobian matrix of I
M := the image ofM ′ in A
J :=
√
M ⊂ A

choose p ∈ J such that p is a non-zerodivisor on A
return ( J, p)

We now explain how to perform some auxiliary tasks that will be needed in the main algorithm.
We have seen in the previous section that, if A = R/I and A′ = R[t1, . . . , tn]/I ′ is a finite extension

ring with I ⊂ I ′, then there exist a non-zerodivisor d ∈ A, an ideal U ⊂ A, and a map ϕ : A′ → 1/d ·U
such that A′

∼=
−→ 1/d · U . For computations, we need to know how to move from one representation

to the other.

Remark 4.3. If we know d and generators {d, u1, . . . , us} of U , we can explicitly compute ϕ(q) for any
q ∈ A′. Let q̃ ∈ R′ be a representative, and substitute all the variables tj in q̃ by the corresponding
fraction uj/d. This results in an element f /d e ∈ Q (A) for some f ∈ A and e ∈ Z≥0. Now we need to
find f ′ ∈ A such that f /d e = f ′/d in Q (A), which is equivalent to f = f ′d e−1 + g in R, with g ∈ I . We
can find f ′ by solving the (extended) ideal membership problem f ∈ I + 〈d e−1〉 in R, for example by
using the Singular command lift; see Greuel and Pfister (2008, Example 1.8.2).

We will need also to compute the A-module generators of ideals J ′ ⊂ A′ given by generators in A′.
It is clear that for any such J ′ there exists an ideal H ⊂ A such that ϕ( J ′) = 1/d · H . So the problem is
equivalent to finding elements h1, . . . , hl in A that generateH as an A-ideal. In Algorithm 2we explain
how do it.

Algorithm 2 A-module generators
Input: A = R/I , with R = k[x1, . . . , xn] and I ⊂ R ideal; A′ = R′/I ′ a ring extension of A, with
R′ = R[t1, . . . , ts] and I ′ ⊂ R′ an ideal; d ∈ A a non-zerodivisor and U = 〈u0 = d, u1, . . . , us〉A such
that A′ ∼= 1

dU , with map ϕ : A
′
∼=
−→

1
dU; J

′
= 〈f1, . . . , fm〉A′ , an ideal of A′.

Output: H = 〈h1, . . . , hl〉A such that ϕ( J ′) = 1/d · H
for j = 1, . . . ,m do
compute hj such that ϕi(fj) = hj/d (cf. Remark 4.3)

end for
set S = {h1, . . . , hm}
for j = 1, . . . ,m; k = 1, . . . , s do
compute hj,k ∈ A such that hj,k/d = uk/d · hj/d in Q (A) (again by Remark 4.3)
if hj,k 6∈ 〈S〉A then
S = S ∪ {hj,k}

end if
end for
return H := 〈S〉

Lemma 4.4. Let A = R/I , with R = k[x1, . . . , xn] and I ⊂ R an ideal. Let A′ = R′/I ′ be a ring extension
of A, with R′ = R[t1, . . . , ts] and I ′ ⊂ R′ an ideal. Let d ∈ A be a non-zerodivisor and U = 〈u0 =
d, u1, . . . , us〉A be an ideal such that A′ ∼= 1

dU, with map ϕ : A
′
∼=
−→

1
dU. Let J

′
= 〈f1, . . . , fm〉A′ be an

ideal of A′. The output ideal H = 〈h1, . . . , hl〉A of Algorithm 2 satisfies ϕ( J ′) = 1/d · H.
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Proof. This follows since the A-module 〈1 = u0/d, u1/di, . . . , us/d〉A = ϕ(A′) and the A′-module
〈h1/d, h2/d, . . . , hm/d〉A′ = ϕ( J

′) (h1, . . . , hm as in the algorithm). Therefore the products uk/d ·hj/d,
0 ≤ k ≤ s, 1 ≤ j ≤ m, generate ϕ( J ′) as an A-module. Hence {hj | 1 ≤ j ≤ l} generates H as an
A-module, or equivalently as an A-ideal. �

Example 4.5. We apply the algorithm to compute the A-module generators of ϕ1( J1) from Exam-
ple 3.4. Recall that J1 = 〈t〉A1 , U1 = 〈x, y

2
〉A and d = x. We start with h1 = ϕ1(t) = y2/x and S = {h1}.

