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We present the two-loop virtual corrections to Standard Model Higgs boson pair production via gluon
fusion gg → H H in the heavy top quark limit. Based on this result, we evaluate the corresponding cross
section at the LHC at 14 TeV in the next-to-next-to-leading order soft-virtual approximation.
We find an inclusive K -factor of about 2.4, resulting in an increase close to 23% with respect to the
previous available calculation at next-to-leading order. As expected, we observe a considerable reduction
in the renormalization and factorization scale dependence.
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1. Introduction

Recently, both ATLAS and CMS Collaborations have discovered a
new boson with a mass around 125 GeV [1,2] at the Large Hadron
Collider (LHC). Its properties are, so far, compatible with the long
sought Standard Model (SM) Higgs boson [3]. In order to decide
whether this particle is indeed responsible for the Electroweak
Symmetry Breaking (EWSB), it is crucial to measure its couplings
to fermions and gauge bosons and to verify their proportionality
to the particle masses. Furthermore, a precise measurement of the
Higgs self-interaction is needed.

The measurement of the Higgs self-couplings is the only way
to reconstruct the scalar potential. After EWSB, the Higgs potential
takes the form

V (H) = 1

2
M2

H H2 + λv H3 + 1

4
λ′H4. (1)

In the SM the trilinear and quartic self-couplings take the same
value, λ = λ′ = M2

H/(2v2), where v � 246 GeV is the Higgs vac-
uum expectation value and MH its mass. In most new physics
scenarios these couplings deviate from the SM values. Therefore,
a determination of the Higgs self-interaction is necessary both to
understand the EWSB mechanism and to try to distinguish the SM
from other models.

The Higgs quartic coupling can be in principle studied via triple
Higgs boson production. However, this cross section is too small to
be measured at the LHC [4], and then a determination of its value
is not possible at present time. The situation is different for the
trilinear coupling λ via Higgs pair production if very high lumi-
nosities can be achieved.
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The possibilities of observing Higgs pair production at the LHC
have been discussed in Refs. [5–12]. Though the analysis is chal-
lenging due to the smallness of the signal cross section and the
large QCD background, it has been shown to be achievable at a
luminosity-upgraded LHC. For example for bb̄γ γ and bb̄τ+τ− fi-
nal states, after the application of proper cuts, the significances
obtained are ∼16 and ∼9 respectively, for

√
sH = 14 TeV and∫

L = 3000 fb−1 [8]. These are so far the most promising final
states for the Higgs trilinear coupling analysis. The application of
jet substructure techniques was shown to be important to further
improve on the sensitivity of the discovery channels [6,7,13].

As it occurs for single-Higgs [14], the dominant mechanism
for SM Higgs pair production at hadron colliders is gluon–gluon
fusion, mediated by a heavy-quark (mainly top) loop. The corre-
sponding cross section has been calculated at leading-order (LO)
in Refs. [15–17]. The next-to-leading order (NLO) QCD corrections
have been evaluated in Ref. [18] in the large top-mass approxi-
mation and found to be rather large, with an inclusive K -factor
close to 2, a very similar situation to the one observed for single-
Higgs production at the same order [19–21]. Considering that the
next-to-next-to-leading order (NNLO) corrections for single-Higgs
are also sizable [22–24], it becomes essential to reach the same
accuracy for double-Higgs production in order to provide precise
predictions for the process.

A full NNLO calculation requires the evaluation of the corre-
sponding amplitudes for double real radiation, real emission from
one-loop corrections and the pure virtual two-loop contribution. In
this Letter we present the explicit results for two-loop virtual cor-
rections to the partonic process gg → H H in the heavy top quark
limit. Furthermore, we combine these results with the universal
formula presented in Ref. [25] to obtain the NNLO soft-virtual ap-
proximation to the cross section, as a first step towards a full NNLO
calculation, and present numerical results for the cross section ex-
pected at the LHC within that approximation.
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Fig. 1. A sample of the Feynman diagrams needed for the double-Higgs NNLO virtual
corrections, and the corresponding label for each kind of contribution.

