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We study systems of three bivariate polynomials whose Newton polygons are scaled

copies of a single polygon. Our main contribution is to construct square resultant matri-
ces, which are submatrices of those introduced by Cattani et al. (1998), and whose

determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is
hybrid in that it contains a submatrix of Sylvester type and an additional row express-
ing the toric Jacobian. If we restrict our attention to matrices of (almost) Sylvester-type

and systems as specified above, then the algorithm yields the smallest possible matrix in
general. This is achieved by strongly exploiting the combinatorics of sparse elimination,
namely by a new piecewise-linear lifting. The major motivation comes from systems

encountered in geometric modeling. Our preliminary Maple implementation, applied to
certain examples, illustrates our construction and compares it with alternative matrices.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Resultants (or eliminants) may be expressed by matrices whose determinants are nontriv-
ial multiples of them. They eliminate several variables simultaneously and reduce system
solving over the complex numbers to univariate polynomial factorization or an eigen-
problem. There are two main classes of matrices, generalizing respectively Sylvester’s
and Bézout’s construction. There are also hybrid matrices, such as Dixon’s, which con-
tain submatrices of each of the above types.

Motivated by problems encountered in geometric modeling and computer-aided design,
we concentrate on systems of three bivariate polynomials whose Newton polygons are
scaled copies of a single polygon; specific examples are worked out in Section 7. We
propose a new piecewise-linear lifting, which yields a mixed subdivision with the desired
properties, thus producing compact matrices of hybrid type.

Resultant matrices represent linear transformations in monomial bases; by convention,
the rows shall correspond to the monomial basis of the domain. Our matrices contain
all but one row of Sylvester-type, with one row containing the system’s toric Jacobian.
Moreover, they are square and their determinant is, generically, a nontrivial multiple of
the sparse resultant. The resultant can then be obtained as the gcd of at most three such
determinants, whereas the matrix from Cattani et al. (1998) was rectangular and all of
its maximal minors had to be considered. The matrix dimension equals the number of
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integer points in the strict interior of the Newton polygons’ Minkowski sum, which is
smaller than the dimension of the matrix from Canny and Emiris (2000). It should be
possible to derive a Macaulay-type formula for the resultant based on D’Andrea (2002).

The next section reviews related work. Section 3 discusses toric Jacobians and gen-
eralizes the corresponding approach of Cattani et al. (1998). Section 4 introduces our
combinatorial geometric tools and relates them to the matrix construction. The lifting
algorithm is stated in Section 5, along with some basic properties, whereas the following
section derives the properties of the induced subdivision. Section 7 refers to experimen-
tal results obtained with our publicly available draft Maple implementation. Further
applications to systems with scaled Newton polygons should emphasize the merits of our
approach.

A preliminary version of this paper has appeared in D’Andrea and Emiris (2001).

2. Related Work

An introductory treatment of resultant theory can be found in Cox et al. (1998).
Let us start with univariate f0 := a0+a1x+· · ·+anxn, and f1 := b0+b1x+· · ·+bmxm.

If an 6= 0 6= bm, their resultant is a polynomial in the ai, bj that vanishes iff there is a
common root of f0 and f1. Sylvester’s matrix is of dimension n + m; one way to get

a more compact formula is to use the affine Jacobian
∣∣∣∣nf0 mf1
∂f0
∂x

∂f1
∂x

∣∣∣∣ = j0 + j1x + · · · +

jm+n−2x
m+n−2. Then cf. Jouanolou (1997) and Gelfand et al. (1994),

mnRes(f0, f1) = det


a0 a1 a2 · · · an 0 · · ·

. . .
b0 b1 b2 · · · · · · bm · · ·

. . .
j0 j1 j2 · · · jm+n−2

 . (1)

The matrix is of dimension m+ n− 1. Its first m− 1 rows contain coefficients of f0 and
the following n− 1 rows those of f1.

Let us now consider three dense polynomials of total degrees d0, d1 and d2, in x1, x2.
The resultant Resd0,d1,d2(f0, f1, f2) is again a polynomial in the coefficients, which van-
ishes whenever the system f0 = f1 = f2 = 0 has a common root. Cayley gave an ingenious
algorithm for computing Resd0,d1,d2(f0, f1, f2) as a quotient of two determinants. This
technique was generalized in Gelfand et al. (1994), using determinants of complexes.
Macaulay presented a different way for computing the resultant as a quotient of two
determinants, generalizing Sylvester’s formula, where the denominator is a minor of the
numerator. It was extended to the sparse case in D’Andrea (2002). In Jouanolou (1997),
Jouanolou shows how to generalize formula (1) and get a Macaulay-style formula where
the numerator is the determinant of a matrix having in one of its rows the coefficients of
the affine Jacobian

det

 d0f0 d1f1 d2f2
∂f0
∂x1

∂f1
∂x1

∂f2
∂x1

∂f0
∂x2

∂f1
∂x2

∂f2
∂x2

 .

In order to generalize the previous situation, let A = (A0,A1,A2), with Ai ⊂ Z2 being
finite sets. Consider three generic Laurent polynomials (i.e. with integer exponents) in
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x = (x1, x2):

fi(x) =
∑
a∈Ai

cia x
a, cia 6= 0, i = 0, 1, 2. (2)

Let Qi be the Newton polygon of fi,, i.e. the convex hull of the exponent vectors in the
support Ai. Bernstein’s (or BKK) theorem (Gelfand et al., 1994; Cox et al., 1998) bounds
the number of isolated roots in (C∗)2 of fi and fj , by the mixed volume of the Newton
polygons MV(Qi, Qj), where C∗ := C \ {0}. Mixed volume generalizes Bézout’s classical
bound. This paper focuses on polynomials with all Qi being scaled copies of one polygon
P , assumed of positive Euclidean area. In addition, suppose the union of the supports
spans the affine lattice Z2; this assumption can be eventually removed as in Sturmfels
(1994) or shall be irrelevant if we apply the algorithm of Canny and Pedersen (1993).

The sparse resultant ResA(f0, f1, f2) is an irreducible element of the factorial ring
Z[c], where c := (cia)i,a, homogeneous in the coefficients of each fi, with total degree
equal to MV(Q0, Q1)+MV(Q0, Q2)+MV(Q1, Q2). It vanishes after a specialization of the
coefficients if and only if the specialized system (2) has a solution in a compactification
of the torus (C∗)2 specified by Qi. This is the associated toric variety (Gelfand et al.,
1994; Cox et al., 1998). Let us consider coefficients in a field whose algebraic closure is
C, though this field could be arbitrary. When the affine lattice generated by the union
of the polygons has dimension ≤ 1, we define the sparse resultant to be identically 1.

Our goal is to present an algorithm for computing a square matrix having its determi-
nant equal to a nonzero multiple of the sparse resultant, thus generalizing Jouanolou’s
method. Our matrix construction is based on the mixed-subdivision algorithm of Canny
and Emiris (2000): they perturb the Minkowski sum Q = Q0 + Q1 + Q2 by a small
generic vector δ and associate to each integer point in E = (Q + δ) ∩ Z2 a monomial
multiple of some fi. Here we use piecewise-linear lifting functions; nonlinear liftings were
first used in Sturmfels (1994). The greedy variant of Canny and Pedersen (1993) leads
usually to smaller matrices, without any a priori knowledge of the dimension, however;
our implementation shall use this technique. Our matrix is indexed by the integer points
in the strict interior of Q, which will be denoted by F . This will typically give a signifi-
cantly smaller matrix than (Canny and Emiris, 2000) (cf. Section 7 for examples) since
the latter avoids only the boundary points outside Q+ δ.

Systems with all Qi equal to scaled copies of a single polygon are considered in
Cattani et al. (1998). The matrices defined are of Sylvester-type, except for one row
which corresponds to a toric Jacobian (or a kind of Bezoutian), which is defined below.
If Q−i :=

∑
j 6=iQj , i = 0, 1, 2 and Fi := int(Q−i)∩Z2, then their matrix has dimensions

|F| and 1+
∑
i |Fi|, where int(·) denotes the interior with respect to the Euclidean topol-

ogy; the large dimension of the matrix can be considerably larger than |F|. The sparse
resultant is the gcd of all maximal minors. We construct square matrices of the same type
to express the sparse resultant; they are maximal submatrices of the matrices of Cattani
et al. (1998), i.e. with dimension equal to |F|. The determinant has the same degree in
the coefficients of f0, as the resultant. Replacing index 0 by any other index i = 1, 2,
gives an immediate way of obtaining ResA as the gcd of at most three determinants.

