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a b s t r a c t

Weuse tropical geometry to compute themultidegree andNewton
polytope of the hypersurface of a statistical model with two
hidden and four observed binary random variables, solving an
open question stated by Drton, Sturmfels and Sullivant in (Drton
et al., 2009, Ch. VI, Problem 7.7). The model is obtained from the
undirected graphical model of the complete bipartite graph K2,4 by
marginalizing two of the six binary random variables. We present
algorithms for computing the Newton polytope of its defining
equation by parallel walks along the polytope and its normal fan.
In this way we compute vertices of the polytope. Finally, we also
compute and certify its facets by studying tangent cones of the
polytope at the symmetry classes of vertices. The Newton polytope
has 17214912 vertices in 44938 symmetry classes and 70646
facets in 246 symmetry classes.

Published by Elsevier Ltd

1. Introduction

In recent years, a fruitful interaction between (computational) algebraic geometry and statistics
has emerged, under the form of algebraic statistics. The main objects studied by this field are
probability distributions that can be described bymeans of polynomial or even rational maps. Among
them, an important source of examples are the so called graphical models. In this paper, we focus our
attention on a special model: the undirected (4, 2)-binary factor analysis model F4,2.
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Hidden

Observed

Fig. 1. The model F4,2 . Each node represents a binary random variable.

First, let us describe our main player. Consider the complete undirected bipartite graph K2,4 with
four observed nodes X1, X2, X3, X4 and two hidden nodes H1,H2 (cf. Fig. 1). Each node represents a
binary random variable and each edge represents a dependency between two random variables.
In other words, if there is no edge between two random variables, then they are conditionally
independent given the rest of the variables. We obtain a hiddenmodel from this undirected graphical
model by marginalizing over H1 and H2. This model is the discrete undirected version of the
factor analysis model discussed in (Drton et al., 2009, Section 4.2). The model and its immediate
generalization Fm,n are closely related to the statistical model describing the behavior of restricted
Boltzmannmachines (Le Roux and Bengio, 2008), which are widely discussed in themachine learning
literature. Here,Fm,n is the binary undirected graphicalmodelwith n hidden variables andm observed
variables encoded in the complete bipartite graph Km,n. Themain invariant of interest in thesemodels
is the expected dimension, and, furthermore, lower bounds on n such that the probability distributions
are a dense subset of the probability simplex∆2m−1. By direct computation, it is easy to show thatF2,2
and F3,2 are dense subsets of the corresponding probability simplices, so F4,2 is the first interesting
example worth studying. Understanding the model F4,2 can pave the way for the study of restricted
Boltzmann machines in general (Cueto et al., 2010).

The set of all possible joint probability distributions (X1, X2, X3, X4) that arise in this way forms a
semialgebraic set M in the probability simplex ∆15. To simplify our construction, we disregard the
inequalities defining the model and we extend our parameterization to the entire affine space C16. In
other words, we consider the Zariski closure of the joint probability distributions in C16. As a result of
this, we obtain an algebraic subvariety of C16 which carries the core information of ourmodel. In turn,
we projectivize the model by considering its associated projective variety. This variety is expected to
have codimension one and be defined by a homogeneous polynomial in 16 variables.

Problem (An Implicitization Challenge, (Drton et al., 2009, Ch. VI, Problem7.7)). Find the degree and
the defining polynomial of the model M.

Our main results state that the variety M is a hypersurface of degree 110 in P15 (Theorem 15) and
explicitly enumerate all vertices and facets of the polytope (Theorem 14). Our methods are based on
tropical geometry. Since the polynomial is multihomogeneous, we get its multidegree from just one
vertex. Interpolation techniqueswill allowus to compute the corresponding irreducible homogeneous
polynomial in 16 variables, using the lattice points in the Newton polytope. However, this polytope
will turn out to be too big for interpolation to be practically feasible.

The paper is organized as follows. In Section 2 we describe the parametric form of our model
and we express our variety as the Hadamard square of the first secant of the Segre embedding
P1
× P1

× P1
× P1 ↩→ P15. In Section 3 we present the tropical interpretation of our variety. By

means of the nice interplay between the construction described in Section 2 and its tropicalization,
we compute this tropical variety as a collection of cones with multiplicities. We should remark that
we do not obtain a fan structure, but, nonetheless, our characterization is sufficient to fulfill the goal
of the paper. The key ingredient is the computation of multiplicities by the so called push-forward
formula (Sturmfels et al., 2007, Theorem 3.12) which we generalize to match our setting (Theorem 7).
We finish Section 3 by describing the effective computation of the tropical variety and discussing some
of the underlying combinatorics.

In Section 4 we compute the multidegree of our model with respect to a natural 5-dimensional
grading, which comes from the tropical picture in Section 3. Once this question is answered, we shift
gears and move to the study of the Newton polytope of our variety. We present two algorithms that
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compute vertices of this polytope by ‘‘shooting rays’’ (Algorithm 1) and ‘‘walking’’ from vertex to
vertex in the Newton polytope (Algorithm 2). Using these methods, and also taking advantage of
the B4 symmetry of the polynomial and the Newton polytope, we compute all 17 214912 vertices
our polytope (in 44938 orbits under B4), which shows the intrinsic difficulties of this ‘‘challenging’’
problem. Along the way, we also compute the tangent cones at each symmetry class of vertices and
certify the facet normal directions by looking at the local behavior of the tropical variety around these
vectors (after certifying they belong to the tropical variety). In particular, by computing dimensions
of a certain linear space (Algorithm 3) we can check if the vector is a ray of the tropical variety. In this
way, we certify all 246 facets of the polytope modulo symmetry. We believe these methods will pave
the way to attack combinatorial questions about high dimensional polytopes with symmetry as the
one analyzed in this paper.

2. Geometry of the model

We start this section by describing the parametric representation of the model we wish to study.
Recall that all our six random variables are binary, with four observed nodes and two hidden ones.
Since the model comes from an undirected graph (see (Drton et al., 2009; Pachter and Sturmfels,
2005)), we can parameterize it by a map p : R32

→ R16, where

pijkl =
1−

s=0

1−
r=0

asibsjcskdslerifrjgrkhrl for all (i, j, k, l) ∈ {0, 1}4.

Notice that our coordinates are homogeneous of degree 1 in the subset of variables corresponding to
each edge of the graph. Therefore, there is a natural interpretation of this model in projective space.
On the other hand, by the distributive law we can write down each coordinate as a product of two
points in the model corresponding to the 4-claw tree, which is the first secant variety of the Segre
embedding P1

× P1
× P1
× P1 ↩→ P15 (see (Eriksson et al., 2005)). Namely,

p : (P1
× P1)8 → P15 pijkl =


1−

s=0

asibsjcskdsl

 
1−

r=0

erifrjgrkhrl


∀ (i, j, k, l) ∈ {0, 1}4.

From this observation it is natural to consider the Hadamard product of projective varieties:

Definition 1. Let X, Y ⊂ Pn−1 be two projective varieties. The Hadamard product of X and Y is

X � Y = {(x0y0 : . . . : xn−1yn−1) | x ∈ X, y ∈ Y , x � y ≠ 0} ⊂ Pn−1,

where x � y = (x0y0, . . . , xn−1yn−1) ∈ Cn.

Note that this structure is well-defined since each coordinate is bihomogeneous of degree (1, 1). The
next proposition follows from the construction.

Proposition 2. The algebraic variety of the model is M = X � X where X is the first secant variety of the
Segre embedding P1

× P1
× P1
× P1 ↩→ P15.

Notice that the binary nature of our random variables enables us to define a natural S2-action by
permuting the values 0 and 1 on each index in our 4-tuples. Combining this with the S4-action on the
4-tuples of indices, we see that our model comes equipped with a natural S4 n (S2)

4-action. In other
words, the 16 coordinates pijkl of P15, for i, j, k, l ∈ {0, 1}, are in natural bijection with the vertices
of a 4-dimensional cube. Assuming M is a hypersurface (as we will prove in Section 3), its defining
polynomial is invariant under the group B4 of symmetries of the 4-cube, which has order 384. This
group action will be extremely helpful for our computations in the next two sections.

