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a b s t r a c t

We prove that a polynomial f ∈ R[x, y] with t non-zero terms,
restricted to a real line y = ax + b, either has at most 6t − 4
zeros or vanishes over the whole line. As a consequence, we derive
an alternative algorithm for deciding whether a linear polynomial
y − ax − b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y],
where K is a real number field. The number of bit operations
performed by the algorithm is polynomial in the number of non-
zero terms of f , in the logarithm of the degree of f , in the degree of
the extension K/Q and in the logarithmic height of a, b and f .

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The famous Descartes’ rule of signs, 1641, establishes that the number of positive real roots of a
polynomial f ∈ R[x], counted with multiplicities, is bounded by the number of changes of signs in its
ordered vector of coefficients, skipping the zeros. As a direct consequence, the number of real roots
of f is bounded by 2t − 1, where t is its number of non-zero terms (here all roots are counted with
multiplicities, except 0 which is counted at most once).
There are not yet natural generalizations of Descartes’ rule of signs for the multivariate setting,

but a lot of work has been and is being done for estimating the number of real isolated or non-
degenerate roots (that is, where the Jacobian does not vanish, thus implying that the root is isolated)
of multivariate square systems of real polynomials, in terms of the number of variables and non-zero
terms.
The main result in this direction is due to Khovanskii (1991). A simple version of it implies that a

square system of n real polynomial equations in n indeterminates, involving a total t non-zero terms,
has at most (n + 1)t2t(t−1)/2 non-degenerate roots in the positive orthant. Further improvements of
Khovanskii’s result have beenobtainedby F. Bihan and F. Sottile; however the exponential dependence
on the number of non-zero terms t cannot be avoided yet (Bihan, 2007; Bates et al., 2007).
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In Li et al. (2003), Li, Rojas andWang (see also Perruci (2005)) studied particular cases of bivariate
square systems and showed that the number of common isolated or non-degenerate roots of a
trinomial and a polynomial with at most t non-zero terms, t ≥ 3, is bounded above by 2t − 2.
Furthermore, Koushnirenko’s Conjecture, formulated in the mid-1970s (which says that a square

system of n real polynomial equations in n indeterminates such that the k-th polynomial has tk non-
zero terms should have at most (t1 − 1) · · · (tn − 1) non-degenerate roots in the positive orthant),
turned out to be false, by the counter-example provided by B. Haas in 2002 for a system of two
trinomials in two variables (Haas, 2002).
The main result of this article is a refinement of the result of Li et al. (2003) for the particular case

where the trinomial is a linear polynomial. Without loss of generality we can assume that the linear
polynomial is of the form y−ax−b and we thus study the possible number of real roots of a bivariate
polynomial on a line y = ax+ b:

Theorem 1. Let f =
∑t
i=1 aix

αiyβi ∈ R[x, y] be a polynomial with at most t non-zero terms, and let
a, b ∈ R. Set g(x) = f (x, ax + b). Then either g ≡ 0 or g has at most 6t − 4 real roots, counted with
multiplicities except for the possible roots 0 and−b/a that are counted at most once. Moreover, if g 6≡ 0
and b/a > 0 (resp. b/a < 0), then g has at most 2t − 2 real roots counted with multiplicities in each of
the three intervals (−∞,−b/a), (−b/a, 0) and (0,+∞) (resp. (−∞, 0), (0,−b/a) and (−b/a,+∞)).

The assumption that f has integer exponents is strong but necessary in order to obtain the stated
bounds. The following system (which is obtained from Gomez et al. (2007, Thm.1) by the monomial
change of variables x← y2 and y← x6y):{

y+ 44
31x− 1 = 0

x7 + 44
31x

15/4y1/2 − x47/12y1/6 + 1936254x−133/12y133/6 = 0

has exactly 7 roots inR2
+
. This example shows a 4-nomial with rational exponents having 7 > 2 ·4−2

roots on the line y = − 4431x+ 1 with 0 < x <
31
44 .

