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Abstract

In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in
terms of the roots of the input polynomials. Sylvester’s formula was also recently proved by Lascoux and
Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof
that uses only basic properties of matrix multiplication and Vandermonde determinants.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Subresultants play a fundamental role in Computer Algebra and Computational Algebraic
Geometry (for instance, see Collins (1967), Brown and Traub (1971), Collins (1975), Gonzalez-
Vega et al. (1989), Renegar (1992), Apéry and Jouanolou (2005), Gonzalez-Vega (1996),
Lombardi et al. (2000) and Hong (2001)). Sylvester (1853) stated and proved an elegant formula
that expresses the polynomial subresultants of two polynomials in terms of their roots, the so-
called double-sum formula. This identity was proved also by Lascoux and Pragacz (2003), by
using the theory of multi-Schur functions and divided differences.
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In this paper we provide a new and elementary proof that uses only the basic properties
of matrix multiplication and Vandermonde determinants. As apparent in our proof, Sylvester’s
double-sum formula is only one simple step further from a particular case, the so-called single-
sum formula. Such connection between the single and the double-sum formulae was originally
thought to be unlikely, as remarked in page 691 of Lascoux and Pragacz (2003). There have
been various proofs for the single-sum formula (Borchardt, 1860; Chardin, 1990; Apéry and
Jouanolou, 2005; Hong, 1999; Diaz-Toca and Gonzalez-Vega, 2004).

The matrix multiplication technique, presented in this paper, has proven to be quite powerful
in that it is easily generalizable to multivariate polynomials: similar techniques were successfully
applied to obtain expressions for multivariate subresultants in roots in D’Andrea et al. (2006),
and the generalization of Sylvester’s single and double-sum formulae to the multivariate case is
the subject of ongoing research.

2. Review of Sylvester’s double sum for subresultants

Let f = am xm
+ · · · + a0 and g = bn xn

+ · · · + b0, be two polynomials with coefficients
in a commutative ring. The dth subresultant polynomial Sresd( f, g) is defined for 0 ≤ d <

min{m, n}, and if m 6= n holds, also for d = min{m, n}, as the following determinant:

Sresd( f, g) := det

m+n−2d

am · · · · · · ad+1−(n−d−1) xn−d−1 f (x)

. . .
...

... n−d

am · · · ad+1 f (x)

bn · · · · · · bd+1−(m−d−1) xm−d−1g(x)

. . .
...

... m−d

bn · · · bd+1 g(x)

(1)

where a` = b` = 0 for ` < 0.
By developing this determinant by the last column, it is clear that Sresd( f, g) is a polynomial

combination of f and g. It is also a classic fact that Sresd( f, g) is a polynomial of degree bounded
by d , since it coincides with the determinant of the matrix obtained by replacing the last column
Cm+n−2d with

C ′

m+n−2d := Cm+n−2d − xd+1Cm+n−2d−1 − · · · − xm+n−d−1C1.

Now, let A = (. . . , α, . . .) and B = (. . . , β, . . .) be finite lists (ordered sets) of distinct
indeterminates. Sylvester (1853) introduced for 0 ≤ p ≤ |A|, 0 ≤ q ≤ |B| the following
double-sum expression in A and B:

Sylvp,q(A, B; x) :=

∑
A′

⊂A, B′
⊂B

|A′
|=p, |B′

|=q

R(x, A′) R(x, B ′)
R(A′, B ′) R(A\A′, B\B ′)

R(A′, A\A′) R(B ′, B\B ′)
,

where

R(X, Y ) :=

∏
x∈X,y∈Y

(x − y), R(x, Y ) :=

∏
y∈Y

(x − y).
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Sylvester (1853) gave the following elegant formula that expresses the subresultants in terms
of the double sum, that is, in terms of the roots of f and g.