We now describe the ideal associated to the secant variety Sec(P1
× P1

× P1
× P1). The Segre

embedding P1
× P1

× P1
× P1 ↩→ P15 has a monomial parameterization pijkl = ui · vj · wk · xl for
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i, j, k, l ∈ {0, 1}. Its defining prime ideal is generated by the 2×2-minors of all three 4×4-flattenings,
together with some 2× 2-minors of the 2× 8-flattenings (Eriksson et al., 2005, Section 3):

F(12|34) :=

p0000 p0001 p0010 p0011
p0100 p0101 p0110 p0111
p1000 p1001 p1010 p0111
p1100 p1101 p1110 p1111

 , F(13|24) :=

p0000 p0001 p0100 p0101
p0010 p0011 p0110 p0111
p1000 p1001 p1100 p1101
p1010 p1011 p1110 p1111

 ,

F(14|23) :=

p0000 p0010 p0100 p0110
p0001 p0011 p0101 p0111
p1000 p1010 p1100 p1110
p1001 p1011 p1101 p1111

 .

In turn, the defining ideal of the first secant variety of the Segre embedding can be computed from
the previous three 4 × 4-flattening matrices. We state the result for the case of the variety we are
studying, although the set-theoretic result is also true for an arbitrary number of observed nodes.

Theorem 3 (Landsberg and Weyman, 2007; Landsberg and Manivel, 2004). The secant variety X =

Sec(P1
×P1
×P1
×P1) ⊂ P15 is the nine-dimensional irreducible subvariety consisting of all 2×2×2×2-

tensors of tensor rank at most 2. The prime ideal of X is generated by all the 3 × 3-minors of the three
flattenings.

3. Tropicalizing the model

In this section we define tropicalizations of varieties in Cn and compute the tropicalization of M.
See (Bogart et al., 2007; Richter-Gebert et al., 2005) for more details about tropical varieties.

Definition 4. For an algebraic variety X ⊂ Cn not contained in a coordinate hyperplane and with
defining ideal I = I(X) ⊂ K [x1, . . . , xn], the tropicalization of X or I is defined as:

T (X) = T (I) = {w ∈ Rn
| inw(I) contains no monomial},

where inw(I) = ⟨inw(f ) : f ∈ I⟩, and inw(f ) is the sum of all nonzero terms of f =
∑

α cαxα such that
α · w is maximum.

Alternatively, when working with subvarieties of tori V ⊂ (C∗)n we consider the defining ideal I
over the ring of Laurent polynomials and set

T (V ) = T (I) = {w ∈ Rn
| inw(I) ≠ ⟨1⟩}.

Both definitions agree if we consider X to be the Zariski closure of V in Cn. We would go back and
forth between these two definitions.

The tropical varietyT (I) is a polyhedral subfan of theGröbner fan of I . If I is a prime ideal containing
no monomials, then T (I) is pure of the same dimension as X and is connected in codimension one
(Bogart et al., 2007). The set {w ∈ T (I) : inw(I) = I} is a linear space in Rn and is called the lineality
space of the fan T (I) or the homogeneity space of the ideal I . This space can be spanned by integer
vectors, which form a primitive lattice Λ. This lattice encodes the action of a maximal torus on X ,
given by a diagonal action. All cones in T (I) contain this linear space.

In addition to their polyhedral structure, tropical varieties are equipped with integer positive
weights on all of their maximal cones. We now explain how these numbers can be constructed. A
pointw ∈ T (I) is called regular if T (I) is a linear space locally nearw. Themultiplicity mw of a regular
point w is the sum of multiplicities of all minimal associated primes of the initial ideal inw(I). See
(Eisenbud, 1995, Section 3.6) for definitions. The multiplicity of a maximal cone σ ⊂ T (I) is defined
to be equal to mw for any w ∈ σ in its relative interior. It can be showed that this assignment does
not depend on the choice of w. With these multiplicities, the tropical variety satisfies the balancing
condition (Sturmfels and Tevelev, 2008).

As we discussed in the previous section (Proposition 2) our variety is expressed as a Hadamard
power of a well-known variety. This Hadamard square has a dense set which can be parameterized in
terms of amonomialmap (the coordinatewise product of two points). The integermatrix of exponents
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corresponding to this monomial map is (In | In) ⊂ Zn×2n. Although tropicalization is not functorial in
general, it has nice properties if we restrict it to monomial maps between subvarieties of tori.

We now describe the tropicalization of monomial maps. Let A be a d × r integer matrix defining
a monomial map α : (C∗)r → (C∗)d and a linear map A : Rr

→ Rd defined by left multiplication by
this matrix.

Theorem 5 (Sturmfels and Tevelev, 2008; Sturmfels and Yu, 2008). Let V ⊂ (C∗)r be a subvariety. Then

T (α(V )) = A(T (V )).

Moreover, if α induces a generically finite morphism of degree δ on V , then the multiplicity of T (α(V )) at
a regular point w is

mw =
1
δ
·

−
v

mv · index (Lw ∩ Zd
: A(Lv ∩ Zr)),

where the sum is over all points v ∈ T (V ) with Av = w. We also assume that the number of such v is
finite, all of them are regular in T (V ), and Lv, Lw are linear spans of neighborhoods of v ∈ T (V ) and
w ∈ AT (V ) respectively.

At first sight, the hypothesis of this theorem is not satisfied by our variety because themap α|X×X is
not generically finite. However it is very close to having this finiteness behavior. Namely, after taking
the quotient X ′ of X by a maximal torus action, and a choice of a suitable monomial map α, the map
α|X ′×X ′ becomes generically finite andwe can apply Theorem5.Wenowexplain this reduction process.

Let V ⊂ (C∗)r a subvariety, α : (C∗)r → (C∗)d a monomial map, and let W = α(V ). Consider
the lineality space R ⊗Z Λ ⊂ T (V ), and let Λ′ = A(Λ). We identify R ⊗Z Λ with a Z-basis of
Λ = (R ⊗Z Λ) ∩ Zr . Notice that Λ′ need not be a primitive lattice in Zd in general. Call (Λ′)sat its
saturation inZd, that is (Λ′)sat = (R⊗ZΛ′)∩Zd.We knowby construction and Theorem5 thatR⊗ZΛ′

is contained in the lineality space of T (W ). Therefore, we can consider the linear map between these
tropical varieties after moding out by R⊗Z Λ and R⊗Z Λ′ respectively. As we mentioned earlier, the
lineality space of each tropical variety determines the maximal torus action. For example, (C∗)r acts
on V by t · (x1, . . . , xn) := (ta1x1, . . . , tar xr) where a lies in Λ.

The linear map A sendsΛ ontoΛ′, inside the lineality space of T (α(V )). In addition, themonomial
map α is compatible with the torus actions on V and α(V ). In particular, the equality α(Λ⊗Z C∗) =
Λ′⊗Z C∗ induces an action onW by a subtorus (the one corresponding to the primitive lattice (Λ′)sat).
Thus, we can take the quotient of V and W by the corresponding actions of tori H and H ′. We obtain
the commutative diagram:

V

π
����

α // // W

π
����

V ′ = V/H α // // W/H ′ = W ′.

(1)

Here, H = Λ⊗Z C∗ ∼= (C∗)dimΛ and H ′ = Λ′ ⊗Z C∗ ∼= (C∗)dimΛ′ . Since Λ is a primitive sublattice of
Zr , it admits a primitive complement in Zr . Fix one of them and call it Λ⊥. Note that this complement
need not be the usual orthogonal complement.

Assume for simplicity that Λ′ is a primitive sublattice of Zd. Therefore, we can identify α with the
monomial map corresponding to the linear map:

A′ : (R⊗ Zr)/(R⊗Λ)=R⊗Λ⊥=:(R⊗Λ)⊥→ (R⊗ Zd/(R⊗Λ′)=R⊗Λ′⊥=:(R⊗Λ′)⊥.

Since Λ is primitive, (R⊗Λ)⊥ ∩ Zr
= Λ⊥, and likewise for Λ′⊥.