In fact, the obtained matrix has minimum dimension among those with all, except
one, rows of Sylvester type. The reason is that F is in bijective correspondence with
a graded piece of the homogeneous ring of the associated toric variety (Cattani et al.,
1998, Proposition 1.1). Modulo the ideal generated by f0, f1 and f2, this graded piece has
codimension 1, and the toric Jacobian is generically a nonzero element in this quotient.
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Recall also that, in the dense case, F is in correspondence with the monomials of degree
up to

∑
i deg fi − 3, which are all required in order to define a Sylvester-type matrix.

A larger class of matrices for the homogeneous case were studied in Jouanolou (1997),
where the polynomials filling in the special rows were coefficients of the so-called “Morley
form”. These formulas have been generalized to the bivariate sparse case in Khetan
(2002), where determinantal formulas are presented when all supports are equal.

Special interest has been shown for bivariate systems since they are crucial in applica-
tions such as computer-aided design and geometric modeling (Manocha, 1992; Zhang and
Goldman, 2000). It is known that for bi-homogeneous systems, optimal Sylvester-type
matrices are available. Zhang and Goldman (2000) constructs optimal Sylvester-type
formulae for bihomogeneous systems with identical Newton polygons, equal to a rect-
angle from which smaller rectangles have been removed at the corners. For a class of
bihomogeneous polynomials arising in implicitization, there are optimal hybrid matrices
constructed in Aries and Senoussi (2001). Alternative resultant-based methods that use
Bézout-type matrices are beyond the scope of this paper.

3. Toric Jacobians and Resultants

We review here, for three bivariate polynomials, some results which appeared in Cat-
tani et al. (1998) in a more general setting; we propose more direct constructions. Recall
that F := int(Q) ∩ Z2.

Proposition 3.1. (Cattani et al., 1998, Proposition 1.2) Consider the system f =
(f0, f1, f2) with identical supports A0 = A1 = A2, of cardinality |A0|. Its toric Jacobian
has support in F and equals

J(f) := det

 f0 f1 f2

x1
∂f0
∂x1

x1
∂f1
∂x1

x1
∂f2
∂x1

x2
∂f0
∂x2

x2
∂f1
∂x2

x2
∂f2
∂x2

 .

When Qi = kiP , for ki ∈ Q, the toric Jacobian is constructed in Cattani et al.
(1998) via a P -homogenization. We present instead a direct way which reduces, in the
bivariate case, to the following: Let p be any vertex of P , and e one of its incident edges.
For i = 0, 1, 2, A2

i := {kip}, A1
i := (ki e \ kip) ∩ Z2 and let f ji :=

∑
a∈Aj

i
ciax

a. Let
σ be the dual cone generated by the inward normal vectors of the edges that contain
vertex p. Proceeding as in Cox et al. (1998, chapter 7), the fi may be transformed into
“homogeneous” polynomials Fi, written (not in a unique way) as Fi = A0i

∏
j>2Xj +∑2

j=1AijXj . We suppose that the variables X1 and X2 correspond to the edges whose
intersection is p.

Definition 3.2. (Cattani et al., 1997) ∆σ := det(Aij)0≤i,j≤2.

Proposition 3.3. When each Qi = kiP for polygon P , ki ∈ Q, the polynomial

G(f) := det

 f0 f1 f2

f1
0 f1

1 f1
2

f2
0 f2

1 f2
2


has support in F and corresponds to a restriction in the torus of ∆σ.
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Proof. It is clear that G(f) has its support contained in (Q0 +Q1 +Q2)∩Z2. We have
to prove that the support is disjoint from the border of the Minkowski sum. Now,

f∗i := fi −
2∑
j=1

f ji , i = 0, 1, 2 ⇒ G(f) = det

 f∗0 f∗1 f∗2

f1
0 f1

1 f1
2

f2
0 f2

1 f2
2

 .

For any ν ∈ Rn \ {0}, consider the ν-border of Q. If we reach the ν-border in a sum p0 +
p1 + p2, pi ∈ kiP , then every pi belongs to the ν-border of kiP . But it is straightforward
to check that ∃j ∈ {0, 1, 2}: Aji is disjoint from the ν-border of kiP .

For the second part of the proposition, recall that toric homogenizations are 1–1 cor-
respondences between affine monomials xa1x

b
2 and homogeneous monomials Xα. Recall

that, for j = 1, . . . , s, if Xα appearing in the expansion of Fi is a multiple of Xj , then
the support of xa1x

b
2 is not on the edge ki ej . If e1, e2 are the edges incident to p, then it

is easy to see that fi = f∗i + f1
i + f2

i . Moreover, the support of f∗i is disjoint from kie1
and may be identified with Ai1; the support of f1

i is disjoint from kie2 and may play the
role of Ai2; finally, f2

i = cipx
kip, its support is disjoint from every edge kiej , j > 2, and

shall be Ai3. 2

∆σ is equal to the toric Jacobian, within a constant, modulo the homogeneous ideal of
f by Cattani et al. (1997, 1998). Hence, G(f) can play the role that the toric Jacobian
holds in Cattani et al. (1998).

Example 3.4. Let us consider the following system:

f0 = c00 + c01x1 + c02x2 + c03x1x2

f1 = c10 + c11x1 + c12x2 + c13x1x2

f2 = c20 + c21x1 + c22x2 + c23x1x2.

Here, A0 = A1 = A2 and k0 = k1 = k2 = 1. Let p = (0, 0), e = (p, (1, 0)), then

A1
i = (1, 0)A2

i = (0, 0), i = 0, 1, 2 ⇒ G(f) = det

 f0 f1 f2
c01x1 c11x1 c21x1

c00 c10 c20


which has a smaller support than J(f).

Recall that Fi := int(Q−i) ∩ Z2, let SFi
be the Z[c]—free module generated by the

monomials {xa : a ∈ Fi} and SQi
the free module generated by {xa : a ∈ int(Qi)∩Z2}.

Consider the following (Koszul) complex of modules:

0 → SQ0 ⊕ SQ1 ⊕ SQ2

ψ→ SF0 ⊕ SF1 ⊕ SF2 ⊕ Z[c]
φ→ SF → 0 :

ψ : (p0, p1, p2) → (p1 f2 + p2 f1, p0 f2 − p2 f0,−p0 f1 − p1 f0, 0),
φ : (g0, g1, g2, λ) → (g0 f0 + g1 f1 + g2 f2 + λJ(f)). (3)

Proposition 3.5. (Cattani et al., 1998, Proposition 2.1 & Theorem 2.2)The co-
mplex (3) is generically exact, and after a specialization of the coefficients in C it will
be exact iff ResA(f0, f1, f2) 6= 0. As a consequence, φ is generically surjective and every
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maximal minor of the matrix representing φ in the monomial bases is a multiple of the
sparse resultant. Moreover, ResA(f0, f1, f2) is the gcd of these maximal minors.

Our goal will be to provide a square (maximal) submatrix of the matrix of φ in the
monomial bases with nonzero determinant without computing the whole complex. This
yields a nontrivial multiple of the resultant as well as an expression of the latter as the
gcd of at most three determinants. In the following cases, we have an optimal formula.

Proposition 3.6. (Cattani et al., 1998, Corollary 2.4) Suppose P has no interior
points and one of the following conditions holds: (i) All Qi are identical, or (ii) 2P has
no interior integer points and the sum of the scaling factors equals 4, or (iii) P is a tri-
angle with no interior points, and no scaling factor exceeds 2. Then the computed matrix
is square and its determinant equals ResA.