In the first step, we compute x/x · y2/x = y2/x; therefore h1,0 = y2. Since y2 ∈ 〈y2〉, we do not do
anything. In the second step, we compute y2/x · y2/x = y4/x2 = x2y/x2 = xy/x; therefore h1,1 = xy.
Since xy 6∈ 〈y2〉, we add it to S. We finish with H = 〈xy, y2〉, as mentioned in Example 3.4.

We are now ready to present in Algorithm 3, the main algorithm to compute the normalization.
Termination follows from Lemma 2.1 and the discussion after Definition 2.3; correctness follows

from Lemma 2.6.

Algorithm 3 Normalization of R/I
Input: I ⊂ R, an equidimensional radical ideal

Output: generators of an ideal U ⊂ R, and d ∈ R such that A =
1
d
U ⊂ Q (A),

with A := R/I .
compute ( J, p), an initial test ideal
U1 := (pJ :A J) ⊂ A
d1 := p
if 〈d1〉 = U1 then
return (〈1〉, 1)

end if
i := 1
loop
write Ui =

〈
di, u

(i)
1 , u

(i)
2 , . . . , u

(i)
s

〉
A

set Ri := R[t1, . . . , ts], πi : Ri → 1
di
Ui ⊂ 1

di
A the map tj 7→ u(i)j /di

Ii := ker(πi) (cf. Lemma 2.4)
set Ai = Ri/Ii
Ji :=
√
ψi( J) ⊂ Ai, with ψi : A ↪→ Ai

compute {f1, . . . , fk} ⊂ A such that Hi := 〈 f1, f2, . . . , fk〉A = diϕi( Ji),

with ϕi : Ai
∼=
−→

1
di
Ui (cf. Lemma 4.4)

compute generators of Ui+1 := (pdiHi) :A Hi
if diUi ⊂ Ui+1 then

return (Ui, di)
end if
di+1 := pdi
i := i+ 1

end loop

Remark 4.6. Let us comment on some variations and generalizations of Algorithm 3. For this let k be
any field, R = k[x1, x2, . . . , xn]>, and I ⊂ R be a radical ideal.

(1) If I is not (or not known to be) equidimensional we can start with an algorithm to compute
the minimal associated primes (see Greuel and Pfister (2008, Algorithm 4.3.4, Algorithm 4.4.3))
or the equidimensional parts (see Greuel and Pfister (2008, Algorithm 4.4.9)) of I , where the
latter is often faster. The corresponding ideals I1, I2, . . . , Ir are equidimensional and we have
R/I ∼= R/I1 ⊕ R/I2 ⊕ · · · ⊕ R/Ir . Hence the problem is reduced to the case of I being prime or
equidimensional.
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(2) Now let I be equidimensional and M be the Jacobian ideal. Since regular rings are normal, it
follows from the Jacobian criterion that N(R/I) ⊂ V (M). Let us assume that M 6= 0 and choose
p ∈ M \ {0}.
(a) If I1 := I :R 〈p〉 ⊂ I then p is a non-zerodivisor on A and J =

√
M is a test ideal. This is always

the case if I is prime.
(b) If I1 6⊂ I we compute I2 := I :R I1 and obtain a splitting I = I1∩I2 (see Greuel and Pfister (2008,
Lemma 1.8.14(3))) and R/I ∼= R/I1 ⊕ R/I2. Hence we can continue with the ideals I1 and I2
separately; these both have fewer minimal associated primes than I does. Consequently, after
finitely many splittings, the corresponding ideal is prime or we have found a non-zerodivisor.
This provides us with test ideals as in case (a).

(3) The above arguments show that (even if k is not perfect) Algorithm 3 works for prime ideals if
and only if the Jacobian ideal M is not zero. This is always the case for k perfect. However, if k is
not perfect, M = 0 may occur. For example, consider k = (Z/q)(t) with q a prime number, and
I = 〈xq + yq + t〉 ⊂ k[x, y]. For a method to compute a non-zero element in the conductor of R/I
if I is prime and if Q (R/I) is separable over k, see Swanson and Huneke (2006, Exercise 12.12).