To simplify notation, call L := R ⊗ Λ and L′ := R ⊗ Λ′. From the construction it is easy to see
that T (V ′) = T (V )/L and T (W ′) = T (W )/L′ as sets. But in fact, they agree as weighted balanced
polyhedral fans. More precisely,
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Lemma 6. Let X ⊂ (C∗)r and let L be a subspace of the lineality space of the tropical variety T (X)
generated by integer vectors. Then T (X)/L is a balanced weighted polyhedral fan, where the multiplicities
at regular points w′ are defined as mw′ = mw for any w in the fiber of w′ under the projection map. With
these weights, T (X)/L coincides with the tropical variety T (X ′), where X ′ is the quotient of X by the torus
(L ∩ Zr)⊗Z C∗ ∼= (C∗)dim L, which is a subtorus of the maximal torus acting on X.

Proof. By definition, we know that inw+L(I) = inw(I) for any w ∈ Rr . Let l := dim L. Call Λ := L∩Zr

the underlying lattice of L. SinceΛ is a primitive lattice, we can extend any Z-basis ofΛ to a Z-basis of
Zr . Thus, after a linear change of coordinates (i.e. a monomial change of coordinates given by this new
Z-basis of Zr ) we can assume Λ = Z⟨e1, . . . , el⟩. And in this case, we can pick the direct summand
Λ⊥ of Λ to be Z⟨el+1, . . . , er⟩. In particular, the projection map π : X → X ′ = X/H corresponds to
the monomial map α : (C∗)r → (C∗)r−l determined by the integer matrix A ∈ Z(r−l)×r , whose rows
are a Z-basis of Λ⊥.

By construction, I = I(X) ⊂ C[x±11 , . . . , x±1r ] is homogeneous with respect to the grading
deg(xi) = ei for i ≤ l and deg(xj) = 0 for j > l. Since any homogeneous Laurent
polynomial is of the form f = xαg(xl+1, . . . , xr), we see that I is generated by Laurent
polynomials in the variables {xl+1, . . . xr}. Call g1, . . . , gs these generators. Therefore I ′ = I(X ′) =
⟨g1(xl+1, . . . , xr), . . . gs(xl+1, . . . , xr)⟩ ⊂ C[x±1l+1, . . . , x

±1
r ] and I = I ′C[x±11 , . . . , x±1r ].

From Theorem 5 we know that T (X ′) = AT (X) = T (X)/L as sets. Moreover, since the subspace
L lies in all cones of T (X), then the set T (X ′) has a natural fan structure inherited from the one of
T (X). By definition, if w′ is a regular point in T (X ′) then any lifting point in w+ Lwould be a regular
point in T (X). Moreover, inw(I) = inw′(I ′)C[x±11 , . . . , x±1r ]. In particular, a primary decomposition
inw′(I ′) determines a primary decomposition of inw(I) by extending each ideal to the whole Laurent
polynomial ring in n variables. Therefore, to show mw′ = mw it suffices to show that the multiplicity
of any minimal prime P ⊂ C[x±1l+1, . . . , x

±1
r ] of inw′(I ′) equals the multiplicity of P ⊂ C[x±11 , . . . , x±1r ]

in inw(I). This claim follows from the definition of multiplicity. More precisely:

m(P, inw′(I ′)) = dim SP
PSP

SP
SP inw′(I ′)

= dim
(

SP
PSP

)[x±11 ,...,x±1l ]

SP [x±11, . . . , x
±1
l ]

SP [x±11, . . . , x
±1
l ]inw′(I ′)

= dim S[x±11 ,...,x±1l ]P
PS[x±11 ,...,x±1l ]P

S[x±11, . . . , x
±1
l ]P

S[x±11, . . . , x
±1
l ]P inw(I)

= m(P, inw(I)),

where S = C[x±1l+1, . . . , x
±1
r ]. �

Using the previous construction, we extend Theorem 5 to the case of monomial maps that are
generically finite after taking quotients by appropriate tori. This extension fits perfectly into our
setting.

Theorem 7. Let α : (C∗)r → (C∗)d be a monomial map with associated integer matrix A and let
V ⊂ (C∗)r be a closed subvariety. Then,

T (α(V )) = A(T (V )).

Suppose V has a torus action given by a rank l lattice Λ ⊂ Zr . Let V ′ be the quotient by this torus action.
Let α : V ′ → (C∗)d/α(Λ⊗Z C∗) be the induced monomial map, with associated integer matrix A′.

Suppose Λ′ = A(Λ) is a primitive sublattice of Zd and that α induces a generically finite morphism of
degree δ on V ′. Then the multiplicity of T (α(V )) at a regular point w can be computed as:

mw =
1
δ
·

−
π(v)

A·v=w

mv · index (Lw ∩ Zd
: A(Lv ∩ Zr)), (2)

where the sum is over any set of representatives of points {v′ = π(v) ∈ T (V ′) | A′v′ = w′} given
w′ = π(w) ∈ Rd/(R ⊗Z Λ′) = R ⊗Z Λ′⊥. We also assume that the number of such v′ is finite, all of
them are regular in T (V ′) and Lv, Lw are linear spans of neighborhoods of v ∈ T (V ) and w ∈ A(T (V ))
respectively.
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Remark 8. In caseΛ′ is not a primitive lattice, the formula formw will involve an extra factor, namely,
the index of Λ′ with respect to its saturation Λ′ sat in Zd. In this case, Λ′⊥ will correspond to any
complement of the primitive lattice Λ′ sat inside Zd.

Proof of Theorem 7. The equality as sets follows from Theorem 5. To prove the formula for
multiplicities, we first note that the sum in (2) is finite. This follows because α induces a generically
finite morphism if and only if ker A′ ∩ T (V ′) = {0} if and only if A(Λ⊥) ∩Λ′ = {0}.

From the diagram (1) and the surjectivity of α and α, we know that the multiplicity formula holds
for T (Y ′) and the morphism α. Pick w′ a regular point of T (X ′) and pick any point w in the fiber
π−1(w′) = w + (R ⊗ Λ′). By definition, w is a regular point of T (X) and we have mw = mw′ by
Lemma 6. We assume all v′ in the fiber of A′ at w′ are regular in T (V ′) and Lπ(v), Lπ(w) are linear
spans of neighborhoods of π(v) ∈ T (V ′) and π(w) ∈ A′(T (V ′)) respectively.

By construction, the index set in the formula for mw′ agrees with the index set in formula (2) for
mw . Therefore, our goal would be to show that each summand indexed by π(v) in the formula formw′

equals its corresponding summand in formula (2) for mw . We know that mv = mπ(v) by Lemma 6.
Therefore, we only need to prove that the lattice indices on each summand are the same, i.e.

index (Lw ∩ Zd
: A(Lv ∩ Zr)) = index (Lπ(w) ∩ (Λ′⊥) : A′(Lπ(v) ∩Λ⊥)). (3)

Note that by construction, Λ′ ⊂ Lw ∩ Zd, Λ ⊂ Lv , and likewise A(Λ) = Λ′ ⊂ A(Lv ∩ Zr). Hence,
we can consider the quotient of Lw ∩ Zd and A(Lv ∩ Zr) by Λ′. We obtain

Lw ∩ Zd

A(Lv ∩ Zr)
∼=

(Lw ∩ Zd)/Λ′

A(Lv ∩ Zr)/Λ′
.

The equality in (3) follows by observing that (Lw ∩ Zd)/Λ′ = Lπ(w) ∩ (Λ′⊥) and A(Lv ∩ Zn)/Λ′ =

A′(Lπ(v) ∩Λ⊥) via projecting to Λ′⊥. �

Theorem 9. Given X, Y ⊂ CN two irreducible varieties, consider the associated variety X × Y ⊂ C2N .
Then

T (X × Y ) = T (X)× T (Y )

as weighted polyhedral complexes, with mσ×τ = mσmτ for maximal cones σ ⊂ T (X), τ ⊂ T (Y ), and
σ × τ ⊂ T (X × Y ).