4. Resultant Matrix Construction

Sparse resultant matrices are computed by combinatorial geometric methods, the cen-
tral construction being a coherent polyhedral subdivision defined by lifted Newton poly-
gons (Sturmfels, 1994; Cox et al., 1998; Canny and Emiris, 2000). The lifting functions
are specified in the next section. Here, we describe the standard matrix construction
assuming the liftings are given and, more precisely, we know the lifting values of the
polygons’ vertices.

Let ω = (ω0, ω1, ω2) be the lifting functions with ωi ∈ Qmi , where mi stands for the
number of vertices Wi defining Qi. Any point a ∈ Wi is lifted to aωi

= (a, ωi(a)) ∈ Q3,
simply denoted by aω. Consider the lifted polygons Qi,ω, the convex hull of aωi , a ∈Wi,
and their Minkowski sum

Qω := Q0,ω +Q1,ω +Q2,ω ⊂ R3.

Taking the lower envelope L(Qω) of Qω, we get a coherent polyhedral (or mixed) subdi-
vision ∆ω of the Minkowski sum Q := Q0 +Q1 +Q2, by means of the natural projection
R3 → R2 ofQω: suppose that ω is sufficiently generic (Sturmfels, 1994; Canny and Emiris,
2000), then we have a tight mixed decomposition, i.e. each facet in the lower envelope is
of the form

Fω = F0,ω + F1,ω + F2,ω : dim(F0,ω) + dim(F1,ω) + dim(F2,ω) = 2, (4)

where Fi,ω is a face of Qi,ω. The projection of Fi,ω to Qi defines a face or subset of a face
in Qi, with vertices in Wi. If we only consider this (sub)face, the lifting to Fi,ω is linear;
cf. the next section.

Dimension considerations and the genericity of our lifting imply that at least one
summand is zero-dimensional. Furthermore, sum (4), specialized at any point in pω ∈ Fω,
minimizes the aggregate lifting of any sum of three points in Qi,ω equal to pω; so it is
sometimes called an optimal sum. The cell F (the projection of Fω) is said to be mixed
of type i or i-mixed if dimFi = 0, dimFj = 1, j 6= i. Let ∆ω be the subdivision of Q
induced by the lower hull of the lifted Minkowski sum.

Proceeding as in Canny and Emiris (2000), we must choose a small vector δ ∈ Q2

and consider Z2 ∩ (δ + Q). We can define the preimage of every point in the latter set
to be the point on the same vertical and the lower hull of the Minkowski sum of the
lifted Newton polygons, after shifting them by δ. Vector δ should be small enough so
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that every perturbed integer point in Q lies in one of the maximal cells cobounding this
point. Assume δ is generic enough not to be parallel to any edge of any lifted Qi,ω; for a
random vector, (Canny and Emiris, 2000) bounds the error probability. Then,

F = Z2 ∩ (δ +Q) ∩ (−δ +Q).

Definition 4.1. The row content RC(F ) for any cell of ∆ω will be a pair (i, a) which
satisfies: if Fω = F0,ω + F1,ω + F2,ω is the unique facet on the lower envelope of Qω
projecting to F expressed by this optimal sum, then i is the largest index s.t. dim(Fi) =
0, Fi = {a}. We also define the row content of all points p ∈ F : p ∈ F + δ to be
RC(p) = RC(F ).

Example 4.2. Consider the family of Example 3.4 and the following lifting, defined over
the ordered sequence of vertices:

ω0 : ((0, 0), (0, 1), (1, 0), (1, 1)) → (−M, 1, 1,M), for M � 1
ω1 : ((0, 0), (0, 1), (1, 0), (1, 1)) → (0, 2, 2, 1),
ω2 : ((0, 0), (0, 1), (1, 0), (1, 1)) → (0, 2, 2, 1).

Let T1 be the triangle which is the convex hull of the points {(0, 0), (1, 0), (1, 1)}. Two
of the cells in the coherent mixed decomposition associated with the lifting are F =
{(0, 0)}+ T1 + {(0, 0)}, with RC(F ) = (2, (0, 0)), and F ′ = T1 + {(1, 1)}+ {(1, 1)}, with
RC(F ′) = (2, (1, 1)).

Matrix M is of size |F| × |F|, with rows and columns indexed by the points p ∈ F as
follows. There will be a distinguished point p, which will be defined below.

• If p ∈ F \ {p} then, for every p′ ∈ F , the entry of M indexed by (p, p′) will be the
coefficient of xp

′
in the expansion of xp−a fi(x). Here, RC(p) = (i, a).

• The entry indexed by (p, p′) will be the coefficient of xp
′
of G(f).

5. Lifting Algorithm

The originality of our approach consists in using piecewise-linear liftings. In other
words, each Newton polygon will be subdivided to one or more cells that are lifted
linearly. In the rest of the paper, we sometimes revert to the case of identical Newton
polygons for simplicity. All arguments readily generalize to scaled copies of P by the fact
that ωi(kip) = kiωi(p) for any point p ∈ Qi = kiP .

Algorithm 5.1. (Step 1)

• Let (ar, ar+1) be any edge of P . Here, ar < ar+1 in the clockwise sense.
• Let δ′ ∈ Q2 be a vector perpendicular to this edge and pointing to the exterior of P .
• If δ′ is not parallel to any edge of the lifted Qi’s, then, vector δ ∈ Q2 has the

same slope as δ′; otherwise, the two slopes differ sufficiently little so that 〈p, δ〉 <
〈p′, δ〉 ⇐ 〈p, δ′〉 < 〈p′, δ′〉, for any vertices p, p′ of P . Finally, δ is scaled so that
it becomes sufficiently small so that every perturbed point in Q lies in one of the
maximal cobounding cells.

• Let b be any vertex of P minimizing the inner product with δ.
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Observe that b + δ does not necessarily lie inside P . Now, let us offer some intuition.
First, we wish that Q0 be raised more steeply than the other polygons in such a way that
it always contributes b to optimal sums; a technique also used in D’Andrea (2002) and
Emiris (1996). Q1, Q2 will be lifted in piecewise-linear fashion, so that they are broken
into linearly lifted cells. The cells’ normals can be linearly ordered when projected onto
Q2.

The edges of P which are extremal in the δ direction will be called δ-boundary edges
and will be labeled clockwise by e1, . . . , eg. We denote by ai the vertices of P which are
extremal in the δ direction, i.e. belong to the δ-boundary, for i = 0, . . . , g. Edge ei has
endpoints ai−1, ai. If P is not a triangle, a typical cell in Q1 or Q2 forms a quadrilateral
with vertices b, ai−1, ai, ai+1. We shall denote the latter by Ci. It is clear that ar, as
defined in Step 1, lies on the δ-boundary of P . We shall be writing sums with their
summands ordered so as to indicate the polygon in which they belong. Let b0 (resp. bg)
denote any vertex of P which may exist on the clockwise (resp. counter-clockwise) chain
between b and a0 (resp. ag).

Lemma 5.2. Vertices on the δ-boundary of Q1 + Q2 (resp. Q) are always of the form
2ai(resp. 3ai), for some vertex ai. Any other point on the δ-boundaries of the form ai+aj
(resp. al + ai + aj) must satisfy {l, i, j} = {ρ, ρ+ 1}, for some ρ ∈ N.

Algorithm 5.1 (Step 2). For all possible values of i ≥ 0, set

ω1(b) := ω2(b) := 0, ω1(a2i+1) := ω2(a2i) := 1, ω1(a0) := ωγ(ag) := 2,

where γ = (g mod 2) + 1. In case b coincides with a0 or ag, then it is lifted as b, and
ω2(a1) := 2 or ωγ′(ag−1) := 2 respectively, where γ′ = (γ mod 2) + 1. The δ-boundary
vertices of Q1, Q2, which are not mentioned above, are lifted in such a way so that the
cells where they belong admit a linear lifting.

Any vertices b0 (resp. bg) in Q2 (resp. Qγ′) form, together with b and a0 (resp. ag)
a linearly lifted cell denoted by C−1 (resp. Cg+1). The liftings are sufficiently high, with
the precise values being determined by the proof of Lemma 6.3, namely inequality (11).