4.1. The δ-invariant

As an application of the normalization algorithm we show how to compute the δ-invariant of a
reduced Noetherian k-algebra A = k[x1, x2, . . . , xn]>/I ,

δ(A) := dimk(Ā/A).

δ(A) may be infinite but it is finite if the algebraic variety V (I) defined by I has isolated non-normal
points, e.g. for reduced curves, i.e. dim(A) = 1. In this case, δ is important as it is the difference
between the arithmetic and the geometric genus of a curve. Moreover, the δ-invariant is one of the
most important numerical invariants for curve singularities (see Campillo et al. (2007)), that is, for
one-dimensional complete local rings A. The extension of our algorithm to non-global orderings in
Section 6 has the immediate consequence that it allows one to compute δ for affine rings as well as
for local rings of singularities, noting that δ(k[x1, x2, . . . , xn]>/I) = δ(k[[x1, x2, . . . , xn]]/I) if > is a
local ordering.

Lemma 4.7. Let R be a reduced Noetherian ring, I ⊂ R be a radical ideal, and I = P1 ∩ · · · ∩ Pr its prime
decomposition. Write I = I1 ∩ · · · ∩ Is, where Ii =

⋂
j∈Ni
Pj and {N1, . . . ,Ns} is a partition of {1, . . . , r}.

Let Ui, di be the output of the normalization algorithm for Ai = R/Ii. Then

(1) δ(Ai) = dimk(Ui/diUi), 1 ≤ i ≤ s,

(2) δ(R/I) =
s∑
i=1

δ(Ai)+
s−1∑
i=1

dimk(R/(I + I(i))), where I(i) = Ii+1 ∩ · · · ∩ Is.

In particular, δ(R/I) <∞ iff every summand on the right-hand side of (2) is finite.

Proof. This follows by induction on s, and by repeatedly applying the following sequence of inclusions
for s = 2, i.e. I = I1 ∩ I2,

R/I ↪→ R/I1 ⊕ R/I2 ↪→ R/I1 ⊕ R/I2 ∼= R/I,

and the exact sequence

0→ R/I → R/I1 ⊕ R/I2 → R/(I1 + I2)→ 0. �

Note that dimk R/(Ii + I(i)) can be computed from a standard basis of Ii + I(i) and dimk(Ui/diUi)
from a standard basis of a presentation matrix of U/diUi via modulo (see Greuel and Pfister (2008,
Singular Example 2.1.26)). An algorithm to compute δ is also implemented in Singular (Greuel et al.,
2009b).
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Table 1
Timings.

No. Characteristic normal data Seconds
Non-zerodivisor Steps normal normalP normalC

1 0 y 7 0 - 72
1 2 y 7 0 0 0
1 5 y 7 1 73 0
1 11 x− 2y 7 1 12 ∗

1 32003 y 7 0 ∗ 1

2 0 y 7 1 - ∗

2 3 y 8 0 0 3
2 13 y 7 0 ∗ 10
2 32003 y 7 0 ∗ 10

3 0 y 6 2 - ∗

3 2 y 13 1 0 ∗

3 5 y 6 1 7 ∗

3 11 x+ 4y 6 1 ∗ ∗

3 32003 y 6 1 ∗ ∗

4 0 2x2y− y3 + y 1 0 - 0
4 5 x2y+ 2y3 − 2y 1 0 3 0
4 11 x2y+ 5y3 − 5y 1 0 ∗ 0
4 32003 x2y+ 16001y3 − 16001y 1 0 ∗ 0

5 0 y 1 0 - 0
5 5 x3y+ xy 3 1 ∗ ∗

5 11 y 1 0 0 0
5 32003 y 1 1 ∗ 0

6 2 v 2 6 24 172

7 0 y 6 12 - 582
7 2 y 6 11 0 35
7 5 y 6 12 3 358
7 11 y 6 11 43 503
7 32003 y 6 11 ∗ 617