Theorem 1 (Sylvester’s Double-sum Formula). Let f, g be the monic polynomials

f =

∏
α∈A

(x − α), g =

∏
β∈B

(x − β) ∈ Z[α ∈ A, β ∈ B][x],

where |A| = m and |B| = n. Let p, q ≥ 0 be such that d := p + q < min{m, n} or
d ≤ min{m, n} if m 6= n holds. Then

Sresd( f, g) =
(−1)p(m−d)(d

p

) Sylvp,q(A, B; x).

When p = d and q = 0, the above expression immediately simplifies to the single-sum formula:

Sresd( f, g) =

∑
A′

⊂A
|A′

|=d

R(x, A′)
R(A\A′, B)

R(A\A′, A′)
. (2)

Complete proofs of Sylvester’s double sum can be found in Sylvester (1853) and Lascoux
and Pragacz (2003), while the single-sum formula has various proofs (Borchardt, 1860; Chardin,
1990; Apéry and Jouanolou, 2005; Hong, 1999; Diaz-Toca and Gonzalez-Vega, 2004). Here we
present in Section 4 an alternative elementary proof for both results.

3. Notations

We recall that 0 ≤ d < min{m, n} or d ≤ min{m, n} if m 6= n holds. We let M f and Mg
denote the following matrices:

M f :=

m+n−d
a0 . . . am

. . .
. . . n−d

a0 . . . am

, Mg :=

m+n−d

b0 . . . bn
. . .

. . . m−d

b0 . . . bn

.

We now define

Sd :=

m+n−d

Mt−x d

M f n−d

Mg m−d

where Mt−x :=

m+n−d

−x 1 0 . . . . . . 0
. . .

. . .
. . .

... d

−x 1 0 . . . 0

.

Finally, we define for a polynomial p(t) and two lists, Γ := (γ1, . . . , γu) of scalars and
E := (e1, . . . , ev) of non-negative integers, the (not-necessarily square) matrix of size v × u:
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〈p(t),Γ 〉E :=

u

γ
e1
1 p(γ1) . . . γ

e1
u p(γu)

...
... v

γ
ev

1 p(γ1) . . . γ
ev
u p(γu)

.

For instance, under this notation, if we take E := (0, . . . , u − 1), we have the following equality
for the Vandermonde determinant V(Γ ) associated to Γ :

V(Γ ) := |(γ i−1
j )1≤i, j≤u | = |〈1,Γ 〉E |.

When E is of the form E = (0, . . . , v − 1), we directly write 〈p(t),Γ 〉v .
We mention the following useful equalities that hold since m + n − d ≥ max(m, n):

M f · 〈1,Γ 〉m+n−d = 〈 f (t),Γ 〉n−d

Mg · 〈1,Γ 〉m+n−d = 〈g(t),Γ 〉m−d

Mt−x · 〈1,Γ 〉m+n−d = 〈t − x,Γ 〉d .

4. The proof

The proof is divided into a series of lemmas which are interesting on their own. For an easier
understanding, we recommend not to pay attention to signs in a first approach.

Lemma 1. Under the previous assumptions and notations, we have

Sresd( f, g) = (−1)d+(n−d)(m−d)
|Sd |.

Proof. We denote by Ci the i th column of the matrix Sd and we replace its first column C1 by
C ′

1 := C1 + xC2 + · · · + xm+n−d−1Cm+n−d . This operation does not change the determinant of
this matrix, and

C ′

1 =

0
... d

0
f (x)
... n−d

xn−d−1 f (x)

g(x)
... m−d

xm−d−1g(x)

.

We now perform a Laplace expansion of the determinant of the new matrix over the first d rows,
and we observe that only one block survives, which corresponds to columns 2 to d + 1 of Mt−x .
Moreover, this block is lower triangular with diagonal entries 1. Thus
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|Sd | = (−1)d det

m+n−2d

f (x) ad+1 . . . am
...

...
. . . n−d

xn−d−1 f (x) ad+1−(n−d−1) . . . . . . am
g(x) bd+1 . . . bn

...
...