For an illustration of the lifting see Figure 1. If b 6= a0, cell C0 exists in Q1 and
includes only e1 among the δ-boundary edges. If b 6= ag, cell Cg exists and includes
eg−1, eg or just eg depending on whether g is even or odd. The coherent polyhedral
subdivision induced over Q1 (resp. Q2) contains cells C0 (if it exists), C2, . . . (resp.
C1, C3 . . .). These subdivisions also contain C−1 or Cg+1 when they exist. Notice that
any b0 (resp. bg) vertices in Q1 (resp. Qγ) are lifted into C0 (resp. Cg). Let the cell edges
in Q1, Q2 containing vertex b be called b-edges. Some properties of these cells can now
be established, to be used later.

Lemma 5.3. ω1(a2i) > 1 and ω2(a2i+1) > 1 for all possible values i ≥ 0, unless a2i = b
or a2i+1 = b. If b + δ ∈ P , then there exist unique cells Ci, Ci+1 in Q1, Q2 respectively,
s.t. the slope of δ lies between the slopes of b-edges defining each cell and, for every other
cell, the slopes of both of its b-edges shall be either larger or smaller than that of δ.

Proof. The first claim follows from the convexity and Step 2 of Algorithm 5.1: consider
cell C2i of Q1; an analogous argument holds for the cells of Q2. Let h be the point of
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Figure 1. Q1 is a scaled copy of Q2. The vertex indices are shown inside square brackets and the liftings

in parentheses, for i even. Shown are a typical cell of Q1, including δ-boundary edges ei, ei+1 for i ≥ 2

and i even, and a cell of Q2, including edges ei, ei+1 for i odd. The unique point of the δ-boundary of

Q1+Q2 perturbed outside all unmixed cells is circled, where δ lies in the direction of (1, ε), for 1 � ε > 0.

intersection of segments (b, a2i) and (a2i−1, a2i+1). Then ∃V ∈ Q2, c ∈ Q s.t.
a2i−1 1
a2i+1 1
b 0
h ω1(h)
a2i ω1(a2i)


(
V
1

)
=


c
c
c
c
c

 .

We can write h = λa2i−1 + (1 − λ)a2i+1 for 0 < λ < 1. Since (h, ω1(h)) ∈ C2i,ω, we
have ω1(h) = λω1(a2i−1) + (1− λ)ω1(a2i+1) = 1. Now, a2i = µh+ (1− µ)b where µ > 1
hence ω1(a2i) = µω1(h) > 1. The second claim follows by letting Ci, Ci+1 be the cells
containing b+ δ. 2

Recall that the inward normal cone to a polygon vertex a is comprised of all inward
vectors that minimize the inner product over the polygon vertices at a.

Lemma 5.4. There exist vectors V (i) ∈ Q2, i = 0, 1 in the strict interior of the inward
normal cone of ar+i, s.t.

〈V (i), b〉 > 〈V (i), pi〉 > 〈V (i), ar+i〉, (5)

for i = 0 (resp. i = 1) and any pi in the clockwise (resp. counter-clockwise) vertex chain
between b, ar+i. Moreover, we may find these vectors satisfying the following additional
inequalities:

〈V (0), (b− ar+1)〉 > 0, 〈V (1), (p− ar)〉 > 0, p ∈W \ {ar, ar+1}. (6)

Proof. Let us refer to Step 1: −δ′ is on the boundary of the inward cone of ar+i, i =
0, 1. Let V (0) (resp. V (1)) be obtained by increasing (resp. decreasing) the slope of −δ′
sufficiently little. The bounds on these slope perturbations are obtained by considering
each inequality of (5) in turn: on the one hand, V (i) must lie inside the normal cone
of ar+i. For this, consider vertices ar−1 (resp. ar+2) for V (0) (resp. V (1)); these are the
first vertices where the second inequality might be violated if the slope of V (i) were
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not bounded. Note these vertices are adjacent to ar (resp. ar+1) but, despite notation,
they are not necessarily on the δ-boundary. Once the V (i) lie in the interior of the normal
cone, the second inequality of (5) follows.

Let us show that no new constraints are imposed by the first inequality of (5). It
holds for −δ′ in the place of V (i) and all pi, except possibly one such vertex (a neighbor
of b), where the inequality becomes an equality. If this pi lies on the clockwise (resp.
counter-clockwise) vertex chain, then inner product with V (0) (resp. V (1)) satisfies the
claim because the slope has increased (resp. decreased). This is true for any V (i) in the
respective cone, so there are no extra constraints on the slope. For all pi, with the possible
exception of the neighbor of b discussed above, we have 〈δ′, b〉 > 〈δ′, pi〉 > 0. To guarantee
the claim, it suffices to require that the inner products be positive with V (i) instead of
δ′. This is always true inside the normal cone.

Inequalities (6) yield additional constraints on V (i). The first inequality is satisfied for
−δ′, so it is possible to satisfy it with V (0). For the second, observe that 〈δ′, ar+1−ar〉 = 0
so, by convexity, 〈−δ′, p−ar〉 > 0 for all vertices p 6∈ {ar, ar+1}. Therefore we can choose
V (1) to satisfy (6). 2

In short, the determining conditions for V (i) are that each belongs to the respective
normal cone and that they satisfy inequalities (6).

Algorithm 5.1 (Step 3: Lifting Q0). For Q0, define lifting ω0 s.t.

ω0(b) = −M, ω0(ar) = M, M � 1,

where M is a sufficiently large positive rational. In addition, ω0 defines one or two linearly
lifted cells. The cell including any vertices between b and ar in the clockwise direction
(resp. counter-clockwise) is specified by ω0(b), ω0(ar) and the condition that its inward
normal is of the form (V (i), v

(i)
3 ) for i = 0, 1 respectively, where vector V (i) ∈ Q2 is as in

Lemma 5.4 and

v
(i)
3 := 〈V (i), (b− ar)〉/2M ∈ Q, i = 0, 1.

Deterministic lower bounds on M are obtained by the proofs of certain lemmas below.
It is possible to bound the bit asymptotic complexity of the algorithm by a quasi-linear
function in the largest support cardinality.

Proposition 5.5. Step 3 of Algorithm 5.1 is self-coherent and defines at most two lin-
early lifted cells.

Proof. When there are sufficiently few vertices to define exactly one cell in Q0, the
construction is trivially valid. Otherwise, there are cells C ′

0, C
′
1 and we wish to show that

(V, v3)i = (V (i), v
(i)
3 ) minimizes inner product over Q0,ω0 at C ′

i for i = 0, 1. By Step 3 and
Lemma 5.4, v(i)

3 > 0, bω0 , ar,ω0 lie on both lifted cells and for any vertex pi ∈ C ′
i \{b, ar},

ω0(pi) = M + 2M 〈ar−pi,V
(i)〉

〈b−ar,V (i)〉 , i = 0, 1.
It suffices now to show that 〈(V, v3)i, pj,ω0〉 > 〈(V, v3)i, ar,ω0〉, (i, j) ∈ {(0, 1), (1, 0)},

which is equivalent to

〈ar − pj , V
(j)〉

〈b− ar, V (j)〉
〈b− ar, V

(i)〉 > 〈ar − pj , V
(i)〉, (i, j) ∈ {(0, 1), (1, 0)}.
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Let us identify the origin with ar w.l.o.g., then the above inequality becomes

〈b, V (i)〉
〈b, V (j)〉

<
〈pj , V (i)〉
〈pj , V (j)〉

, (i, j) ∈ {(0, 1), (1, 0)}, (7)

because 〈b, V (i)〉, 〈pj , V (i)〉 > 0, 〈pi, V (i)〉 > 0 by Step 1 of the algorithm and Lemma 5.4,
except that 〈ar+1, V

(1)〉 < 0. In the latter case, the inequality before (7) is clear because
the left-hand side is negative and the right-hand side positive.

To prove (7), observe that all vectors lengths cancel out, so it is possible to write the
right-hand side as follows, using ∠(·, ·) to represent the angle, in the counter-clockwise
direction, between two vectors:

cos(∠(pj , V (j)) +∠(V (j), V (i)))
cos(∠(pj , V (j)))

= cos(∠(V (j), V (i)))−sin(∠(V (j), V (i))) tan(∠(pj , V (j))).