Proof. The equality as polyhedral complexes is a direct consequence of the equality in(u,v)(I + J) =
inu(I) + inv(J), which follows by Buchberger’s criterion and the fact that the generators of I and J
involve disjoint sets of variables. If we pick u ∈ T (X), v ∈ T (Y ) regular points, then (u, v) is a regular
point in T (X × Y ). Our goal is to prove the multiplicity formula.

Given two primary decompositions inu(I) =


i Mi ⊂ C[x], inv(J) =


j Nj ⊂ C[y], we claim that
in(u,v)(I + J) =


i,j(Mi + Nj) ⊂ C[x, y] is also a primary decomposition. The equality as sets follows

immediately, so we only need to show that Mi + Nj ⊂ C[x, y] is a primary ideal. Let Pi ⊂ C[x] and
Qj ⊂ C[y] be associate prime ideals to Mi and Nj respectively. Since C is algebraically closed, and Mi
and Nj involved disjoint sets of variables, it is immediate to check that Pi + Qj ⊂ C[x, y] is a prime
ideal. Namely, the quotient ring C[x, y]/(Pi+Qj) equals (C[x]/Pi)[y]⊗C (C[y]/Qj)[x], a tensor product
of two domains over C, hence also a domain.

Moreover, since bothMi and Nj involve disjoint sets of variables, we have

Ann(Mi + Nj) = AnnMi ⊗C C[y] + C[x] ⊗C AnnNj.

From this and the fact that P si
i ⊂ AnnMi ⊂ Pi and Q

tj
j ⊂ AnnNj ⊂ Qj for suitable si, tj ∈ N, we

conclude (Pi+Qj)
si+tj ⊂ Ann(Mi+Nj) ⊂ Pi+Qj thus proving by definition thatMi+Nj is a (Pi+Qj)-

primary ideal.
With similar arguments we conclude that all minimal primes of in(u,v)(I + J) are sums of minimal

primes of inu(I) and inv(J). This follows because, given P, P ′ ⊂ C[x] and Q ,Q ′ ⊂ C[y] prime ideals, it
is straightforward to check that P + Q ⊂ P ′ + Q ′ if and only if P ⊂ P ′ and Q ⊂ Q ′.
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Let σ , τ bemaximal cones on T (X) and T (Y ), and let u, v be regular points in σ and τ respectively.
By definition of multiplicity of a maximal cone, we have

mσ =

−
P∈Ass(inu(I))
P minimal

m(P, C[x]/inu(I)) =
−

P∈Ass(inu(I))
P minimal

dim(C[x]/P)P (C[x]/inu(I))P ;

mτ =

−
Q∈Ass(inv(J))
Q minimal

dim(C[y]/Q )Q (C[y]/inv(J))Q ; mσ×τ =

−
P∈Ass(inu(I))
Q∈Ass(inv(J))
P,Q minimal

dim
(

C[x,y]
P+Q )P+Q

 C[x, y]

inu(I)+ inv(J)


P+Q

.

The statementmσ×τ = mσmτ follows from the distributive law and Lemma 10. �

Lemma 10. Let I ⊂ C[x], J ⊂ C[y] be ideals and let P ⊂ C[x], Q ⊂ C[y] be minimal primes containing
I and J respectively. Then

dim(C[x,y]/P+Q )P+Q

C[x, y]

I + J


P+Q
= dim(C[x]/P)P (C[x]/I)P · dim(C[y]/Q )Q (C[y]/J)Q .

Proof. Consider the residue fields F = (C[x]/P)P , G = (C[y]/Q )Q , and L = (C[x, y]/(P + Q ))P+Q .
Note that F⊗CG ↩→ L via the natural inclusion given by themultiplicationmap, sinceC is algebraically
closed. Likewise, one can easily show that C[x]/I ⊗C C[y]/J ∼= C[x, y]/(I + J) via the multiplication
map. We wish to find a similar result for the localization of these quotients at the corresponding
minimal primes.

For simplicity, call M = (C[x]/I)P ∼= F s and N = (C[y]/J)Q ∼= Gr the corresponding finite
dimensional vector spaces. Our goal is to prove that M ⊗C N is a free L-vector space of rank sr . From
the canonical isomorphisms C[x]P ⊗C[x] C[x]/I ∼= (C[x]/I)P , C[y]Q ⊗C[y] C[y]/J ∼= (C[x]/J)Q , we see
thatM⊗C N = (C[x]/I)P ⊗C (C[y]/J)Q ∼= C[x, y]/(I+ J)[S−1], where S = (C[x]rP)(C[y]rQ ) is the
multiplicatively closed set consisting of products of polynomials, each of which is pure in each set of
variables, andwhich do not lie inside the prime ideals P orQ . Similarly, F⊗CG ∼= C[x, y]/(P+Q )[S−1].

On the other hand, notice that M ⊗C N comes with a natural F ⊗C G-module structure via
‘‘coordinatewise action.’’ Hence,

(C[x, y]/(I + J))(P+Q )
∼= L⊗(F⊗CG) (M ⊗C N).

From the last isomorphism we see that to prove our lemma it suffices to show that M ⊗C N is a free
F ⊗C G-module of rank sr . The original statement will follow after tensoring with L.

Let {fi}, {gj} be bases of M and N respectively. We claim that {fi ⊗ gj} is a basis of M ⊗C N as an
F ⊗C G-module. It suffices to check the linear independence. We proceed in an elementary way, by
successively using the linear independence of the different bases of the free modules M,N, F and G.
Suppose

∑
i,j aijfi ⊗ gj = 0 ∈ M ⊗C N , with aij ∈ F ⊗C G. Write aij =

∑
k,l aijkluk ⊗ vl where aijkl ∈ C

and uk, vl are basis elements of the field extensions F |C, G|C respectively. Thus,

0 =
−
i,j

aijfi ⊗ gj =
−
j,l

−
i,k

aijklukfi


⊗C (vlgj). (4)

To prove aij = 0 it suffices to show aijkl = 0 for all i, j, k, l. By a well-know result on tensor algebras
(cf. (Eisenbud, 1995, Lemma 6.4)), expression (4) implies the existence of elements ajlt ∈ C, ht ∈ M
such that

∑
t ajltht =

∑
i,k aijklukfi for all j, l and

∑
j,l ajltvlgj = 0 for all t . Hence, rearranging the sum

we conclude that
∑

j(
∑

l ajltvl)gj = 0 in N for all t , which implies
∑

l ajltvl = 0 ∈ G for all j, t . This in
turn implies ajlt = 0 for all j, l, t .

Using the condition
∑

i(
∑

k aijkluk)fi =
∑

t ajltht = 0, we have
∑

k aijkluk = 0 for all i, j, l.
Therefore, aijkl = 0 for all i, j, k, l, as we wanted to show. �

Corollary 11. Given X, Y ⊂ Pn two projective irreducible varieties, none of which are contained in a
proper coordinate hyperplane, we can consider the associated irreducible projective variety X � Y ⊂ Pn.
Then as sets:

T (X � Y ) = T (X)+ T (Y ),

where the sum on the right-hand side denotes the Minkowski sum in Rn+1.
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Fig. 2. A tropical surface in R3 described as a collection of 2-dimensional cones in R3 or as a non-planar graph in S2 .

As one can easily imagine, this set-theoretic result is motivated by (and is a direct consequence
of) Kapranov’s theorem (Einsiedler et al., 2006, Theorem 2.2.5) (i.e., the fundamental theorem of
tropical geometry) and the fact that valuations turn products into sums (see (Sturmfels and Tevelev,
2008, Theorem 2.3) for the precise statement). The novelty of our approach is that under suitable
finiteness conditions of the monomial map defining Hadamard products, we can effectively compute
multiplicities of regular points in T (X � Y ) from multiplicities of T (X) and T (Y ). It is important to
mention that this finiteness condition holds for the example we are studying in this paper. Moreover,
we are not claiming that T (X � Y ) inherits a fan structure from T (X) and T (Y ). In general, it might
happen that maximal cones in the Minkowski sum get subdivided to give maximal cones in T (X � Y )
or, moreover, the union of several cones in the Minkowski sum gives a maximal cone in T (X � Y ).