5. Examples and comparisons

In Table 1, we see a comparison of the implementations in Singular of the new algorithm normal
and other existing algorithms. normalC is an implementation based on the algorithm Decker et al.
(1999) (see also Greuel and Pfister (2008, Section 3.6)) and normalP is an implementation of the
algorithm of Leonard and Pellikaan (2003), Singh and Swanson (2008) for positive characteristic. All
these implementations are now available in the Singular library normal.lib (Greuel et al., 2009a).
Computations were performed on a compute server running a 1.60 GHz Dual AMD Opteron 242 with
8 GB ram.
∗ indicates that the algorithm had not finished after 20 min,
- indicates that the algorithm is not applicable (i.e., using normalP in characteristic 0).
We tried several examples over the fields k = Q and k = Zp, p ∈ {2, 3, 5, 11, 13, 32003}, when the

ideal is prime in the corresponding ring. We see that the new algorithm is extremely fast compared to
the other algorithms. Only the algorithm normalP is sometimes faster for very small characteristic.
In columns 3 and 4 we give additional information on how the new algorithm works. The column

‘‘Non-zerodivisor’’ indicates which non-zerodivisor is chosen. The column ‘‘Steps’’ indicates how
many loop steps are needed to compute the normalization. We see that our new algorithm performs
well compared to the classic algorithm especially when the number of steps needed is large.
We use the following examples:

• I1 = 〈(x− y)x(y+ x2)3 − y3(x3 + xy− y2)〉 ⊂ k[x, y],
• I2 = 〈55x8 + 66y2x9 + 837x2y6 − 75y4x2 − 70y6 − 97y7x2〉 ⊂ k[x, y],
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• I3 = 〈y9 + y8x+ y8 + y5 + y4x+ y3x2 + y2x3 + yx8 + x9〉 ⊂ k[x, y],
• I4 = 〈(x2 + y2 − 1)3 + 27x2y2〉 ⊂ k[x, y],
• I5 = 〈−x10 + x8y2 − x6y4 − x2y8 + 2y10 − x8 + 2x6y2 + x4y4 − x2y6 − y8 + 2x6 − x4y2 + x2y4 +
2x4 + 2x2y2 − y4 − x2 + y2 − 1〉 ⊂ k[x, y],
• I6 = 〈z3 + zyx+ y3x2 + y2x3, uyx+ z2, uz + z + y2x+ yx2, u2 + u+ zy+ zx, v3 + vux+ vz2 +
vzyx+ vzx+ uz3 + uz2y+ z3 + z2yx2〉 ⊂ k[x, y, z, u, v].
• I7 = 〈x2 + zw, y3 + xwt, xw3 + z3t + ywt2, y2w4 − xy2z2t − w3t3〉 ⊂ k[x, y, z, w, t].

Remark 5.1. As mentioned before, the main drawback of the algorithm Decker et al. (1999) is the
increasing complexity of the new rings that are constructed. A direct implementation of the algorithm
turns out to be so slow that it does not even finish for most of the examples analyzed in this paper
(after 1 h). For example, in the second example (I2) over Z3, the fifth ring constructed in the chain has
12 variables and 76 generators for the ideal of relations. The sixth ring could not be computed using
this direct approach.
A partial solution to this problem, used in implementations, is to eliminate as far as possible

redundant variables, that is, variables that can be expressed in terms of the others through the
relations in the ring. This is what is done in normalC, and it is sometimes a good improvement.
However, detecting the redundant variables becomes more and more difficult as the relations get
more and more complex, adding a new expensive task to the computation, that does not always
succeed in detecting all the relations.
The algorithm proposed in this paper avoids this problem in a natural way.

We have also compared our implementation with the normalization procedures in Macaulay2
(they use the algorithms Decker et al. (1999) and Singh and Swanson (2008)) and in Magma (they say
that they use Decker et al. (1999) for the general case; however, it seems towork only in characteristic
0 and the code is not accessible). Our new algorithm is always faster and succeeds where the other
implementations do not finish. We do not know implementations in other computer algebra systems.