As a consequence of our result we derive an alternative algorithm for checking whether a given
linear form y− ax− b divides a polynomial f in K [x, y], where K is a real number field. The number of
bit operations performed by the algorithm is polynomial in the degree [K : Q] of the field extension,
in the number t of non-zero terms of f , in the logarithm of the degree of f and in the logarithmic
height of a, b and f . We recall that the (non-logarithmic) absolute height is an extension of the notion
of absolute value of rational integers to the algebraic numbers (Hindry and Silverman, 2000, Part B).
The first algorithm for this purpose can be deduced from a more general result by Kaltofen and

Koiran (2005). They presented a polynomial-time algorithm for computing all linear factors of a
lacunary bivariate polynomial. This result has been further generalized in Kaltofen and Koiran (2006)
and Avendaño et al. (2007) to an algorithm that computes all the small degree factors of bivariate
and multivariate lacunary polynomials. All these algorithms use a version of the ‘‘gap theorem’’
introduced by Cucker et al. (1999). Here, we reduce the problem to the univariate case by considering
specializations f (x, xn) for small values of n.

2. Changes of signs

Definition 2. Let f ∈ R[x] be a non-zero polynomial. We denote by V (f ) the number of changes of
signs in the sequence of coefficients of f skipping the zeros. We also set V (0) = −2.

Remark 3. Let f ∈ R[x]. Then V (kf (rx)) = V (f ) for all k 6= 0 and r > 0.

Theorem 4 (Descartes’ Rule of Signs). Let f ∈ R[x] be a non-zero polynomial. Then f has at most V (f )
positive roots counted with multiplicities.

Let us point out here that this famous theorem is a consequence of the following fact: if f ∈ R[x]
is a non-zero polynomial and r > 0, then V ((x − r)f ) ≥ V (f ) + 1, i.e. if we add a positive root to
a polynomial, then its number of changes of signs increases by at least 1. The next lemma gives an
analogue of this property for negative roots.
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Lemma 5. Let f ∈ R[x] and let r > 0. Then V ((x+ r)f ) ≤ V (f ).

Proof. By Remark 3 we have V ((x+ r)f ) = V ((rx+ r)f (rx)) = V ((x+ 1)f (rx)) and V (f (rx)) = V (f ).
Therefore we only need to consider the case r = 1. We proceed by induction on the number t of non-
zero terms of f . The theorem is trivial for t = 0 and t = 1. Now let us suppose that it holds for all
t ≤ n. Let f ∈ R[x]with n+ 1 non-zero monomials.

f =
n+1∑
i=1

aixαi where ai 6= 0, ∀ i, and 0 ≤ α1 < α2 < · · · < αn+1 = d = deg(f ).

Let g =
∑n
i=1 aix

αi . By the inductive hypothesis we have V ((x + 1)g) ≤ V (g). First, we consider the
case αn < d− 1, i.e. when the terms of (x+ 1)g do not overlap with those of an+1xd(x+ 1). There are
two possibilities: if anan+1 > 0, then V ((x+ 1)f ) = V ((x+ 1)g) ≤ V (g) = V (f ), and if anan+1 < 0,
then V ((x+ 1)f ) = V ((x+ 1)g)+ 1 ≤ V (g)+ 1 = V (f ). In both cases we have V ((x+ 1)f ) ≤ V (f ).
Now the only remaining case is αn = d − 1. Here (x + 1)f and (x + 1)g only differ in their terms of
degree d and d+ 1, as shown in the following table.

xd xd+1

(x+ 1)g an 0
(x+ 1)f an + an+1 an+1

If anan+1 > 0, then V (f ) = V (g), and according to the table, we have V ((x+ 1)f ) = V ((x+ 1)g).
Therefore V ((x+ 1)f ) ≤ V (f ). On the other hand, if anan+1 < 0, then V (f ) = V (g)+ 1, but we have
three different possibilities for the table, depending on whether |an| is greater than, equal to or less
than |an+1|. Set s for the sign of an.

xd xd+1

(x+ 1)g s 0
(x+ 1)f s −s
Case |an| > |an+1|

xd xd+1

(x+ 1)g s 0
(x+ 1)f 0 −s
Case |an| = |an+1|

xd xd+1

(x+ 1)g s 0
(x+ 1)f −s −s
Case |an| < |an+1|

The tables show that V ((x+1)f ) ≤ V ((x+1)g)+1 for each of the three cases. Using the inductive
hypothesis and V (f ) = V (g)+ 1, we conclude that V ((x+ 1)f ) ≤ V (f ). �

Remark 6. Let f , g ∈ R[x] and suppose that g has t terms. Then V (f + g) ≤ V (f )+ 2t .