In the same way we may write the left-hand side of the inequality as

cos(∠(b, V (j)) + ∠(V (j), V (i)))
cos(∠(b, V (j)))

= cos(∠(V (j), V (i)))− sin(∠(V (j), V (i))) tan(∠(b, V (j))).

So, inequality (7) is equivalent to tan(∠(pj , V (j))) < tan(∠(b, V (j))), which follows
straightforwardly just noting that tan x is strictly increasing in the interval (−π/2, π/2)
and the properties of V (j). 2

Lemma 5.6. Lifting function ω0 guarantees that RC(p) = (0, p0) ⇒ p0 = b for suffi-
ciently large M .

Proof. The existence of M is proven in Emiris (1996) provided ω0(b) < ω0(p), ∀p ∈
W \ {b}. This is equivalent to 〈b, V (i)〉 > 〈pi, V (i)〉 for pi ∈ W \ {b} on the clockwise
(resp. counter-clockwise) vertex chain from b to ar for i = 0 (resp. i = 1). These hold by
Lemma 5.4. 2

6. Mixed Subdivision

This section establishes the properties of the combinatorial lifting, thus yielding the
subdivision suitable to our ends. Intuitively, we prove that the subdivision of Q1, Q2 into
cells allows us to avoid using any boundary point and, moreover, lets us assign the toric
Jacobian to some special point p. It is a novelty, and part of the paper’s intricacy, that
we classify all cells and determine their placement in the subdivision; a similar task was
undertaken in D’Andrea (2002). This leads to our main result, namely a nontrivial sparse
resultant matrix with the desired features.

Definition 6.1. Let Vi,ω ∈ R3 be the normalized inward normal vector corresponding
to the lifted facet Ci,ω in Q1,ω (resp. Q2,ω) if i is even (resp. odd). It is the unique inward
normal vector with the third coordinate equal to 1.

Referring to Figure 1, let Vi,ω = (v1, v2, 1), then, for Q1 and λ := ω1(ai) > 1, ai−1 − b 1
ai − b λ
ai+1 − b 1

  v1
v2
1

 =

 0
0
0

 , (8)
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by translation of the reference frame, where the left-most entries in the matrix represent
1× 2 vectors.

Lemma 6.2. ∆ω contains unmixed cells, which are copies of each Ci for i = 1, . . . , g−1,
against the δ-boundary of b+Q1 +Q2.

Proof. Suppose w.l.o.g. that i is an even integer between 1, . . . , g− 1 (the case for odd
integer in this interval is similar). At the δ-boundary of Qj , ωj(ai+p) ≥ 1 with equality
iff p is odd (resp. even) and j = 1 (resp. j = 2) and ω1(ai+1) = ω2(ai) = ω1(ai−1) = 1,
ω1(ai) := λ, ω2(ai+1), ω2(ai−1) > 1, by Lemma 5.3. As the points ai−1 + ai, ai + ai and
ai+1 + ai belong to the δ-boundary of Q1 + Q2, they must be sum of two points of the
δ-boundary of Qj , j = 1, 2. On the lower hull L(Q1,ω + Q2,ω) the minimum height of
each of the respective points is

ω1(ai−1) + ω2(ai) = 1 + 1,
ω1(ai) + ω2(ai) = λ+ 1,

ω1(ai+1) + ω2(ai) = 1 + 1.

This implies that the points (b + ai−1 + ai,−M + 2), (b + ai + ai,−M + 1 + λ) and
(b+ ai+1 + ai,−M + 2) belong to L(Qω), where the notation (·, ·) indicates a vector in
Q3, with first component a vector in Q2. When multiplied by the vector Vi,ω of (8), the
three points give the same value, namely the inner product 〈(2b+ai,−M+1), Vi,ω〉. Hence
these points lie on a flat with normal Vi,ω and their convex hull projects to b+ Ci + ai.

It must still be shown that this polygon is a facet on L(Qω), i.e. it minimizes inner
product with Vi,ω over all vertices of bω0 +Q1,ω+Q2,ω. Among the Q1 vertices, this inner
product is minimized at the vertices of Ci by definition, so it suffices to prove the claim
〈(ai, 1), Vi,ω〉 < 〈(a′, ω2(a′)), Vi,ω〉 ∀a′ ∈ W \ {ai}, where we have set (b, 0) = (0, 0, 0),
w.l.o.g., and W is the vertex set of P . Then (8) becomes

〈ai−1, v〉+ 1 = 〈ai+1, v〉+ 1 = 〈ai, v〉+ λ = 0.

Therefore,

〈ai−1, v〉+ ω2(ai−1) > 0,
〈ai+1, v〉+ ω2(ai+1) > 0,

〈(ai, 1), Vi,ω〉 = 〈ai, v〉+ 1 < 0. (9)

With a′ = b = (0, 0) or a′ ∈ {ai−1, ai+1} the claim is trivial by (9). Let us define open
half-spaces H+ := {x ∈ Q3 : 〈x, Vi,ω〉 > 0} and H− := {x ∈ Q3 : 〈x, Vi,ω〉 ≤ 0}, which are
disjoint and convex, and the fan F := {r(ai−1, ω2(ai−1)) + s(ai+1, ω2(ai+1)), r, s > 0},
which is completely contained in H+ by (9). Suppose (a′, ω(a′)) belongs to H− for a′ ∈
W2\{b, ai, ai−1, ai+1}. Since (ai, 1) ∈ H− by (9), then the segment S of (a′, ω2(a′)), (ai, 1)
must be contained in H−. To get a contradiction one must check that S ∩ F 6= ∅. To
see this, consider that F divides Q2,ω into two convex polytopes. The “lower” polytope
contains ai,ω, whereas the “upper” one contains a′ by the convexity of Q2,ω (Figure 2).
In fact, convexity implies a′ lies between the hyper planes of bω, ai,ω, ai−1,ω (lifted cell
Ci−1) and bω, ai,ω, ai+1,ω (lifted cell Ci+1), thus S intersects the triangle defined by
bω, ai−1,ω, ai+1,ω. 2

Lemma 6.3. If cells Ci, for i = 0, g exist, then ∆ω contains unmixed cells, which are
copies of them, against the δ-boundary of b+Q1 +Q2.



Hybrid sparse resultant matrices 599

b
a[i]

a[i+1]

F

a[i1]

a’

Figure 2. Last step in the proof of Lemma 6.2: bold (resp. dashed bold) are the lifted edges bounding

Ci (resp. and the other edges) of Q2, whereas the thin lines define fan F .

Proof. We shall analyze i = 0 because i = g can be treated similarly. Recall that in this
situation, ω1(a0) = 2. The proof is, for the most part, analogous to that of Lemma 6.2;
here we present the additional part. By Definition 6.1, V0,ω = (v, 1) with v ∈ Q2 is normal
to C0,ω hence, ∀a′ ∈ (W1 ∩ C0) \ {b, a0, a1}, a0 − b ω1(a0)

a1 − b 1
a′ − b ω1(a′)

 (
v
1

)
=

 0
0
0

 . (10)

It suffices to prove the claim

〈(a0, 1), V0,ω〉 < 〈(a′, ω2(a′)), V0,ω〉, ∀a′ ∈W \ {a0}.

W.l.o.g. we assume b = 0 and consider the possibility that a vertex a′ = b0 ∈ W2 ∩ C−1

exists between b and a0; b0 is defined in Algorithm 5.1, Step 2. Using the fact that
b0 ∈W1 ∩ C0, one may compute ω1(b0) by (10). Then the claim reduces to

− ω1(a0) + 1 < −ω1(b0) + ω2(b0) ⇔ ω2(b0) > ω1(b0)− ω1(a0) + 1 = ω1(b0)− 1. (11)

This holds for ω2(b0) sufficiently large. An analogous bound is imposed on ωγ′(bg) for
γ′ = ((g + 1) mod 2) + 1. 2

For ease of presentation we shall work with δ ∈ Q2
>0 with coordinates δ1 � δ2 and shall

let ε ∈ (0, 1) stand for its slope. The next step is to determine the point corresponding
to the toric Jacobian.