. . . m−d

xm−d−1g(x) bd+1−(m−d−1) . . . . . . bn

= (−1)d+(n−d)(m−d) Sresd ( f, g),

since the matrix in the right-hand side above is the matrix of (1) viewed backward. �

For simplicity, from now on, we assume f and g to be the monic polynomials f =∏
α∈A(x − α), g =

∏
β∈B(x − β) where A and B are lists with |A| = m and |B| = n. (As

pointed out by a referee, under this assumption one has in the language of multi-Schur functions:
|Sd | = S1d ;(m−d)n−d ;0m−d (−x, −A, −B) (see Lascoux and Pragacz (2003)).)

The lemmas below generalize in an obvious manner to non-monic polynomials. The first one
corresponds to Th. 3 in Hong (1999). We prove it here with a different technique that follows
from Lemma 1.

Lemma 2 (Hong’s Subresultant in Roots (Hong, 1999, Th. 3.1)). Under the previous notations,
we have

Sresd( f, g)V (A) = det

m

〈x − t, A〉d d

〈g(t), A〉m−d m−d
.

Proof. We note that |Sd | V(A) is the determinant of the following product of matrices:

m+n−d

d Mt−x

n−d M f

m−d Mg

m n−d

0 m

〈1, A〉m+n−d

In−d n−d

=

m n−d

〈t − x, A〉d ∗ d

0 M ′

f n−d

〈g(t), A〉m−d ∗ m−d

,

since 〈 f (t), A〉n−d =

[
αi−1

j f (α j )
]

= [0].
By permuting the rows of the second block with those of the third, we obtain

Sresd( f, g)V(A) = (−1)d+(m−d)(n−d)
|Sd |V(A)

= (−1)d det
〈t − x, A〉d

〈g(t), A〉m−d
|M ′

f |

= det
〈x − t, A〉d

〈g(t), A〉m−d
,

since M ′

f is a lower triangular matrix with diagonal entries am = 1. �
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Let us remark here that the Poisson product formula Res( f, g) =
∏

α∈A g(α) is a direct
consequence of the previous lemma for the case d = 0.

For S ⊆ T finite lists, let sg (S, T ) := (−1)σ where σ is the number of transpositions needed
to take T to S ∪ (T \S). Here, “∪” stands for list concatenation and “\” means list subtraction.

Lemma 3. Let P and Q be two disjoint sublists of E := (0, . . . , d − 1) that satisfy P ∪ Q = E,
and let p := |P|, q := |Q|. Then

Sresd ( f, g)V(A)V(B) = (−1)q+(m−d)n sg (P, E) det

m n
〈x − t, A〉P 0 p

0 〈x − t, B〉Q q
〈1, A〉m+n−d 〈1, B〉m+n−d m+n−d

.

(3)

Proof. Recalling that V(B) = |〈1, B〉n|, we have by Lemma 2:

Sresd ( f, g)V(A)V(B) = det

m n

〈x − t, A〉d 0 d

〈g(t), A〉m−d 0 m−d

〈1, A〉n 〈1, B〉n n

= (−1)(m−d)n det

m n

〈x − t, A〉d 0 d

〈1, A〉n 〈1, B〉n n

〈g(t), A〉m−d 0 m−d

= (−1)(m−d)n det


d n m−d

d Id 0 0
n 0 In 0

m−d 0 Mg

m n

〈x − t, A〉d 0 d

〈1, A〉m+n−d 〈1, B〉m+n−d m+n−d

 ,

since Mg · 〈1, B〉m+n−d = 〈g(t), B〉m−d = [0]. Now, since the first matrix is lower triangular
with diagonal entries 1, we have

Sresd( f, g)V(A)V(B) = (−1)(m−d)n det

m n

〈x − t, A〉d 0 d

〈1, A〉m+n−d 〈1, B〉m+n−d m+n−d
. (4)

Finally, recalling that 〈x − t, A〉d =

(
αi−1

j x − αi
j

)
1≤i≤d,1≤ j≤m

and 〈1, A〉m+n−d =(
αi−1

j

)
1≤i≤m+n−d,1≤ j≤m

, the obvious subtractions and permutations of rows yield

Sresd ( f, g)V(A)V(B) = (−1)(m−d)n sg (P, E) det

m n

〈x − t, A〉P 0 p

0 −〈x − t, B〉Q q

〈1, A〉m+n−d 〈1, B〉m+n−d m+n−d

.
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The lemma follows by moving (−1)q out of the determinant. �

We will also need the following observation:

Observation 1. Let Γ := (γ1, . . . , γd). Then

|〈x − t,Γ 〉d | = R(x,Γ )|〈1,Γ 〉d |. (5)

Proof. The claim follows from x − γ1 . . . x − γd
...