Example 12. It may seem surprising at first that the combinatorial structure (e.g. f -vector) of the
Newton polytope does not follow easily from the description of the tropical hypersurface as a
Minkowski sum of two fans. Moreover, the number of edges of the polytope (and even the number of
vertices) may exceed the number of maximal cones of the tropical hypersurface given as a set. To see
this in a small example, consider the tropical curve in R3 whose six rays are columns of the following
matrix1 1 1 1 1 −5

0 0 1 1 2 −4
0 1 0 2 1 −4


,

and consider the Minkowski sum of the fan with itself. This tropical hypersurface is described as a
union of 15 cones (or as a non-planar graph in S2 with 6 nodes and 15 edges), but the dual Newton
polytope has 16 vertices, 25 edges, and 11 facets. If we intersect the tropical hypersurface with a
sphere around the origin, we would see the planar graph in Fig. 2.

The planer regions correspond to the 16 vertices. The black dots correspond to the columns in the
above matrix and the arcs between them correspond to cones generated by them. The nodes in the
graph correspond to the facets in the Newton polytope. Six of these facets correspond to the black
dots in Fig. 2 and are the 6 nodes in the non-planar graph description of the tropical hypersurface. The
remaining five facets correspond to the missing intersection points between the edges of the non-
planar graph in the picture. Adding these 5 nodes to the graph will give us a planar graph with 11
nodes and 25 edges that encodes the fan structure of the tropical variety and the combinatorics of the
Newton polytope.

If we had started instead with a tropical curve whose six rays are±ei for i = 1, 2, 3, then the dual
polytope would be a cube with f -vector (8, 12, 6). �

Due to the lack of a fan structure in our description of X � Y , Corollary 11 gives no estimate for the
number of maximal cones in the tropical variety X � Y , where the fan structure is inherited from the
Gröbner fan structure of the defining ideal of X � Y . Moreover, this fan structure is infeasible to obtain
in general. Hence, in the hypersurface case we have no estimate on the number of edges of the dual
polytope to the tropical varietyT (X �Y ) and, as a consequence, no estimate on thenumber of vertices of
the polytope. As the previous example illustrates, the description ofT (X �Y ) as a collection ofweighted
cones of maximal dimension contains less combinatorial information than the fan structure does and
hence, the computation of the dual polytope becomes more challenging, as we show in Section 4.
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Wenowdescribe the computation of the tropical variety T (M) of ourmodelM. By our discussions
in Section 2, we know that the defining ideal of X = Sec(P1

× P1
× P1

× P1) ⊂ P15 is generated by
the 3 × 3 minors of the three flattenings of 2 × 2 × 2 × 2 matrix of variables (pijkl), for a total of
48 generators. Since X is irreducible, we can use Gfan (Jensen, 2009) to compute the tropical variety
T (X).

The ideal I(X) of C[p0000, . . . , p1111] is invariant under the action of B4, and Gfan can exploit the
symmetry of a variety determined by an action of a subgroup of the symmetric group S16. For this,
we need to provide a set of generators as part of the input data. The output groups cones together
according to their orbits.

The tropical variety T (X) ∈ R16 has a lineality space spanned by the rows of the following integer
matrix:

Λ =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 , (5)

where the columns correspond to variables pijkl, for i, j, k, l ∈ {0, 1}, ordered lexicographically. As we
explained already in this section,we can identify this linear spacewith themaximal torus acting on the
variety X and hence on X � X . A set of generators of the corresponding lattice giving this action can be
read-off from the parameterization.More precisely, consider themorphismof toriβ : (C∗)5 → (C∗)16
sending (t0, . . . , t4) → (tm1 , . . . , tm16), where each mi is of the form (1, vi), where vi runs over all
sixteen vertices of the 4-cube. Then, one can check that the closure of the image of β in C16 is the
affine cone over the Segre embedding P1

×P1
×P1
×P1 ↩→ P15. More precisely, given a generic point

in the image of β , we have t0t i1t
j
2t

k
3t

l
4 = λxiyjzkwl, where (x0 : x1) = (1 : t1), (y0 : y1) = (1 : t2), (z0 :

z1) = (1 : t3), (w0 : w1) = (1 : t4) ∈ P1 and λ = t0 ∈ R.
The Gfan computation confirms that the tropical variety T (X) inside R16 is a 10-dimensional

polyhedral fan with a 5-dimensional lineality space. After moding out by the lineality space, the f -
vector is:

(382, 3436, 11236, 15640, 7680).

Regarding the orbit structure, there are 13 rays and 49 maximal cones in T (X) up to symmetry and
all maximal cones have multiplicity 1.

According to Corollary 11, the tropical variety of the model is (as a set)

T (M) = T (X � X) = T (X)+ T (X).

Since we know that this will result in a pure polyhedral fan, we only need to compute all Minkowski
sums between pairs of cones of maximal dimension. For this step we use the B4 group action. There
is a natural (coordinatewise) action of B4 × B4 on T (X) × T (X) that translates to a B4-action
on T (X) + T (X). Therefore, to compute the Minkowski sum of maximal cones, we first consider
49 · 7 680 = 376 320 pairs (σ1, σ2), where σ1 is taken from a set of representatives of the 49 orbits
of maximal cones, and σ2 is taken from the set of all maximal cones. We discard the pairs (σ1, σ2) for
which σ1+σ2 is not ofmaximal dimension 15. After this reduction, the total number ofmaximal cones
computed is 92469. By construction, this list of 92469 cones contains all representatives of the orbits
of maximal cones in T (X �X). But they do not form distinct orbits. Some cones appear twice in the list
as σ + τ and τ +σ , and this the only possibility except for 4 512 cones which arise from two different
pairs, plus their flips. That is, σ1 + τ1 = σ2 + τ2 where both pairs differ only by an interchange of a
single pair of extremal rays (r1, r2) ∈ (σ1, τ1): i.e. σ2 = (σ1 r {r1}) ∪ {r2} and τ2 = (τ1 r {r2}) ∪ {r1}.
Some cones σ have non-trivial stabilizers in B4, so there are cones σ +τ1 and σ +τ2 in the same orbit.
The dimension of the maximal cones in T (M) confirms that M is a hypersurface.

The total number of orbits of maximal cones is 18972, and each orbit has size 96, 192, or 384. We
then let the group B4 act on each orbit and obtain 6865824 cones of dimension 15, the union of which
is the tropical variety T (M), as predicted by Corollary 11. We do not have a fan structure of T (M).
Nonetheless, we can compute the multiplicity of T (M) at any regular point using Theorem 7 because
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our matrix A is of the form (I16 | I16) ∈ Z16×32. After taking quotients by the respective maximal torus
acting on each space, the map X ′ × X ′ → X ′ � X ′, is generically finite of degree two. In practice, the
lattice indices in (2) are computed via greatest common divisors (gcd) of maximal minors of integer
matrices whose rows span the cones in T (X) and T (X × X). More precisely,

Lemma 13. Given a lattice D ⊂ Zr , and an integer matrix A ⊂ Zd×r with rk(A(D)) = rk(D), the value of
index(R⊗Z A(D) ∩Zd

: A(R⊗Z D ∩Zr)) can be computed as follows. Pick {w1, . . . ws} a basis of D, and
let B := (w1 | . . . | ws) ∈ Zr×s. Then, the index equals the quotient of the gcd of the maximal s× s-minors
of the matrix A · B ∈ Zr×s of size by the gcd of the maximal s× s-minors of the matrix B.

Proof. Since R⊗Z A(D) = R⊗Z A(R⊗Z D ∩Zr), the index(R⊗Z A(D) ∩Zd
: A(D)) equals the product

index(R⊗Z A(D) ∩ Zd
: A(R⊗Z D ∩ Zr)) · index(A(R⊗Z D ∩ Zr) : A(D)).

By construction index(R⊗Z A(D) ∩Zd
: A(D)) is the gcd of the maximal minors of the matrix A · B. To

prove the result, it suffices to show that index(A(R⊗Z D ∩ Zr) : A(D)) equals the gcd of the maximal
minors of the matrix B in the statement.