Lemma 6.4. There exists a unique point p : RC(p) = (0, b) on the boundary of b+Q1+Q2

iff b+ δ ∈ P .

Proof. If P contains b+ δ, then let the cells in Q1, Q2 containing b+ δ be denoted by
Cρ1 , Cρ2 , respectively, where |ρ1 − ρ2| = 1. All points in the δ-border of b + Q1 + Q2

are displaced inside a cell which is a copy of Ci for some i, unless they lie exactly in the
intersection of two cells of this type, i.e. in Ci ∩ Ci+1, i ∈ {0, . . . , g − 1}. The latter are
of the form b+ ai+1 + ai. We shall consider three different cases. Let us call σi−1, σi+1,
the slopes of the b-edges of the cell Ci; σi, σi+2 will be the slopes of Ci+1. Due to the
special choice we have made on δ just before the statement of this lemma, we have that
σi−1 > σi > σi+1 > σi+2.

• σi > ε > σi+1: it is straightforward to check that the point is between cells Cρ1 and
Cρ2 . This is the unique point claimed.
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b

a[1]

a[0]

b[0]

−δ

Figure 3. Cell C0 of Q1; the vertex chain to the left is where b0 may belong. The shaded part is cell

C−1 of Q2. Notice that the vector −δ cannot be contained in C0 since a0 is, by hypothesis, the vertex

closest to b which is extremal in the direction of δ.

b

a[i+1]

b

C[i]
C[i+1]

δ

a[i]

δ

−δ

−δ

Figure 4. Cases of the proof of Lemma 6.4. Vertices ai and cells Ci are denoted a[i] and C[i] respectively.

• ε > σi: both slopes of Ci+1 are smaller than ε, so b+ai+1 +ai− δ ∈ b+ai+1 +Ci+1

because ai − δ ∈ Ci+1; see the left part of Figure 4.
• σi+1 > ε: both slopes of Ci are strictly bigger than ε, then b+ai+1+ai−δ ∈ b+Ci+ai

because ai+1 − δ ∈ Ci; see the right part of Figure 4.

This discussion also covers the points a0+a0, ag+ag which are first and last on the vertex
chain corresponding to the δ-boundary. If points b0 or bg exist (defined in Algorithm 5.1,
Step 2), then b0 + a0 and bg + ag (or ag + bg) are boundary points of b+Q1 +Q2, closest
but not on its δ-boundary.

If P does not contain b+ δ, then no cell in Q1, Q2 contains b+ δ and all points on the
δ-boundary of b+Q1 +Q2 are perturbed inside some cell. 2

This point shall index the matrix row containing the toric Jacobian in the constructed
matrix; its general definition follows. Recall that by Algorithm 5.1, Step 1, there are at
least two points ar, ar+1, different than b, on the δ-boundary of P .

Definition 6.5. Let point p ∈ F be on the δ-boundary of b + Q1 + Q2 such that: If
P contains b+ δ, p is the unique point for which RC(p) = (0, b). Otherwise, b is on the
δ-boundary of P . If b = a0 then p = b+a2+a1; otherwise b = ag and p = b+ag−γ+ag−γ′

where γ = (g mod 2) + 1, γ′ = (γ mod 2) + 1.

Example 6.6. Take polynomials fi = ci0 + ci1x1x2 + ci2x1x
2
2, i = 0, 1, 2 with W =

{(0, 0), (1, 1), (1, 2)}, g = 2. If ar = (1, 2), ar+1 = (1, 1), then b = (0, 0) = ag and
δ is horizontal. Moreover, γ = 1, γ′ = 2, p = b + ag−γ + ag−γ′ . All twofold mixed
volumes are equal to 1. Now b + Q1 + Q2 ∩ F contains only point ar + ar+1 = (2, 3).
It lies on its δ-boundary, it is perturbed inside a cell and shall be identified with p; see
Figure 5. Furthermore, this is the only integer point in F , hence the resultant matrix is
1 × 1 and yields the sparse resultant. It is easy to see that G(f) = −x2

1x
3
2 det[cij ], then
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δ

C0

C1

C2

Q0

Q1

Q2

Q0

δ

Figure 5. Example 6.6. Shown are certain cells of the subdivision for each system.

M = [G(f)] and ResA(f0, f1, f2) = detM . The second Figure in 5 concerns the system
fi = ci0 +ci1x+ci2x

2y+ci3x
2y2, i = 0, 1, 2, with W = {(0, 0), (1, 0), (2, 1), (2, 2)}, g = 3,

ar = a0 = (2, 2), ar+1 = a1 = (2, 1), b = (0, 0) = ag and p = b + ag−γ + ag−γ′ = (3, 1)
where γ = 2, γ′ = 1; δ = (1,−ε).

For a well-defined matrix, we show that it suffices to consider all points in F .

Lemma 6.7. For any p ∈ F , except for the point p of Definition 6.5, if RC(p) = (i, a)
then (p− a+Qi) ∩ Z2 ⊂ F , supposing p lies in cell F0 + F1 + F2 + δ, dim(F0) = 0.

Proof. The first case is when p does not belong to a 0-mixed cell, i.e. ∃i > 0 : dim(Fi)
= 0. Due to ω0, Lemma 5.6 implies F0 = b, hence p = b + pi + pj ∈ b + pi + Fj +
δ, pi ∈ Wi, pj ∈ Wj dim(Fj) = 2, i 6= j; here, exceptionally, the order of pi, Fj is not
important. So RC(p) = (i, pi). We wish to arrive at a contradiction when assuming
∃q = b+ qi + pj ∈ p− pi +Qi : q ∈ E \ F . This implies b, qi, pj lie on the δ-boundary of
their respective polytope and also on the same edge, which is (b, a1) or (b, ag−1).

If pj = b then p = b+ pi + b ∈ b+ pi + Fj + δ ⇒ b− δ ∈ Fj ⊂ Qj which implies b does
not maximize the inner product with −δ, in contrast to the definition of b. Otherwise
pj ∈ {a1, ag−1} so for Fj to be a cell that contains it, it must equal one of C1, C2 or
Cg−1, Cg. For pi + Fj to give a cell of ∆ω, we must have Fj = Ct and pi = at for
some t ∈ {1, 2, g − 1, g}. There are four cases for p: b + a1 + a1, b + ag−1 + ag−1 6∈ F ,
and b + a2 + a1, b + ag + ag−1 which is precisely p. All cases contradict the lemma’s
hypothesis.

The second case is that p is in a 0-mixed cell, so RC(p) = (0, b) and p ∈ int(b+Q1 +
Q2) = b + int(Q1 + Q2). Then, p − b + Q0 ⊂ b + int(Q1 + Q2) − b + Q0, which equals
Q0 + int(Q1 +Q2) = int(Q0 +Q1 +Q2). 2

Lemma 6.8. ∆ω contains, against the δ-boundary of Q, one or two unmixed cells which
are copies of the respective cell(s) of Q0. Each cell contains exactly one of vertices 3ar,
3ar+1. The rest of the cells covering Q \ (Q1 +Q2) are mixed of type 1 or 2.

Proof. Consider the inward normals V (i) to the Q0 cells; we shall show they are parallel
to the inward normals of the corresponding cells of ∆ω. By Proposition 5.5, the inner
product is minimized over all vertices of Q0,ω0 at ar+i,ω0 , i = 0, 1. The same should hold
at ar+i,ω1 and ar+i,ω2 over Q1ω1 , Q2ω2 respectively. If Wj is the vertex set of Qj , we wish
to show that

〈V (i), pj〉+ ωj(pj)v
(i)
3 > 〈V (i), ar+i〉+ ωj(ar+i)v

(i)
3 ,

∀pj ∈Wj \ {ar+i}, i = 0, 1, j = 1, 2.
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The conclusion is immediate when ωj(pj) ≥ ωj(ar+i) because 〈V (i), pj〉 > 〈V (i), ar+i〉,
since V (i) is in the inward cone of ar+i, and v

(i)
3 > 0 by the proof of Proposition 5.5.

Otherwise, the conclusion is equivalent to

〈V (i), pj − ar+i〉
ωj(ar+i)− ωj(pj)

> v
(i)
3 =

〈V (i), b− ar〉
2M

⇔M > (ωj(ar+i)− ωj(pj))
〈V (i), b− ar〉

2〈V (i), pj − ar+i〉
.