6. Extension to non-global orderings

In this section, let > be any monomial ordering on the set Mon(x1, . . . , xn) of monomials in
x = (x1, . . . , xn). That is,> is a total ordering which satisfies

∀α, β, γ ∈ Zn
+
xα > xβ ⇒ xα+γ > xβ+γ ,

butwe do not require that> is awell ordering. Themain reference for this section is Greuel and Pfister
(2008), where the theory of standard basis for such monomial orderings was developed.
We consider the multiplicatively closed set

S> := {u ∈ k[x] r {0} | LM(u) = 1},

where LM denotes the leading monomial. The localization of k[x]w.r.t. S> is denoted as

k[x]> := S−1> k[x] =
{
f
u

∣∣∣∣ f , u ∈ k[x], LM(u) = 1} .
It is shown in Greuel and Pfister (2008, Section 1.5) that k[x]> is a regular Noetherian ring satisfying

k[x] ⊂ k[x]> ⊂ k[x]〈x〉,

where k[x]〈x〉 denotes the localization of k[x]w.r.t. the maximal ideal 〈x〉 = 〈x1, . . . , xn〉. Note that

• k[x]> = k[x] ⇔ > is global (i.e. xi > 1, i = 1, . . . , n), and
• k[x]> = k[x]〈x〉 ⇔ > is local (i.e. xi < 1, i = 1, . . . , n).

In applications, in particular in connection with elimination in local rings, we also need mixed
orderings, where some of the variables are greater than and others smaller than 1. An important
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case is the product ordering > = (>1, >2) on Mon(x1, . . . , xn, y1, . . . , ym), where >1 is global on
Mon(x1, x2, . . . , xn) and>2 is arbitrary on Mon(y1, y2, . . . , ym). Then

k[x, y]> = (k[y]>2)[x] = k[y]>2 ⊗k k[x],

(see Greuel and Pfister (2008, Examples 1.5.3)), which will be used in the extension of our algorithm
to non-global orderings.
Wenowshow that, for anymonomial ordering> and any radical ideal I ⊂ k[x]>, the normalization

of the ring k[x]>/I is a finitely generated k[x]>/I-module and we show how to extend Algorithm 3
from Section 4 to this general situation.
For any ideal I ⊂ k[x]>, we have I = I ′k[x]>, with I ′ = I ∩ k[x]. Let (k[x]/I ′)> (resp. (k[x]/I ′)>)

denote the localizationw.r.t. the image of S> in k[x]/I ′ (resp. in k[x]/I ′).We have k[x]>/I ∼= (k[x]/I ′)>.

Lemma 6.1. With the above notations, we have an isomorphism

k[x]>/I ∼= (k[x]/I ′)>

of k[x]>-algebras. In particular, k[x]>/I is a finitely generated k[x]>/I-module.
Moreover, let t = (t1, . . . , ts) be new variables and H be an ideal in k[x, t] such that k[x]/I ′ ∼=

k[x, t]/H as k[x]-algebras. Then

k[x]>/I ∼= (k[x]>)[t] / H(k[x]>)[t].

Proof. The first statement follows immediately from thewell-known fact that localization commutes
with normalization. Since k[x]/I ′ is module-finite over k[x]/I ′, the same holds for the localization
(k[x]/I ′)> over (k[x]/I ′)>. The last statement follows since the image of S> in k[x, t] localizes k[x, t]
only w.r.t. the x variables. �

Remark 6.2. Let f1, f2, . . . , fs ∈ k[x] generate I = 〈 f1, f2, . . . , fs〉k[x]> and let I ′ denote the ideal
generated by f1, f2, . . . , fs in k[x]. We can compute k[x]>/I in two different ways.
The first method is to compute a test ideal J and Homk[x]>/I( J, J) in the same manner as described

in the previous sections, just w.r.t. the ordering >, i.e. in k[x]>. When adding new variables ti
(corresponding to k[x]>-module generators of Homk[x]>/I( J, J)) we define on k[t, x] a block ordering
(>1, >) with >1 a global ordering on the (first) t-block (i.e. ti > 1 for all i and ti > xj for all i, j) and
> the given ordering on the (second) x-block. Then we continue with this new ring and monomial
ordering.
This algorithm is correct (by applying Lemma 2.6 to A = k[x]>/I) and terminates because k[x]>/I

is finitely generated over k[x]>/I by Lemma 6.1.
The second method is to compute the normalization of k[x]/I ′ as in the previous section, with all

variables greater than 1. Then we map the result to k[t, x]>1,> with block ordering (>1, >) as for the
first method. By Lemma 6.1, both methods give the same result; hence the second algorithm is also
correct.
If we start with an equidimensional decomposition I ′ =

⋂r
i=1 Ii, then of course we only need to

compute the normalization for those ideals Ii for which a standard basis of Ii w.r.t. the ordering> does
not contain 1.