Since rk(A(D)) = rk(D), this implies that ker A ∩ D = ker A ∩ (R ⊗Z D ∩ Zr) = {0}. Then:
A(R⊗Z D∩ Zr)/A(D) ∼= (R⊗Z D∩ Zr)/D, which equals the gcd of the maximal minors of the matrix
B, as we wanted to show. �

In our case, B is spanned by twenty integer vectors (five from each cone σ × 0, 0× τ ∈ T X × T X
plus the latticesΛ×0, 0×Λ coming from the lineality space. Call Cσ and Cτ each list of five vectors of
σ and τ . Then, the matrix B in the previous lemma equals the block diagonal matrix B = diag(Bσ , Bτ ),
where Bσ = (Cσ |Λ), Bτ = (Cτ |Λ) and A · B = (Cσ |Λ|Cτ |Λ). Thus, the index equals the quotient of
gcd


15 × 15-minors of (Cσ |Cτ |Λ)


by the product gcd


10 × 10-minors of (Cσ |Λ)


· gcd


10 × 10-

minors of

Cτ |Λ)


. Each gcd calculation is done via the Hermite (alt. Smith) normal form of these

matrices (Monagan et al., 2005). After computing all multiplicities using Macaulay 2 we obtain only
values one or two.

4. Newton polytope of the defining equation

In this section, we focus our attention on the inverse problem. That is, given the tropical fan of
our irreducible hypersurface, we wish to compute the Newton polytope of the defining equation
f =

∑
a cax

a of the hypersurface, i.e. the convex hull of all vectors a ∈ Z16 such that xa appears
with a nonzero coefficient in f .

4.1. Vertices and facets

We will first present the results of our computation before discussing algorithms and
implementation in the following subsections. Here is the ultimate result:

Theorem 14. The Newton polytope of the defining equation of M has 17 214 912 vertices in 44 938 orbits
and 70 646 facets in 246 orbits under the symmetry group B4.

Among the 44938 orbits of vertices, 215 have size 192 and 44723 has size 384. The maximum
coordinate of a vertex ranges between 14 and 20, and the minimum coordinate is either 0 or 1. All
but 46 orbits have a zero-coordinate. A vertex can have up to seven zero-coordinates. Each vertex
is contained in 11 to 62 facets. There are 11800 symmetry classes of simple vertices, that is, those
contained in exactly 11 facets. The following is the unique symmetry class of vertices contained in 62
facets each:

(0, 0, 1, 17, 13, 6, 17, 1, 17, 1, 6, 13, 1, 17, 0, 0).

This vertex has orbit size 192.
We index the coordinates of P15 by {0, 1}4 and order them lexicographically. Since our polynomial

is (multi)-homogeneous, knowing even a single point in the Newton polytope gives the multidegree.
We now describe the multidegree of the hypersurface M:



M.A. Cueto et al. / Journal of Symbolic Computation 45 (2010) 1296–1315 1307

Theorem 15. The hypersurface M has multidegree (110, 55, 55, 55, 55) with respect to the grading
defined by the matrix in (5).

Now let us look at the 246 orbits of facets. The following table lists the orbit sizes:

Size 2 8 12 16 24 32 48 64 96 192 384
Number of facet orbits 1 2 1 3 1 1 7 3 15 67 145

The coordinates xijkl are naturally indexed by bit strings ijkl ∈ {0, 1}4. The two facet inequalities
in the size-2 orbit say that the sum of xijkl such that i + j + k + l is even (or odd) is at least 32. Each
facet contains between 210 and 3907356 vertices. The unique symmetry class of facets containing
the most vertices consist of coordinate hyperplanes.

Using Algorithm3,we certified that out of the 13 orbits of rays of the 9-dimensional tropical variety
of the Segre embedding P1

× P1
× P1

× P1 ↩→ P15, only the following eight are facet directions of
T (M):

(1, 0, 0, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 0, 1)
(1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3)
(2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0)
(2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2)
(3, 2, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0)
(3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 1, 1, 3)
(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(-1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1).

A complete list of vertices and facets, together with the scripts used for computation, are available
at http://people.math.gatech.edu/∼jyu67/ImpChallenge/.

4.2. Computing vertices

We now discuss how we obtained the Newton polytope. We will first explain the connection
between T (f ) and NP(f ). From the tropicalization T (M) of the hypersurface M = {p : f (p) = 0} ⊂
P15 we want to compute the extreme monomials of f . For a vector w ∈ R16, the initial form inw(f ) is
a monomial if and only if w is in the interior of a maximal cone (chamber) of the normal fan of NP(f ).
The tropical variety of the hypersurface M is the union of codimension one cones of the normal fan of
NP(f ). The multiplicity of a maximal cone in T (M) is the lattice length of the edge of NP(f ) normal to
that cone.

A construction for the vertices of the Newton polytope NP(f ) from its normal fan T (f ) equipped
withmultiplicitieswas developed in (Dickenstein et al., 2007) (see also (Dickenstein, 2008) for several
numerical examples). The following is a special case of (Dickenstein et al., 2007, Theorem 2.2). Since
the operation T (f ) interprets f as a Laurent polynomial, NP(f ) will be determined from T (f ) up to
translation. The algorithm described in Theorem 16 computes a representative of NP(f ) which lies in
the positive orthant and touches all coordinate hyperplanes, i.e. f is a polynomial not divisible by any
non-constant monomial. We describe the pseudocode in Algorithm 1.

Theorem 16. Suppose w ∈ Rn is a generic vector so that the ray (w − R>0 ei) intersects T (f ) only at
regular points of T (f ), for all i. Let P w be the vertex of the polytope P = NP(f ) that attains the maximum
of {w · x : x ∈ P }. Then the ith coordinate of P w equals−

v

mv · |lvi |,

where the sum is taken over all points v ∈ T (f )∩ (w−R>0ei), mv is the multiplicity of v in T (f ), and lvi
is the ith coordinate of the primitive integral normal vector lv to the maximal cone in T (f ) containing v.

Note that we do not need a fan structure on T (f ) to use Theorem 16. A description of T (f ) as a set,
together with a way to compute the multiplicities at regular points, gives us enough information to
compute vertices of NP(f ) in any generic direction.

http://people.math.gatech.edu/~jyu67/ImpChallenge/
http://people.math.gatech.edu/~jyu67/ImpChallenge/
http://people.math.gatech.edu/~jyu67/ImpChallenge/
http://people.math.gatech.edu/~jyu67/ImpChallenge/
http://people.math.gatech.edu/~jyu67/ImpChallenge/
http://people.math.gatech.edu/~jyu67/ImpChallenge/
http://people.math.gatech.edu/~jyu67/ImpChallenge/


1308 M.A. Cueto et al. / Journal of Symbolic Computation 45 (2010) 1296–1315

In Section 3we computedT (f ) as a union of 6 865824 cones. For each of those cones,we calculated
the lattice index in Theorem 7 and the primitive vector which is the direction of the edge of NP(f )
normal to the cone. There are 15788 distinct edge directions in NP(f ). We then pick a random vector
w ∈ R16 and go through the list of 6 865824 cones, recording the cones that meet any of the rays
w − R>0 ei. For each i, we sum the numbers mv · |lvi | over all the intersection points v and obtain the
ith coordinate of the vertex.

Input: The list F of maximal cones, with multiplicities, whose union is the codimension one
cones in the normal fan of a polytope P ⊂ Rn. An objective vector w ∈ Rn.

Assumption: The objective vector w does not lie in any cone in F , i.e. the face Pw is a vertex.
For each i = 1, 2, . . . , n the ray w − R>0ei does not meet the boundary of any cone in F .
Output: The vertex P w that maximizes the scalar product with the objective vector w.
Pw
← 0

for each cone σ in F do
for i = 1, 2, . . . , n do

if σ ∩ (w − R>0ei) ≠ ∅ then
P w

i ← P w
i +mσ · ℓσ ,i, where mσ is the multiplicity of σ and ℓσ is the primitive

integral normal vector to σ such that ℓσ
i > 0.

return Pw .

Algorithm 1: Ray-Shooting: computing a vertex of a polytope from its normal fan.