(12)
The lower bound is positive: the first parenthesis is positive by hypothesis; the fraction
denominator because V (i) is in the corresponding cone; and the numerator because V (0)

is in the cone of ar and V (1) satisfies (6). Hence, the lower bound is always satisfied for
sufficiently large M .

The last statement holds straightforwardly by noting that mixed cells of types 1 and 2
are contained in Q \ (Q1 + Q2), the area covered by mixed cells of type i is equal to
MV(Qj , Qk), j 6= i 6= k, and we have that vol(Q \ (Q1 + Q2)) is equal to MV(Q0, Q1)
+MV(Q0, Q2) + vol(Q0). 2

Lemma 6.9. For any p ∈ F , suppose p lies in cell F0 + F1 + F2 + δ, dim(F0) > 0: if
RC(p) = (i, a), then (p− a+Qi) ∩ Z2 ⊂ F .

Proof. Point p is not that of Definition 6.5 because dim(F0) > 0. Being an integer
point, p must belong to the cell F0 + F1 + F2 (possibly to its δ-border) if δ is small
enough. Then F1 + F2 lies on the boundary of Q1 +Q2, by the lifting.

Suppose w.l.o.g. that RC(p) = (2, ã), so p = p0+p1+ã, for pi ∈ Qi. If (p−ã+Q2)∩Z2 is
not contained in F , it must intersect the δ-boundary of Q because it is certainly in E . For
a point h in the common intersection, ∃p2 ∈ Q2 : h = p− ã+p2 = (p0+p1+ ã)− ã+p2 =
p0 +p1 +p2. Then, each pi, for i = 0, 1, 2, must belong to the segment (aj , aj+1) for some
j (and hence F0, F1 intersect the δ-boundary of Q0, Q1 respectively). This is the key
property of the pi’s, which shall lead to a contradiction.

If F0 is a two-dimensional cell, say containing ar1 , then by Lemma 6.8 and its proof,
F1 = F2 = ai, for i ∈ {r1, r2}. By the key property above, we would also have that
p0 ∈ {ai−1, ai, ai+1}. Now p is a sum of three points on the δ-boundaries of the respective
Qi, hence p 6∈ F , a contradiction. It remains to consider F0 as an edge. F0 and F1 must
be non-parallel edges, so that a (mixed) cell can be generated. If F1 = (aj , aj+1) then ã
is a vertex of F1 and both p0, p1 ∈ F1 which implies p 6∈ F , a contradiction.

All remaining cases can be treated analogously to the case that F1 is edge (aj−1, aj)
and p1 = aj . If ã or p0 is aj , then we arrive at the same contradiction as before, so suppose
ã = aj−1 and p0 = aj+1. If F0 = (b, ar), Lemma 6.8 implies that F1 is adjacent to F0,
hence p0 must be their intersection ar, which is in contrast to the assumption p0 = aj+1.

So F0 lies entirely on the δ-boundary of Q0. Letting p0, p1 sweep edges F0, F1 respec-
tively, h ∈ E \ F will sweep copies of F0, F1 on E \ F . These form cells, in the mixed
subdivision, which are sums of vertices from Q0, Q1 and one edge of Q2. Having two
consecutive edges from Q2 on the δ-boundary of Q implies they define a two-dimensional
cell, which contradicts Lemma 6.8. 2

All these lemmas prove the following:

Theorem 6.10. For p ∈ F , except the unique point of Definition 6.5, if RC(p) = (i, a)
then (p− a+Qi) ∩ Z2 ⊂ F .
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Theorem 6.11. (Main) Let M be the matrix constructed at the end of Section 4 with
the lifting defined in Section 5. Then, we have that det(M) = ResA(f0, f1, f2) pM, where
pM does not depend of the coefficients of f0.

Proof. Theorem 6.10 tells us that M is actually a minor of the matrix associated with
the last morphism in the complex (3). The fact that det(M) is a multiple of the resultant
follows from Cattani et al. (1998) and Proposition 3.3. The determinant has the same
degree in the coefficients of f0 as the resultant because the number of rows depending on
the coefficients of f0 is exactly MV(Q1, Q2), and all the rows depend linearly on those
coefficients; (cf. Cox et al., 1998). In order to see that det(M) 6= 0, we shall use the same
convexity argument given in Canny and Emiris (2000) and Sturmfels (1994) with some
care: we shall specialize some coefficients to zero and regard the structure of G(f).

As the polynomial G(f) is well defined modulo the homogeneous ideal, it is enough
to show that the determinant of M is non-zero for a specific choice of it. In order to
do this choice, we write p = b + ai + ai+1. This can be done because of Lemma 6.4
and Definition 6.5. Taking as supports A1

i := ei+1 \ {ai} and A2
i := {ai}, we compute

G(f). Let us specialize the polynomials as follows: f̃0 := c0bx
b, f̃1 :=

∑
a∈W c1ax

a,
f̃2 :=

∑
a∈W c2ax

a. G(f̃) = ±c0b(c1ai
c2ai+1 − c2ai

cc1ai+1)x
p. We shall denote by M′(f̃)

the matrix obtained by eliminating the rows and columns indexed by p in M(f̃). By
convexity, init−ω(det(M(f̃))) will be equal to ±c0bc1aic2ai+1 or ±c0bc2aic1ai+1 times the
product of the elements lying in the diagonal of M′(f̃) which are always coefficients
corresponding to the vertices of P if the polynomial to which they are associated belongs
to {f1, f2}, otherwise it is c0b. In all the cases, they are different from zero. Then,
init−ω(det(M(f̃))) is nonzero. 2

Corollary 6.12. The extraneous factor pM is a polynomial in Z[c] with content 1.

Proof. The proof of the previous theorem tells us that init−ω(det(M(f̃)))=±cMV(Q1,Q2)
0b∏

i>0 c
αia
ia . On the other hand, init−ω(ResA(f̃0, f̃1), f̃2) = ±cMV(Q1,Q2)

0b

∏
i>0 c

α′
ia
ia with

0 ≤ α′ia ≤ αia (Sturmfels, 1994). Now compute init−ω(pM(f̃)). 2

7. Examples

Public Maple code, still under development, is available on the second author’s web
page. One heuristic of the code is to have the support of G(f) in b+ e+Qi, where b is
one of the endpoints of edge e; thus we are sure not to add any columns that would not
have been included by the greedy matrix construction.

Example 7.1. Let us compute the resultant of the family of Example 3.4. The Qi are
equal to the unitary square. Taking δ = (ε, ε − ε0), with 0 < ε0 � ε, b = (0, 0), and
using Algorithm 5.1, we get a partition of Q1 in two triangles whose common side is the
segment with vertices (0, 0), (1, 1). Q2 is not divided under the lifting. In this example,
it does not matter which will be the lifting over Q0 because there are no integer points
outside b+Q1 +Q2 + δ. We have that F = {(1, 1), (1, 2), (2, 1), (2, 2)}. Expanding G(f)
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1 1 1

1

1

1

2

2

2

22

22

Figure 6. Example 7.2. Shown are the cells of the Qi, certain cells of the subdivision, and the point p.

Circled points correspond to f0 rows, whereas the rest of the points are marked according to the corre-

sponding fi, i = 1, 2.

as ∆(1,1)x1x2 + ∆(1,2)x1x
2
2 + ∆(2,1)x

2
1x2 + ∆(2,2)x

2
1x

2
2, we obtain the following matrix:

M =


c00 c01 c02 c03

∆(1,1) ∆(1,2) ∆(2,1) ∆(2,2)

c10 c11 c12 c13
c20 c21 c22 c23

 ,

whose determinant equals ±ResA(f0, f1, f2). The following Maple session produces the
above matrix, where the last two arguments of hybridJac() are δ and ar:

read ‘bivar.mpl‘: read ‘hybridJac.mpl‘:
for i from 0 to 2 do f[i] := a[i] + x[1]*b[i] + x[2]*c[i]
+ x[1]*x[2]*d[i] od:

hybridJac([f[0],f[1],f[2]],[x[1],x[2]],vector([.2,.1]),vector([1,1]));

Example 7.2. Consider the system where the unique Newton polygon, shown in Fig-
ure 6, is the convex hull of the points {(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}. F has 19
elements. Taking ar = (2, 2), ar+1 = (2, 1), δ′ = (1, 0), we may take δ parallel to

(
5
6 ,

1
3

)
.

