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Abstract

We consider the bosonic sector of an N = 2 supersymmetric Chern–Simons–Higgs theory in 2 + 1 dimensions. The gauge group is U(1) ×
SU(N) and has Nf flavors of fundamental matter fields. The model supports non-Abelian (axially symmetric) vortices when Nf � N , which
have internal (orientational) moduli. When Nf > N , the solutions acquire additional collective coordinates parameterizing their transverse size.
We solve the BPS equations numerically and obtain local (Nf = N ) and semi-local (Nf > N ) string solutions.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Chern–Simons (CS) theories are relevant in a quantum field theory context since they provide an alternative gauge-invariant
procedure of mass generation [1]. Moreover, the high-temperature limit of quantum field theories in d = 4 dimensions are effectively
three dimensional and CS terms are precisely induced by fermions in d = 3 dimensions through the parity anomaly [2]. CS actions
play also a role in the analysis of interesting condensed matter phenomena [3–5], the computation of topological invariants of
3-manifolds [6] and they are connected with d = 2 conformal field theories [7].

CS–Higgs models differ drastically from theories in which solely a Maxwell or Yang–Mills term governs the dynamics of the
gauge fields. In particular, at the classical level, axially symmetric (vortex or string) solutions to the equations of motion necessarily
carry electric charge [8–15] which, in the non-Abelian case, is quantized (for a complete review on CS theories and planar physics
see [16]).

Bogomolny equations for the non-Abelian CS–Higgs system were first obtained in [15], where it was shown that, as in the
Abelian case [12,13], a sixth-order potential has to be considered. Explicit vortex solutions were exhibited in [15], with the flux
directed in the Cartan subalgebra of the non-Abelian group. It is the purpose of the present work to find genuine non-Abelian
vortex configurations by proposing a more general ansatz as the one already considered for Yang–Mills-matter theories [17–19]
with gauge group U(1) × SU(N) and Nf � N flavors of fundamental matter multiplets. The resulting vortex configurations can be
characterized by non-Abelian collective coordinates related to orientational degrees of freedom and, when Nf > N , to infinitesimal
variations of the transverse size.
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2. Model and notation

We consider the truncated bosonic sector of the N = 2 SUSY U(1) × SU(N) Chern–Simons–Higgs action in 2 + 1 dimensions
(the complete SUSY Lagrangian can be found in [21])

(1)S =
∫

d3x

{
κ1

2
εμνρF 0

μνA
0
ρ + κ2

2
εμνρ

(
FI

μνA
I
ρ − 1

3
f IJKAI

μAJ
ν AK

ρ

)
+ (

Dμφf
)†(

Dμφf
) − V

[
φ,φ†]},

where ε012 = 1, g00 = 1, f IJK are the structure constants of the non-Abelian group, and the quantization condition implies κ2 =
m/8π . Our theory has a sixth-order potential which, forced by N = 2 supersymmetry, allows Bogomolny completion of the energy
functional with all coupling constants at the Bogomolny point (see Ref. [22] and references therein for details on this point)

(2)V
[
φ,φ†] = 1

16κ2
1N2

φ
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.

Here, μ,ν,ρ = 0,1,2 are Lorentz indices, I, J,K = 1, . . . ,N2 − 1 are the SU(N) “color” group indices and τI are the anti-
Hermitian generators of SU(N). The complex scalar multiplets φ

f
i , besides the color index i, j, k = 1, . . . ,N , possess additional

flavor index f,g,h = 1, . . . ,Nf with Nf � N , thus can be written as N ×Nf matrices. The covariant derivatives and field strengths
are defined as

Dμφ
f
i = ∂μφ

f
i + (

ASU(N)
μ

)j

i
φ

f
j + (

AU(1)
μ

)j

i
φ

f
j ,

ASU(N)
μ = AI

μτI , AU(1)
μ = A0

μτ0,

(3)F 0
μν = ∂[μA0

ν], F I
μν = ∂[μAI

ν] + f IJKAJ
μAK

ν .

Up to gauge transformations, minima of the potential are given by

(4)symmetric phase: φf = 0,

(5)asymmetric phase: φf φ
†
f = ξ diag{1, . . . ,1}.