To obtain themultidegree,we only need one vertex.We computed the first vertex usingMacaulay
2 (Grayson and Stillman, 2009) in a few days. Our ultimate goal was to compute the Newton polytope
NP(f ), a muchmore difficult computational problem that took us manymore months to complete. As
a first attempt, we bound the number of lattice points in the polytope by the number of nonnegative
lattice points of the givenmultidegree. Using the softwareLattE (De Loera et al., 2003), we found that
the number of monomials in 16 variables withmultidegree (110, 55, 55, 55, 55) is 5 529528561944.

By construction, it is clear that the bottleneck of Algorithm 1 is in going through the list F of
6 865824 cones. We canmodify the algorithm to producemore than one vertex for each pass through
the list. We do this in two ways. One is to process multiple objective vectors at once and save time
by reducing the number of file readings and reusing the linear algebra computations for checking
whether a conemeets a ray or not. Another way to producemore vertices is to keep track of the cones
that we meet while ray-shooting, and use them to walk from chamber to chamber in the normal fan
of NP(f ). This is described in Algorithm 2. On the polytope P , this means walking from vertex Pw−tei

to Pw−t ′ei for scalars t ′ > t > 0 corresponding to points between three consecutive intersection
points, along an edgewhose i-th coordinate is negative. If the vectorw is generic, thenwe can assume
that σj and σk are parallel whenever they share an intersection point obtained by shooting from w in
a fixed coordinate direction. So we can use any of the cones in a parallel class to compute the edge
direction of the wall we walk across. By adding up the multiplicities of the cones in each class, we get
the lattice length of the edge ofP . This allows us to compute the coordinates of the vertices dual to the
chambers we walk into. For each of these vertices found by walking from a known vertex, we also get
an objective vector in the process. For example, any vector of the form w− tei, where t ikj < t < t ikj+1,
is an objective vector for the j-th vertex found in the walk in direction −ei. We take t im+1 as∞. For
numerical stability,weuse exact arithmetic over the rational numbers. In particular,we always choose
the new objective vectors to be integral.

Using a new vertex, with its associated objective vector, we can repeat the ray-shooting
(Algorithm 1) and walking (Algorithm 2) again. The picture one should have in mind is that walking
from chamber to chamber in the tropical side corresponds to walks from vertex to vertex in NP(f )
along edges normal to the codimension one cones traversed in the tropical hypersurface.
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Fig. 3.Ray-shooting andwalking algorithms combined. Starting from chamberC0 we shoot andwalk from chamber to chamber.

Fig. 4.Walking from vertex to vertex in NP(f ) ⊂ R3 . In dash lines, we plot the tropical variety. The picture represents the local
structure around v0 .

The combination of Algorithms 1 and 2 is illustrated in Figs. 3 and 4. Starting from chamber C0 and
an objective vector w0, we shoot rays in minus the coordinate axes directions. The intersection points
are indicated by their defining parameters t ij (note that superscripts are omitted in the notation of
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Input: A generic objective vector w ∈ Rn, the vertex P w , and the set
S := {(σ , i, t) ∈ F × {1, 2, . . . , n} × R>0 : σ ∩ (w − R>0ei) = {w − tei}}. (This input
is typically obtained from Algorithm 1.)

Output: The set of all vertices of P with objective vectors of the form w − tei for some t ∈ R>0
and i ∈ {1, 2, . . . , n}.

for i = 1, 2, . . . , n do
Let σ1, . . . , σm be the cones that intersect the ray w − R>0ei transversely.
Let t1, . . . , tm ∈ R>0 be such that (σk, i, tk) ∈ S for k = 1, 2, . . . ,m.
Order σ1, . . . , σm so that

t1 = · · · = tk1 < tk1+1 = · · · = tk2 < · · · < tkl+1 = · · · = tm := tkl+1 .

v← Pw

for j = 1, 2, . . . , l+ 1 do
ℓ

σkj ← primitive integral normal vector to σkj with ℓ
σkj
i > 0;

v← v −

 −
kj−1<k≤kj

mσk

 · ℓσkj , where k0 = 1, kl+1 = m, and mσ denotes the

multiplicity of σ .
Output v, and an objective vector in the line segment between w − tkjei and w − tkj+1ei,
where tkl+2 := ∞.

Algorithm 2: Walking: starting from an objective vector and corresponding vertex, compute the
vertices obtained by changing the objective vector in negative coordinate directions.

Algorithm 2). As we explain below, to speed up the computation of Algorithm 1 we first precompute
the inverses of all suitable matrices of the form Mσ := (−ei|r1| . . . |r15) where {r1, . . . , r10} are
generators of the cone σ and {r11, . . . , r15} span the lineality space in (5). Using this, the condition
(w0 − λei) ∩ σ ≠ ∅ translates to the first eleven coordinates of the solution X of X t

= (Mσ )−1 · w0
being positive. Thus, we can easily use the same systems to test (w0+λei)∩σ ≠ ∅, just changing the
sign condition for the first coordinate of X . This small modification allows us to walk in sixteen new
directions (the positive coordinate axes), and find new adjacent vertices to vertex v0 starting form
objective vector w0. The step updating v in Algorithm 2 should be v ← v +

∑
kj−1<k≤kj

mσk


· ℓ

σkj

instead of v← v − (. . .) .
In Fig. 3, the parameters λ associated to the intersection points in these positive directions are

denoted by t̃ ij . The dashed arrows indicate the shooting directions. The points in the cones correspond
to intersection points, whereas the points inside chambers are the objective vectors obtained for each
vertex as described in Algorithm 2.

The dual walk in the Newton polytope is depicted in Fig. 4. We start walking from vertex v0 and
via shooting we obtain the adjacent vertices v5, v7, v8 and v10. Notice that by this procedure we miss
vertices v4, v6 and v9. However, we do get them if we start shooting from known adjacent chambers
to C0. For example, v6 can be computed if we shoot rays from chamber C8, followed by a shoot from
chamber C6. Observe that this depends heavily on the choice of the objective vector w6.

4.3. Implementation

A few notes about the implementation of our algorithms are in order. Aswe startedworking on the
problem, we used Macaulay 2 (Grayson and Stillman, 2009) to do the ray-shooting (Algorithm 1).
This script was fine for our first experiments, but it took three days to generate a single vertex of
the polytope. It soon became evident that something faster was needed if we wanted to compute the
entire polytope.
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Our first step was to translate the Macaulay 2 script for Algorithm 1 into Python (Lutz et al.,
1999). We chose that language because of its fast speed of development and availability of arbitrary
precision integers, which were needed by our program. We always scale our objects (matrices and
vectors) by positive integers so that our objects have integer coefficients. This step is crucial for
numerical stability.

This new implementation brought the running time to about 10 h. This was a remarkable
improvement, but as the number of vertices of the polytope grew, we realized that something even
faster was required. Therefore, we decided to resort to caching: instead of computing every inverse
for each vector, we precomputed all the inverses and stored them using a binary format suitable for
fast reading in Python (Pickles). This resulted in a file of a few tens of gigabytes, but dropped the time
required for an individual ray-shooting procedure down to under three hours.

Once the Python prototype was working at a reasonable speed, we translated it into
C++ (Stroustrup, 1997), which brought the time required to do ray-shooting for a single vertex to
47 minutes on modest hardware. Moreover, ray-shooting for multiple objective vectors could be
performed at the same time, thus amortizing the disk reads. Since we still needed large integers, we
decided to use GMP (Galassi et al., 2009) and its C++ interface.

The procedure for walking is a more or less straightforward translation of the pseudocode
presented in Algorithm 2. It is still implemented in Python, because it takes a short amount of time
to walk from a few hundred vertices at a time, and the simplicity of the script far outweighs the time
gains a C++ translation would provide.

4.4. Certifying facets

We now discuss how to certify certain inequalities as facets of a polytope P given by the dual
tropical hypersurface T (f ). By the duality between tropical hypersurfaces and Newton polytopes,
each facet direction must be a ray in the tropical variety, equipped with the fan structure dual to P .
Lemma 17 provides a characterization for a vector in Rn to be a ray of T (f ) with the inherited fan
structure.