Example 6.3. To see the difference between both methods, let

I = 〈y2 − x2(x+ 1)2(x+ 2)〉 ⊂ R := k[x, y]>,

with > a local ordering (i.e. k[x, y]> ∼= k[x, y]〈x,y〉). Let I ′ = I ∩ k[x, y]. In Fig. 1, we can see the real
part of the curve V(I ′). This curve has two singularities, at the points P1 = (0, 0) and P2 = (−1, 0).
We carry out the first method, setting A = R/I . The singular locus of I is J = 〈x, y〉, which is radical.

This is the first test ideal. We take as non-zerodivisor p := y and compute the quotient

U1 := yJ :A J = 〈x, y〉.

Since U1 6= 〈y〉, we go on. The ring structure of 1/y · U1 is A1 = k[t, x, y]>1,>/I1, with block ordering
(>1, >) (>1 any ordering) and I1 = 〈tx4+ 4tx3+ 5tx2+ 2tx− y,−ty+ x, t2(x+ 1)2(x+ 2)− 1, x5+
4x4 + 5x3 + 2x2 − y2〉.
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Fig. 1. y2 − x2(x+ 1)2(x+ 2).

We compute J1 :=
√
ϕ1(〈x, y〉) = 〈x, y, 2t2 − 1〉A1 .

Mapping J1 to Q (A) using d1 = y as denominator, we get J1 ∼= 1/y · H1, with H1 := 〈yx, y2〉. (The
image of 2t2 − 1 in Q (A) is (−10xy− 8x2y− 2x3y)/y, which is already in 1/y · 〈yx, y2〉.) We compute
the quotient

U2 := y2〈yx, y2〉 :A 〈yx, y2〉 = 〈xy, y2〉.

We see that yU1 = U2. This means that A1 was already normal and isomorphic to the normalization
of A, which is therefore 1/y · 〈x, y〉A.
Let us now apply the second method. We set R′ := k[x, y] and A′ = R′/I ′. The singular locus of I ′ is

J = 〈x2 + x, y〉, which is radical. J serves as the first test ideal. As non-zerodivisor we choose p := y
and compute the quotient

U1 := yJ :A′ J = 〈y, x3 + 3x2 + 2x〉.

As U1 6= 〈y〉, we continue. We compute A′1, the ring structure of 1/y · U1, A
′

1 = k[t, x, y]/〈tx
2
+ tx −

y,−ty+x3+3x2+2x, t2−x−2, x5+4x4+5x3+2x2−y2〉, and J1 =
√
ϕ1(〈x2 + x, y〉) = 〈x2+x, y〉.

Mapping J1 to Q (A′) using d1 = y as denominator, we obtain J1 ∼= 1/y · H1, with H1 :=
〈y(x2 + x), y2〉. We compute the quotient

U2 := y2〈y(x2 + x), y2〉 :A′ 〈y(x2 + x), y2〉 = 〈y2, y(x3 + 3x2 + 2x)〉.

Now we have yU1 = U2, and thus A′1 was already normal and isomorphic to the normalization of A
′.

Therefore, the normalization Ā equals 1/y · 〈y, x3 + 3x2 + 2x〉A = 1/y · 〈y, x〉A, as before.

Remark 6.4. In the previous example, using the first method yields simpler test ideals and quotients.
However, our experience is that, in general, computations with non-global orderings are often slower
than computations with global orderings, and therefore the second method should be preferred at
least if the input ideal is prime. On the other hand, the computation should be faster with the first
method if the ideal, or its Jacobian ideal, has complicated componentswhich vanish in the localization.
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