In what follows we set, without loss of generality, ξ = 1. The energy density is

(6)H = (
D0φf

)†(
D0φf

) + (
Diφf

)†(
Diφf

) + V
[
φ,φ†]

and the Euler–Lagrange equations of motion of the theory are

(7)κ1ε
αβ
μ F 0

αβ = J 0
μ ≡ φ

†
f τ 0Dμφf − (

Dμφf
)†

τ 0φf , κ2ε
αβ
μ F I

αβ= J I
μ ≡ φ

†
f τ IDμφf − (

Dμφf
)†

τ Iφf ,

(8)DμDμφf = ∂V

∂φ
†
f

.

Defining Dε ≡ D1 + iεD2 with ε ≡ ±, and using Gauss’ law, we can write the energy as a sum of squares

H =
∫

d2x

{[
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}

leading to the Bogomolny equations.

3. Non-Abelian local strings

In this section we investigate the so-called “local ZN string-type solutions” as discussed for the Yang–Mills case in [17–19] (see
also [20]).

We set Nf = N so the matter fields can be arranged as a square matrix Φ . The Lagrangian (1) is then invariant under
SU(N)color × SU(N)flavor rotations,

(10)Φ → UΦV, Aμ → UAμU−1 − (∂μU)U−1

with U ∈ U(N)local and V ∈ SU(N)global. We start from the trivial vacuum in the asymmetric phase

(11)Avac
μ = 0, Φvac = diag{1, . . . ,1}.
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After a U(1) × SU(N) gauge transformation we obtain a singular vortex configuration which, for the scalar field, takes the form

(12)Φvac → Φ = exp
(
ατ 0 + βτN2−1)Φvac = diag

{
1, . . . ,1, e−iϕnε

}
with

τ 0 = i√
2N

diag{1, . . . ,1}, τN2−1 = i√
2N(N − 1)

diag{1, . . . ,1,1 − N},

(13)α = −√
2/Nεnϕ, β = √

2(N − 1)εnϕ.

Concerning the gauge fields we have

Avac 0
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i = −
√
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εij
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r2
nε, AvacN2−1
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i =

√
2(N − 1)

N
εij
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r2
nε,

(14)Avac I
i → AI

i = 0, Avac I
0 → AI

0 = 0, I = 1,2, . . . ,N2 − 2.

In such configuration, the ZN center of the gauge group SU(N) has been combined with U(1) elements to get a topologically
stable string solution possessing both windings, in SU(N) and in U(1) (since π1(SU(N) × U(1)/ZN) �= 0, the topology is non-
trivial). These kind of topological objects are also called “ZN strings”. In the present case the configurations (12), (14) represent a
(0, . . . ,0, n) singular string. A general (n1, . . . , nN) vortex configuration can be obtained following the same method. This suggests
the following ansatz for the regular vortex configuration

(15)Φ = diag
{
φ(r), . . . , φ(r), e−iϕnεφN(r)

}
,

AN2−1
0 =

√
N − 1

2N
f N2−1

0 (r), AN2−1
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√
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N
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(
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)
,
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0 = 1√

2N
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√

2

N
εij
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r2

(
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)
.

It should be noted that, contrary to the Yang–Mills–Higgs case [19], the A0 fields are nontrivial. The boundary conditions for the
fields are

φN(0) = 0, f (0) = f N2−1(0) = −ε n,

(17)φ(∞) = φN(∞) = 1, f0(∞) = f N2−1
0 (∞) = f (∞) = f N2−1(∞) = 0,

where we required the solution to be singled-valued at the origin, and to be a pure gauge at infinity. With this ansatz both the flux
and the energy of these solutions are quantized

(18)Φ ≡
∫

d2x F 0
12 = 4π√

2N
εn, E = 2πn.

Note that with our conventions n is always a positive integer, and ε determines whether the flux is positive (ε = +), or negative
(ε = −).

Ansatz (15) corresponds, for the n = 1 case, to what is called an “elementary string”. Composite strings can be constructed by
introducing windings in several diagonal elements in the scalar field and can be seen as the superposition of elementary ones.