2. Two-loop virtual corrections

We present here our results on the two-loop corrections. In
order to simplify the presentation we directly provide the contri-
bution of two-loop diagrams to the corresponding partonic cross
section. As usual, divergences are dealt with by using dimensional
regularization with n = 4 − 2ε dimensions, and we use the MS
renormalization scheme.

As it was mentioned before, we strictly work within the heavy
top quark approximation, where the single- and double-Higgs cou-
pling to gluons is given by the effective Lagrangian

Leff = −1

4
GμνGμν

(
C H

H

v
− C H H

H2

v2

)
, (2)

where Gμν represents the gluonic field strength tensor. In order to
obtain the NNLO cross section for gg → H H , we need the coeffi-
cients C H and C H H up to O(α3

S ). The first one takes the following
form [26,27]:

C H = −1

3

αS

π

{
1 + 11

4

αS

π
+

(
αS

π

)2[2777

288
+ 19

16
log

μ2
R

M2
t

+ N f

(
−67

96
+ 1

3
log

μ2
R

M2
t

)]
+O

(
α3

S

)}
, (3)

where Mt is the on-shell top quark mass, μR is the renormaliza-
tion scale and N f is the number of light flavors. The coefficient
C H H is known up to O(α2

S ) [20], and coincides to that order to C H .
We will write

C H H = −1

3

αS

π

{
1 + 11

4

αS

π
+

(
αS

π

)2

C (2)
H H +O

(
α3

S

)}
. (4)

For the phenomenological results, we will assume C (2)
H H = C (2)

H ,
where the latter is defined by the squared bracket in Eq. (3).

In Fig. 1 we show a sample of the Feynman diagrams needed
for the calculation, and we introduce the notation for each con-
tribution. Since the structure of g H H and gg H H vertices is the
same, the loop corrections to both Born level diagrams are propor-
tional to the gluon form factor, and those contributions are labeled
as FF(1) and FF(2). To compute these amplitudes, we rely on the
two-loop gluon form factors presented in [28–31]. On the other
hand, the contributions arising from diagrams with tree-level two
g H H vertices (labeled as 2V(1)) and the corresponding one-loop
correction to them (labeled as 2V(2)), which are of the same order
in powers of the strong coupling constant as the form factor-like
corrections FF(1) and FF(2) have more complex kinematics and re-
quire an explicit computation.

The NNLO virtual corrections (at the level of squared ampli-
tudes) include the interference between FF(2) + 2V(2) and LO di-
agrams, the squares of FF(1) and 2V(1) and their corresponding
interference. The calculation was performed using the Mathemat-
ica packages FeynArts [32] and FeynCalc [33] for the generation
of the diagrams and the manipulation of amplitudes, and the al-
gorithm FIRE [34] to reduce the resulting expressions into master
integrals, which are obtained from Ref. [35].

The partonic virtual corrections σv to the cross section are ob-
tained by integrating the squared amplitudes over the Higgs pair
phase space, that is

σv = 1

2s

1

2 2282(1 − ε)2

∫
|M|2 dPS, (5)

where we also include the flux factor, the average over helici-
ties and colors of the incoming gluons and the factor for identical
particles in the final state. Expanding in powers of the strong cou-
pling αS:

σv =
(

αS

2π

)2[
σ (0) + αS

2π
σ (1) +

(
αS

2π

)2

σ (2) +O
(
α3

S

)]
. (6)

The renormalized NLO virtual contribution σ (1) is given by

σ (1) =
t+∫

t−

dt

{
2 Re

[
I (1)

g
]dσ

dt

(0)

+ dσ
(1)

fin

dt

}
, (7)

while the renormalized NNLO virtual term σ (2) can be expressed
in the following general way:

σ (2) =
t+∫

t−

dt

{(∣∣I (1)
g

∣∣2 + 2 Re
[(

I (1)
g

)2] + 2 Re
[

I (2)
g

])dσ

dt

(0)