Note that the value of V (0) is not relevant for Theorem4 and Lemma 5. The only reason for defining
V (0) = −2 is the previous remark (in the case f = 0 and t = 1).

Proposition 7. Let f ∈ R[x, y] with t non-zero terms. Let p = (x+ r1) · · · (x+ rn) ∈ R[x] where ri > 0
for all i = 1, . . . , n. Then

V (f (x, p(x))) ≤ 2t − 2.

Proof. We write f =
∑n
i=1 ai(x)y

αi , where 0 ≤ α1 < · · · < αn and ai(x) ∈ R[x], and we set ti > 0,
the number of non-zero terms of ai. It is clear that t = t1 + · · · + tn.
We define fk =

∑n
i=k ai(x)y

αi−αk for k = 1, . . . , n and fn+1 = 0. Lemma 5 and Remark 6 imply that
the polynomials fk satisfy:

• fn+1 = 0⇒ V (fn+1(x, p(x))) = −2.
• fk = yαk+1−αk fk+1 + ak(x) ⇒ fk(x, p(x)) = p(x)αk+1−αk fk+1(x, p(x)) + ak(x) ⇒ V (fk(x, p(x))) ≤
V (fk+1(x, p(x)))+ 2tk.
• f = yα1 f1 ⇒ f (x, p(x)) = p(x)α1 f1(x, p(x))⇒ V (f (x, p(x))) ≤ V (f1(x, p(x))).

Thus, we conclude that V (f (x, p(x))) ≤ −2+ 2(t1 + · · · + tn) = 2t − 2. �

Now we have all the tools needed to prove Theorem 1:
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Proof. If a = 0 or b = 0, then g ∈ R[x] is a polynomial with at most t non-zero terms. Descartes’ rule
of signs implies that either g ≡ 0 or g has atmost 2t−1 ≤ 6t−4 real roots (countedwithmultiplicities
except for the possible root 0). In the case a 6= 0 and b 6= 0, the real roots of f (x, ax+ b) correspond
one to one to the roots of f (bx/a, b(x + 1)) = f̂ (x, x + 1), where f̂ =

∑t
i=1 aia

−αibαi+βixαiyβi . Since
this bijection preserves the multiplicity of the roots and maps the possible roots 0 and −b/a of g to
the roots 0 and −1 of f̂ (x, x + 1), we only need to consider the case a = b = 1, i.e. g = f (x, x + 1).
Suppose that g 6≡ 0. Descartes’ rule of signs and Proposition 7 imply that the number of positive roots
of g counted with multiplicities is at most 2t − 2. On the other hand, the roots of g in (−∞,−1)
correspond to the positive roots of 0 6≡ g(−1 − x) = f (−1 − x,−x) = f1(x, x + 1), where
f1 =

∑t
i=1 ai(−1)

αi+βixβiyαi . Therefore the number of roots (with multiplicities) of g in (−∞,−1)
is also bounded above by 2t − 2. Finally, the roots of g in (−1, 0) correspond to the positive roots of

0 6≡ (x+ 1)deg(g)g
(
−x
x+ 1

)
= (x+ 1)deg(g)f

(
−x
x+ 1

,
1
x+ 1

)
= f2(x, x+ 1)

where f2 =
∑t
i=1 ai(−1)

αixαiydeg(g)−αi−βi . Therefore there are at most 2t−2 of such roots. Taking into
account the possible roots 0 and−1, each one counted at most once, we conclude that g has at most
6t − 4 real roots. �

3. Checking linear factors of a bivariate polynomial

Proposition 8. Let f =
∑t
i=1 aix

αiyβi ∈ R[x, y]. Let a, b ∈ R be such that b 6= |1 − a|. Then
y− ax− b | f ⇔ xn − ax− b | f (x, xn) for at least 6t − 3 odd integers n ≥ 3.
Proof. (⇐) : Suppose that 3 ≤ n1 < n2 < · · · < n6t−3 are 6t − 3 odd numbers such that
xn − ax − b | f (x, xn). Let wi ∈ R be a root of xni − ax − b for each 1 ≤ i ≤ 6t − 3. Then
f (wi, awi + b) = f (wi, w

ni
i ) = 0 for all 1 ≤ i ≤ 6t − 3. This means that f (x, ax + b) has at least

6t − 3 real roots. Applying Theorem 1 we conclude that f (x, ax + b) ≡ 0, or simply y − ax − b | f .
It only remains to prove that wi 6= wj for all i 6= j. Actually, if xni − ax − b and xnj − ax − b have a
common root w = wi = wj ∈ R, then wni−nj = 1 and therefore w = ±1. This would imply that
0 = wni − aw − b = −b± (1− a), in contradiction with the hypothesis b 6= |1− a|. �

Note that if (a, b) 6= (0, 1), then either b 6= |1− a| or b 6= |1+ a|.

Algorithm TEST

Input: A polynomial f =
∑t
i=1 aix

αiyβi ∈ K [x, y] with t terms, encoded as a list of vectors
(ai, αi, βi) ∈ K × N0 × N0 representing the monomials of f , and two numbers a, b ∈ K .

Output: True or False depending on whether y− ax− b | f (x, y) or not.
Step 1: If (a, b) = (0, 1), compute f (x, 1). If this polynomial is zero, return True. Otherwise return

False.
Step 2: If b = |1− a| then replace f by f (−x, y) and a by−a.
Step 3: For n = 3, 5, 7, . . . , 12t − 5 do
Step 3.1: If f (x, xn) 6= 0 then
Step 3.1.1: Compute all the irreducible factors (with multiplicities) of xn − ax − b in K [x] using a

univariate dense factorization algorithm.
Step 3.1.2: Compute all the irreducible factors (with multiplicities) of f (x, xn) in K [x] with degree

≤ n using a univariate lacunary factorization algorithm.
Step 3.1.3: If there is an irreducible factor in the first list that either does not belong to the second

list or belongs but with less multiplicity, then return False.
Step 4: Return True.

The correctness of the algorithm is a consequence of Proposition 8. In order to estimate its
complexity, we first state the following two famous results on the factorization of polynomials of
univariate polynomials. SeeHindry and Silverman (2000, Part B) for a definition of the absolute height.
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Dense Factorization. Let K be a number field. Given f ∈ K [x] of degree d and absolute height H , it
is possible to compute all its irreducible factors in K [x] with multiplicities in [d [K : Q] logH]O(1)
bit operations (see Lenstra et al. (1982) for the rational case and (Landau, 1985) for the general
case).
Lacunary Factorization. Let K be a number field. Given f ∈ K [x] a polynomial of degree d, with
at most t monomials and absolute height H , it is possible to find all its irreducible factors (with
their correspondingmultiplicities) in K [x] of degree bounded by s in [t s [K : Q] log d logH]O(1) bit
operations (see Lenstra (1999)).

The complexity of the algorithm TEST is clearly dominated by its main loop (step 3), where
it performs 6t − 3 calls to the dense and lacunary factorization algorithms in order to factorize
xn − ax − b completely and find all the factors of degree bounded by n of f (x, xn). We have that
deg(xn − ax − b) = n ≤ 12t − 5 and H(xn − ax − b) ≤ H(a)H(b); therefore the step 3.1.1
requires at most [(6t − 3) (12t − 5) [K : Q] log(H(a)H(b))]O(1) bit operations. On the other hand,
we have that f (x, xn) is a lacunary polynomial with at most t non-zero terms, of degree bounded by
nd ≤ (12t − 5)d and absolute height bounded by (2H(f ))t because the coefficients of f (x, xn) are
sums of at most t coefficients of f . Thus, step 3.1.2 requires no more than [(6t − 3) t (12t − 5)[K :
Q] log(d(12t−5)) log(2H(f ))t ]O(1) bit operations. This proves that the total number of bit operations
performed by the algorithm is polynomial in t , log(d), [K : Q] and log(H(a)H(b)H(f )).
A natural question is whether it is possible not only to check linear factors but also to find them

by means of such a simple algorithm. We are currently working on this and hope that this will be the
subject of a forthcoming paper.
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