Then b = (0, 0) and ω1, ω2 give the following lifting values corresponding to the sequence
of vertices above: 0, 3

2 , 1, 2,
3
2 , 1 and 0, 1, 2, 1, 1, 4

3 where ω2(0, 1) can be any value larger
than 1/2. The cells in the Qi, point p, and certain cells of the subdivision are shown in
Figure 6. Our code yields a 16 × 16 matrix whose determinant equals ResA(f0, f1, f2).
Here is the Maple session, supposing the lifting is known and given as the last argu-
ment. The other arguments are, in order, the convex hulls and supports, the indices of
the vertex and edge used to define the Jacobian, the scaling factors, and δ.

read ‘bivar.mpl‘: read ‘hybridJac.mpl‘
thesupp:=matrix([[0,0,1,1,2,2],[0,1,0,2,1,2]]): sort_vecs(0,thesupp):
THESUPPARR:=array(1..6,[%,%,%,%,%,%]):
bivar(eval(THESUPPARR),[[1,2],[1,2],[1,2]],[1,1,1],[5/600,1/300],
[map(w->w*10^7,[-1,-100/101,1/99,1/101,100/99,1]),
[0,3/2,1,2,3/2,1],[0,1,2,1,1,4/3]]):

Suppose that the last polygon is scaled by 2. Then the mixed volumes become 12, 12
and 6, so the total degree of the sparse resultant is 30. Our code constructs a 33 × 33
matrix, whereas the algorithm of Zhang and Goldman (2000) would give a matrix of
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dimension 84 and no guarantee that it is not singular; see also Table 1. The corresponding
Maple session is the following, using the variables from the session above.

sort_vecs(0,thesupp):
THESUPPARR:=array(1..6,[%,%,scalarmul(sort_vecs(0,thesupp),2),
%,%,scalarmul(sort_vecs(0,thesupp),2)]):

bivar(eval(THESUPPARR),[[1,2],[1,2],[1,2]],[1,1,2],[5/600,1/300],
[map(w->w*10^7,[-1,-100/101,1/99,1/101,100/99,1]),
[0,3/2,1,2,3/2,1],[0,2,4,2,2,8/3]]):

Example 7.3. Galligo and Stillman arrive at the following system in order to study the
self-intersections of a parametrized surface in R3:

f0 = a0 + a1x+ a2y + a3xy + a4x
2y + a5x

2y2 + a6x
3y + a7x

3y2,

f1 = b0 + b1x+ b2y + b3xy + b4x
2y + b5x

2y2 + b6x
3y,

f2 = c0 + c1x+ c2y + c3xy + c4x
2y + c5x

3y + c6x
3y2.

Here Q1, Q2 ⊂ Q0. To apply our algorithm we take three polytopes equal to Q0, and at
the end specialize certain coefficients to zero. With δ =

(
1
10 ,

1
500

)
, b = (0, 1), ω0(3, 1) =

ω0(2, 2) = 100, ω0(1, 0) = 0 we obtain a 22×22 matrix. The matrix determinant has total
degree 24, which equals the degree of the sparse resultant which is 8 + 8 + 8 = 24, hence
we obtain the exact resultant despite the fact that the input polygons were actually not
identical. Furthermore, |E| = 35 for some δ; the greedy version of Canny and Emiris
(2000) may yield a matrix with dimension as small as 30.

Example 7.4. Consider the system of Figure 7. Q1, Q2 are each subdivided into three
linearly lifted cells. The vertex liftings which are not explicit can be deduced by the
liftings of three points in the same cell. δ is a scaled-down multiple of vector (50, 1) so
that any point is perturbed to a maximal cobounding cell. This leaves the point (6, 10),
circled in the figure, corresponding to f0 s.t. (6, 10)− b+Q0 intersects the δ-boundary of
Q; this precisely corresponds to the Jacobian. The supports of G(f) and toric Jacobian
J(f) have cardinalities 5 and 30.

Table 1 starts with homogeneous systems of degree d. The method of Zhang and
Goldman (2000) yields a matrix of dimension 6d2 − 3s, where s is the number of integer
points in the unique rectangle that can be cut off, namely the rectangle with vertices
(d, d) and (bd/2c + 1, dd/2e). The next rows regard bihomogeneous systems of degrees
d1, d2 ≥ 1, and the Hirzebruch surface of Example 2.5 from Cattani et al. (1998). The
row labeled (Zhang and Goldman, 2000) refers to the example of that paper, namely
f0 = 2s + t, f1 = st + st2, f2 = s2t + 2t; we study the equivalent system, in the toric
context, with supports contained in {(0, 0), (1, 0), (0, 1), (2, 0)}. The next row regards
surface implicitization from (Manocha, 1992, p. 64) with supports {(1, 0), (2, 0), (0, 1)},
{(1, 0), (0, 1), (0, 2)}, {(1, 0), (0, 1), (1, 1)}, where the eliminated variables are the two
parameters, after having set u = 1. We took the union of these supports as W , then
specialized the missing coefficients to zero. The matrix from Zhang and Goldman (2000)
has dimension 6 · 2 · 2 − 3(1 + 2) = 15 because the degree in each variable is 2 and we
can cut off two rectangles, with point cardinality 1 and 2 respectively. The last rows
correspond to examples discussed in this paper.
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3*a0 3*a1

3*a2

3*a4

3*a5

3*a3

3*b

C2

C3

C4

C5

C0
a1+a2+a2

a0+a0+a2

C1

b(–M)

a3(1)

a1(1)

b(0)
a2(>1)

C2

C4

a4(>1)

a5(1)

a2(1)

a4(1)

b(0)

C1

C3

C5

a0(1)

a5(>1)

a2(M)

Figure 7. Example 7.4 with the lifting values shown in parentheses. Here, r = 2. To the right is

Minkowski sum Q and certain of the ∆ω cells. The two shaded cells are those from Q0.
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Table 1. Comparison of resultant matrices.

degR Canny and Cattani et al. (1998) Zhang and This paper
Emiris (2000) Goldman (2000)

d-Homogeneous 3d2 9
2
d2 − 3

2
d 6d2 − 9d + 4 6d2 − 3d d

2
eb d+2

2
c 9

2
d2 − 9

2
d + 1

(d1, d2)-Bihomog. 6d1d2 9d1d2 [12d1d2 6d1d2 [9d1d2

−6(d1 + d2) + 4] −3(d1 + d2) + 1]
Cattani et al. (1998) 12 15 10 12 10
Zhang and

Goldman (2000) 5 5 4 6 4
Manocha (1992) 7 12 7 15 7
Example 7.2 18 26 22 18 16
Example 7.2 scaled 30 46 47 84 33
Example 7.3 24 30 34 24 22
Example 7.4 57 92 97 63 64

The table columns give the total degree of the sparse resultant in the polynomial
coefficients, an upper bound or the dimension of the matrix of Canny and Emiris (2000),
the large dimension of the (rectangular) matrix from Cattani et al. (1998), namely 1 +∑
i |Fi|, the dimension of the matrix from Zhang and Goldman (2000), and, finally, the

dimension of the matrix built by our code or |F|, which upper bounds this dimension.
In some of these algorithms, it is necessary to fill the supports with zero coefficients
in order to satisfy the hypotheses; in this case, there is no guarantee that the matrix
determinant is nonzero. We plan further applications on scaled Newton polygons that
should emphasize the merits of our construction.

An important parameter in comparisons is the degree of the matrix determinant. For
all methods yielding square matrices, this equals the dimension of matrix M. For our
method, as well as Cattani et al. (1998), deg(det M) = 2 + dim M. For homogeneous
systems, Macaulay’s matrix is obtained by Canny and Emiris (2000). For bihomogeneous
systems, an optimal sparse resultant matrix exists.
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