+ 2 Re
[

I (1)
g

]dσ
(1)

fin

dt
+ dσ

(2)

fin

dt

}
, (8)

where we have used Catani’s formula for the infrared singular be-
haviour of the two-loop QCD amplitudes [36–38], and we have
defined the quantities:

dσ

dt

(0)

= FLO|CLO|2(1 − ε), CLO = 6λv2

s − M2
H + iMHΓH

− 1,

FLO = G2
F

2304π(1 − ε)2
f (ε),

f (ε) = 1

Γ (1 − ε)

[
s(s − 4M2

H ) − (t − u)2

16π s

]−ε

. (9)

All the dependence on the Higgs trilinear coupling λ is embodied
in the coefficient CLO. The explicit expression for the one-loop I (1)

g

and two-loop I (2)
g insertion operators can be found in Ref. [36]. We

recall here that they are functions of the dimensional regulariza-
tion parameter ε , with poles up to 1/ε2 and 1/ε4, respectively. The
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function f (ε) originates in the n-dimensional two-particle phase
space, and verifies that f (0) = 1.

While the singular behaviour of the two-loop amplitudes can
be anticipated, the finite contributions σfin can only be obtained
after performing the full two-loop calculation. The pole structure
of our result agrees with the expressions in Eqs. (7) and (8) and
the infrared-finite contributions for Higgs pair production can be
cast into the form

dσ
(1)

fin

dt
= FLO

{|CLO|2F (1) + Re(CLO)R(1) +O
(
ε3)},

dσ
(2)

fin

dt
= FLO

{|CLO|2F (2) + Re(CLO)R(2) + Im(CLO)I(2)

+ V(2) +O(ε)
}
. (10)

For simplicity, we set μ2
R = s in the following expressions. We find

that the one-loop contributions are given by

R(1) = 4

3
− ε

[
4M2

H

3s
− 2M4

H

3s

(
1

t
+ 1

u

)
+ 2

3

]
,

F (1) = 11 + ε

(
7

6
ζ2(2N f − 33) + 12ζ3 − 17

)

+ ε2
(

7

6
ζ2(33 − 2N f ) + 1

9
ζ3(2N f − 141)

+ 18ζ4 − 12

)
. (11)

The expansion of σ
(1)

fin is needed up to order ε2 because of the

double poles present in I (1)
g . The F (1) contribution arises from

the interference between FF(1) and LO, while R(1) originates from
the interference of 2V(1) with the LO. The expansion up to O(ε0)

agrees with the result presented in Ref. [18].
The two-loop infrared regulated contributions take the follow-

ing form:

V(2) = 1

(3stu)2

[
M8

H (t + u)2 − 2M4
Htu(t + u)2

+ t2u2(4s2 + (t + u)2)], (12)

I(2) = 4π

(
1 + 2M4

H

s2

)
log

(
(M2

H − t)(M2
H − u)

tu

)
, (13)

F (2) =
(

8N f

3
+ 19

2

)
log

(
s

M2
t

)
+ N f

(
217ζ2

12
− 17ζ3

6
− 3239

108

)

− 11ζ2N2
f

18
− 249ζ2

2
− 253ζ3

4
+ 45ζ4

8
+ 8971

36
, (14)

R(2) = −
(

1 + 2M4
H

s2

){
−24

3
ζ2 + 2Li2

(
1 − M4

H

tu

)
+ 4Li2

(
M2

H

t

)

+ 4Li2

(
M2

H

u

)
+ 4 log

(
1 − M2

H

t

)
log

(
− M2

H

t

)

+ 4 log

(
1 − M2

H

u

)
log

(
− M2

H

u

)
− log2

(
t

u

)}

+ 4M2
H

s
+ 314

9
− 20

27
N f − 33 − 2N f

9
log

(
tu

s2

)

+ 8
(
C (2)

H − C (2)
H H

)
. (15)