Substituting ansatz (15)–(16) into the Bogomolny and Gauss equations, we obtain the following system of non-linear first-order
differential equations

(19)r∂rφ = − ε

N

(
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N

(
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(
(N − 1)φ2 + φ2

N

) + f N2−1
0 (N − 1)

(
φ2 − φ2

N

)]
,
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(
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)
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.
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Fig. 1. Plot of the magnetic field B0 (solid line), electric field E0 (dashed line), and energy density H (dotted line) for local vortices with κ1/κ2 = 1. The distance
between the energy density maximum and the origin increases with the winding number n.

Note that equations (22) can be used to eliminate f0 and f N2−1
0 in (20) and (21). Eqs. (19)–(21) then correspond to the Bogomolny

equations written in the standard form. In terms of the profile functions, the energy takes the form

(23)

E = 2π

∫
r dr

{
1

8N2κ2
1

(
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)2(
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N
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(
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N

)2(
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(
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N
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r2N2
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φ2

N

(
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}
.

The magnetic field (which is a pseudoscalar in 2 + 1 dimensions) and the electric field (with component only in the radial direction)
take the form

(24)B0 ≡ F 0
12 =

√
2

N

1

r
∂rf, E0 ≡

√(
F 0

01

)2 + (
F 0

02

)2 = 1

2N
∂rf0.

Let us study the solutions of Eqs. (19)–(22). We can distinguish two cases: first, when the U(1) and SU(N) coupling constants are
equal and then the effective symmetry group is U(N), and second, when the U(1) and SU(N) coupling constants are different.

3.1. U(N)gauge × SU(N)global solutions

If the U(1) and SU(N) coupling constants are equal κ1 = κ2 ≡ κ , the system of Eqs. (19)–(22) decouples into

(25)r∂rφ = −εgφ,
1

r
∂rg = − ε

8κ2
φ2(φ2 − 1

)
,

(26)r∂rφN = −εgN2−1φN,
1

r
∂rg

N2−1 = − ε

8κ2
φ2

N

(
φ2

N − 1
)
,

where we have defined

(27)g = 1

N

(
f − f N2−1), gN2−1 = 1

N

(
f + (N − 1)f N2−1).

In terms of the new functions, the boundary conditions are

(28)g(0) = 0, g(∞) = 0, gN2−1(0) = −εn, gN2−1(∞) = 0,

(29)φ(0) = C, φ(∞) = 1, φN(0) = 0, φN(∞) = 1.

Since the field φ has no winding, it does not necessarily vanish at the origin so C is an arbitrary parameter. Systems (25) and (26)
are formally the same but the functions (φ, g) and (φN,gN2−1) obey different boundary conditions. Remarkably, both systems
coincide with those arising in the Abelian case discussed in [14]. For the pair (φ, g), boundary conditions imply that

(30)φ ≡ 1, g ≡ 0.

The system (26) for the functions (φN ,gN2−1) was solved numerically in [13]. We remark that these equations do not depend on N .
At the origin, φN approaches to zero as rn (this fact will be important for the semi-local vortex).

We show in Fig. 1 profiles of B0, E0 and the energy density H(r). As usually happens in CS theories, the sixth-order potential
makes the maximum of the magnetic field to be away from the origin.
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Fig. 2. Profile functions for local vortices, for negative magnetic flux and κ1/κ2 = 1/2.

3.2. U(1)gauge × SU(N)gauge × SU(N)global solutions

When κ1 �= κ2, the complete set of Eqs. (19)–(22) has to be solved numerically. We used a relaxation method to find explicit
numerical solutions. The ratio of coupling constants k = κ1/κ2 is in fact the only independent parameter of the theory, since κ1 or
κ2 can be absorbed by a rescaling. In fact the energy can be expressed in terms of k only. We observe that as k departs from 1,
f and f N2−1 tend to separate from each other as well, forcing φ to be non-constant. As k goes from k < 1 to k > 1, the difference
f − f N2−1 changes sign, forcing the derivative of φ to change sign. Qualitatively, the behavior resembles the U(N) case (in which
both coupling constant coincide). When varying the winding number n of the vortex, the profile functions change in a similar way
as they do in the U(N) case. For equal n and different N , solutions do not change considerably. We present in Fig. 2 some solutions
for the case k = 1/2.