...

γ d−1
1 x − γ d

1 . . . γ d−1
d x − γ d

d

 =

 1 . . . 1
...

...

γ d−1
1 . . . γ d−1

d


x − γ1

. . .

x − γd

 .

�

4.1. Proof of Theorem 1

For any P and Q disjoint sublists of E := (0, . . . , d − 1) that satisfy P ∪ Q = E , with
|P| = p and |Q| = q , a Laplace expansion over the first d rows in Identity (3) gives that
Sresd( f, g)V (A)V (B) equals

(−1)σ sg(P, E)
∑

A′
⊂A, B′

⊂B
|A′|=p,|B′|=q

sg(A′, A) sg(B ′, B) · |〈x − t, A′
〉P | · |〈x − t, B ′

〉Q |

·V
(

A\A′
∪ B\B ′

)
where σ := q + (m −d)n + (m − p)q ≡ (m −d)(n −q) (mod 2). Adding over all such choices
of P ⊂ E with |P| = p, we deduce that Sresd( f, g)V (A)V (B) equals

1(d
p

) ∑
P

(−1)σ sg (P, E)
∑
A′,B′

sg(A′, A) sg(B ′, B) · |〈x − t, A′
〉P | · |〈x − t, B ′

〉Q |

·V
(

A\A′
∪ B\B ′

)
=

(−1)σ(d
p

) ∑
A′,B′

sg(A′, A)sg(B ′, B)V
(

A\A′
∪ B\B ′

)
·

(∑
P

sg (P, E) |〈x − t, A′
〉P | · |〈x − t, B ′

〉Q |

)
.

We observe now that, by another Laplace expansion and Identity (5),∑
P

sg (P, E) |〈x − t, A′
〉P | · |〈x − t, B ′

〉Q | = |〈x − t, A′
∪ B ′

〉d |

= R(x, A′)R(x, B ′)|〈1, A′
∪ B ′

〉d |.

Recalling that |〈1, A′
∪ B ′

〉d | = V
(

A′
∪ B ′

)
, this gives

Sresd( f, g)

=
(−1)σ(d

p

) ∑
A′,B′

R(x, A′)R(x, B ′)
sg(A′, A) sg(B ′, B)V

(
A\A′

∪ B\B ′
)
V
(

A′
∪ B ′

)
V(A)V(B)

=
(−1)σ (−1)τ(d

p

) ∑
A′,B′

R(x, A′)R(x, B ′)
R(A′, B ′)R(A\A′, B\B ′)

R(A′, A\A′)R(B ′, B \ B ′)
,
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where τ = (m − p)(n − q) + pq − (m − p)p − (n − q)q = (m − d)(n − d) since for any finite
lists X, Y , one has V(X ∪ Y ) = V(X)V(Y )R(Y, X) = (−1)|X |·|Y |V(X)V(Y )R(X, Y ). The claim
follows now from the fact that (m − d)(n − q) + (m − d)(n − d) ≡ (m − d)p (mod 2). �

As a final remark, we mention that if in the previous proof we start with a Laplace expansion
over the first d rows in Identity (4) instead of Identity (3), we obtain in the same manner
Sylvester’s single sum formulation (2).

Acknowledgements

We are grateful to the anonymous referees for their careful reading of our preliminary
manuscript and their very precise indications to improve our presentation.

HH’s research was supported by NSF grant CCR-0097976, TK’s by CONICET PIP 2461/01
and UBACYT X-112 grants and AS’s by NSF grants CCR-0306406 and CCR-0347506.

References
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