Here F (2) originates from the interference between the two-
loop form factor-like diagrams FF(2) and LO contribution plus the
square of FF(1), while V(2) arises from the square of the tree-level
Fig. 2. K -factors for Higgs pair production at the LHC as a function of the Higgs
pair invariant mass Q . The bands are obtained by varying the renormalization and
factorization scales as described in the main text.

diagram 2V(1). The terms R(2) and I(2) combine the contribu-
tions of two interferences: 2V(2) with LO, and 2V(1) with FF(1).
The Mandelstam variables are given by the expressions:

s = Q 2,

t = −1

2

[
Q 2 − 2M2

H −
√

Q 2
(

Q 2 − 4M2
H

)
cos θ

]
,

u = −1

2

[
Q 2 − 2M2

H +
√

Q 2
(

Q 2 − 4M2
H

)
cos θ

]
, (16)

while the integration limits t± correspond to cos θ = ±1 and Q is
the double-Higgs invariant mass. The last term in R(2) , originated
on form factor-like contributions, vanishes if the two-loop correc-
tions to the effective vertex gg H H are the same as those of g H H .

3. NNLO soft-virtual approximation

Expressed as in Eq. (8), the (finite parts of the) two-loop cor-
rections are ready to be implemented in the NNLO soft-virtual
(SV) approximation universal formula derived in Ref. [25]. We do
not attempt for a full phenomenological analysis of the process
at this level, and mostly use the SV approximation as a way to
evaluate the impact of the new two-loop results in the cross sec-
tion. Therefore, in Fig. 2 we show the NLO and NNLO-SV K -factors
for proton–proton collisions at the LHC with c.m. energy

√
sH =

14 TeV, in terms of the invariant mass of the Higgs pair. Here the
NNLO-SV approximation is defined by adding the pure NNLO-SV
contribution to the full NLO result. At each order, we use the corre-
sponding MSTW2008 set of parton distributions and QCD coupling
[39]. The bands are obtained by independently varying the scales
μR and μF in the range 0.5Q � μR ,μF � 2Q , with the con-
straint 0.5 � μR/μF � 2. The LO cross section that normalizes the
K -factors is computed at μR = μF = Q . We recall that we always
rely on the heavy top quark limit, and that we use the SV approx-
imation as defined in Mellin space. As mentioned before, since the
coefficient C (2)

H H is still unknown we assume C (2)
H H = C (2)

H for the
numerical results.

As can be seen from the plot, we find a large K -factor, with
K SV = 2.37 for the total cross section, resulting in an increase of
NNLO
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23% with respect to the previous order (KNLO = 1.92). This value
remains approximately constant along the entire Higgs pair invari-
ant mass distribution, with the exception of the region near the
threshold where the cross section is anyway very small. Despite
of the still sizable corrections, it is noticeable the improvement in
the perturbative expansion in the strong coupling constant, which
shows the first signs of convergence at NNLO. It is only at this
order there is a (yet not very significant) overlap between two
consecutive scale dependent bands. We can also observe that the
scale dependence is substantially reduced: the NNLO band results
in about a ±8% variation around the central value, more than a
factor of two smaller than the corresponding NLO band.

We want to recall that in the case of single-Higgs boson pro-
duction the soft-virtual approximation (compared to the full NNLO
result) is known to be accurate to a few percent level. We expect
it to be even better for Higgs pair production due to the larger
invariant mass of the final state, which leaves less energy for ex-
tra hard radiation. In fact, we computed the NLO soft-virtual cross
section, finding K SV

NLO = 1.95, which differs from the full NLO result
by less than 2%. In contrast, the heavy top quark approximation
is not expected to be as good as for single-Higgs production since
the invariant mass of the Higgs pair is not small compared to the
top quark mass. Still a number of improvements can be applied
to the current approximation, like keeping the exact full mass de-
pendent LO expressions wherever they appear in the higher order
expansion [18]. Future work may be directed either towards a full
NNLO calculation (in the heavy top limit), or to compute sublead-
ing terms in the heavy top quark mass expansion.
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