Lemma 17. Let w ∈ Rn and T (f ) be a tropical hypersurface given by a collection of cones, but with no
prescribed fan structure. Let d be the dimension of its lineality space. Let H = {σ1, . . . , σl} be the list of
cones containing w. Let qi be the normal vector to cone σi for i = 1, . . . , l. Then, w is a ray of T (f ) if and
only if {q1, . . . , ql} generates a (n − d − 1)-dimensional vector space if and only if w is a facet direction
of NP(f ).

Proof. The vectors {q1, . . . , ql} are precisely the directions of edges in the face P w of P := NP(f ).
Since the lineality space of T (f ) has dimension d, the polytope P has dimension n − d. The face P w

is a facet of P if and only if q1, . . . , ql span a (n− d− 1)-dimensional vector space. �

For any objective vectorw ∈ Rn, we can compute a vertex in the faceP w by applying ray-shooting
(Algorithm 1) to a generic objective vector w′ in a chamber of the normal fan of P containing w. If
we know that w is in fact a facet direction of P , then any vertex in P w gives us the constant term
a in the facet inequality w · x ≤ a. This is used in Algorithm 3 for checking if a given inequality is a
facet inequality of P . This step will be essential to certify that our partial list of vertices is indeed the
complete list of vertices of the polytope P . We discuss this approach in Section 4.5.

We now explain how to obtain a vector in the interior of a chamber containing a facet direction
w. We start by applying a modified version of Algorithm 1 with input vector w and when we choose
to shoot rays only in direction −e1. Since w is a ray of the tropical variety given by the collection
F , it belongs to some cones {τ1, . . . , τs} in F . Let σ1, . . . , σm be the cones we intersect along the−e1
direction (we allow intersections at boundary points of each cone). Note that we only pick those cones
σ ∈ F with lσ1 ≠ 0.

Now, we use Algorithm 2with input vectorw and the set S corresponding to the cones σ1, . . . , σm
and coordinate 1. We assume (σk, 1, tk) are ordered in an increasing order, with all tk ≥ 0. We have
two possible scenarios: either S is a subset of {0} (that is, either the empty set or the set {0}) or it
contains a positive real number. In the first case, we pick an objective vector w1 = w − te1 for a
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Input: An inequality w · x ≤ a and a tropical hypersurface (dual to polytope P ) given as a
collection F of maximal cones.

Output: True if the inequality is a valid facet inequality of P ; False otherwise.
N ← {}
for σ ∈ F do

if w ∈ σ then
N ← N ∪ {normal vector to σ };

if dim⟨N ⟩ < n− d− 1 then
Output False

else
w′ ← a vector in the interior of a chamber containing w

Compute the vertex P w′ using ray-shooting (Algorithm 1).
if w · P w′

= a then
Output True

else
Output False

Algorithm 3: Facet certificate: Check if a given inequality defines a facet of a polytope given by
its normal fan.

positive number t (for numerical stability, we choose t to be a big rational number). In the second
case, pick a number t between zero and the first positive number tj from S and let w1 = w − te1.

Third, we check if any cone in F contains w1 or not. If not, then we let w′ = w1. If yes, by the
balancing condition, this means that there exists a maximal cone in the tropical variety containing
both w1 and w. Note that this cone may be obtained by gluing and/or subdividing some cones in F .
In this case, we proceed as above, replacing the original input vector w by w1 and shooting rays using
coordinate 2 instead of coordinate 1. We repeat this process with all coordinates if necessary. Unless
we have wi not contained in any cone of F , at step i we are guaranteed to have a cone containing
w, w1, . . . , wi−1, wi by construction. By the dimensionality argument, at most in sixteen steps, we
obtain a vector wi not contained in any cone of F . This vector will be the objective vector w′ from
Algorithm 3.

4.5. Completing the polytope

Once the ratio of newvertices computedwith ray-shooting andwalking decreases, the next natural
question that arises is how to guarantee that we have found all vertices of our polytope. To answer
this question, we construct the tangent cones at each vertex and try to certify their facets as facets of
P .

Definition 18. Let P be a full-dimensional polytope in RN and v a vertex of P . We define the tangent
cone of P at v to be the set:

T P
v := v + R≥0⟨w − v : w ∈ P ⟩ = v + R≥0⟨e : e edge of P adjacent to v⟩.

By construction, T P
v is a polyhedron with only one vertex and P=


v vertex of P T P

v . In particular, an
inequality defines a facet of P if and only if it defines a facet of one of the tangent cones.

Let Q be the convex hull of the vertices of P obtained via Algorithms 1 and 2. Our goal is to certify
that Q = P . We proceed as follows. For each vertex v of Q we wish to compare the tangent cones
T Q

v and T P
v . Since Q has over seventeen million vertices and T Q

v has no symmetry, straightforward
convex hull computations are infeasible. If T Q

v = T P
v then the extreme rays of T Q

v would be edge
directions of P , which we have already computed as the normal directions to the maximal cones of
the tropical hypersurface, and which are 15788 in total. For a fixed vertex v ∈ Q we compute all
differences w− v for all vertices w of Q and test which of these vectors are parallel to the edges of P .
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The number of such edge directions in T Q
v is expected to be very small (usually under 30 in practice).

Let CQ,P
v be the convex hull of all rays along the edge directions ofP in T Q

v , translated by v. Sowe have
CQ,P

v ⊆ T Q
v and we can test if CQ,P

v ⊇ T Q
v by computing facets of CQ,P

v with Polymake (Gawrilow
and Joswig, 2000). If CQ,P

v ⊇ T Q
v , we use Algorithm 3 to check whether each facet of CQ,P

v is also a
facet of P . In this way, we can certify that T P

v ⊆ CQ,P
v , hence CQ,P

v = T Q
v = T P

v . Certifying this for
a vertex v of Q in each symmetry class will give us Q =


v vertex of Q T Q

v ⊇


v vertex of P T P
v = P ,

hence Q = P . We conclude:
Lemma 19. Let P be a polytope and Q ⊂ P be the convex hull of a subset of the vertices in P . If all facets
of Q are facets of P , then Q ⊃ P , so Q = P .

If we find that a facet w · x ≤ a of CQ,P
v is not a facet of P from Algorithm 3, then we are missing

vertices adjacent to v in P in this ‘‘false facet direction’’ w, so we can perturb w so that it lies in
a chamber of the normal fan of P and use ray-shooting (Algorithm 1) to find a new vertex in that
direction. Using this method, we obtained the entire polytope in a finite number steps. We describe
the process of approximating P by a subpolytope Q in Algorithm 4. A schematic of complete tangent
cones and incomplete tangent cones is depicted in Fig. 5.

In the final stages of the computation, if we find that CQ,P
v is a strict subcone of the tangent cone

T Q
v , we enumerated the rays w− v (with w ∈ V ) that lie in the difference T Q

v \C
Q,P
v . If the number of

such rays is small (no more than a few hundred), we replace CQ,P
v with the convex hull of CQ,P

v and
those rays (computed using Polymake) and proceed as in Algorithm 4. By executing Algorithm 4 in
this way, we were able to compute and certify all vertices and facets of the polytope.

Input: A partial list V of vertices of P , a collection of cones F whose union is the tropical
hypersurface, d = dimension of lineality space of the tropical hypersurface, and the
group of symmetries of the tropical hypersurface.

Output: A complete list of vertices and facets of P .
S← {};
for representatives v of orbits of V do

CQ,P
v ← convex hull of v and all rays in directions w − v where w ∈ V and w − v is normal

to a cone in F .
A← facets of CQ,P

v (using Polymake).
for z ∈ A do

if z is a not facet of P by Algorithm 3 then
w′ ← a vector in the interior of a chamber whose closure contains z.
Compute the vertex P w′ using ray-shooting (Algorithm 1).
V ← V ∪ orbit of P w′

Break and restart the outermost for-loop with the new V .
else

S← S ∪ {z}

Output vertices V and facets S.

Algorithm4: Approximation ofP by a subpolytopeQ: Given a partial list of vertices of a polytope
P with unknown complete list of vertices, we construct the subpolytopeQ generated by this list.
We certify when Q equals P .
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