4. Non-Abelian semi-local strings

We have discussed non-Abelian vortex solutions in a U(1)gauge × SU(N)gauge × SU(N)flavor theory which are usually called
local vortex solutions. In order to have semi-local vortex solutions, those for which Nf > N , one has to extend the matter content
of the theory by adding Ne extra flavors so that Nf = N + Ne [23,24]. For definiteness we take Ne equal to N (but a general case
can be equally treated). Then, the symmetry of the model is U(1)gauge × SU(N)gauge × SU(2N)flavor. We call X the extra matter
fields.

In this case the trivial vacuum state is given by

(31)Φvac = diag{1, . . . ,1}, X vac = diag{0, . . . ,0}, Avac
μ = 0,

and it is invariant under the following transformation

(32)Φvac → V −1ΦvacV, X vac → V −1X vacṼ = 0, Avac
μ → V −1Avac

μ V = 0

where we have chosen, as in the local case, a gauge element U = V −1 with V an N × N flavor block and we have called Ṽ the
N × N flavor block acting on the extra X mater fields.

We follow now the same steps as in the local case: first we perform a rotation of the vacuum to find a singular vortex configuration
and then propose an ansatz for a regular configuration which we write explicitly

Φ = diag
{
φ(r), . . . , φ(r), e−iϕnεφN(r)

}
, X = diag

{
χ(r), . . . , χ(r),χN(r)

}
,

Ai = i

N
εij

xj

r2

(
nε + f N2−1(r)

)
diag{1,1, . . . ,1 − N} − i

N
εij

xj

r2

(
nε + f (r)

)
Id,

(33)A0 = i

2N
f N2−1

0 (r)diag{1,1, . . . ,1 − N} + i

2N
f0(r) Id

where Id is the N × N identity matrix. It should be stressed that more general ansatz could lead to solutions which exhaust the
number Nρ of collective coordinates related to the transverse moduli space [24]. Our ansatz corresponds to just two collective
coordinates.

Substituting (33) into the Bogomolny equations, we arrive to a system of six differential equations for the fields φ, φN , χ , χN ,

f and f N2−1, and two constraints for the fields f0 and f N2−1
0 . The solutions to these equations will have the same energy and flux

than the local ones (18), provided they satisfy the same boundary conditions (17). At infinity the solutions should reach the vacuum
state, so we impose

(34)φ(∞) = φN(∞) = 1, χ(∞) = χN(∞) = 0, f0(∞) = f N2−1(∞) = f (∞) = f N2−1(∞) = 0.
0



32 G.S. Lozano et al. / Physics Letters B 654 (2007) 27–34
Fig. 3. The magnetic field for semi-local vortices with κ1 = κ2 for different ρ values.

Again we distinguish the case in which the U(1) and SU(N) gauge coupling constants are equal from the one in which they are
different.

4.1. U(N)gauge × SU(2N)flavor semi-local solutions

As it happens for local vortex, when κ1 = κ2 ≡ κ the equations of motion decouple into two sets of independent equations. One
corresponds to a system with no winding

(35)r∂rφ = −εgφ, r∂rχ = −εgχ,
1

r
∂rg = − ε

8κ2

(
φ2 + χ2)(φ2 + χ2 − 1

)
,

and the other corresponds to a system with winding n,

(36)r∂rφN = −εgN2−1φN, r∂rχN = −ε
(
gN2−1 + εn

)
χN,

1

r
∂rg

N2−1 = − ε

8κ2

(
φ2

N + χ2
N

)(
φ2

N + χ2
N − 1

)

(we have defined g and gN2−1 as in (27)). As in the case of local strings, these equations coincide with those that arise in the
Abelian case [25]. The system (35) admits a trivial solution

(37)g = χ = 0, φ = 1,

while (36) can be solved numerically. Combining the equations for χN and φN , we get

(38)χN = ρ
φN

rn
,

where ρ is a (complex) integration constant. So, we finally have

(39)r∂rφN = −εgN2−1φN,
1

r
∂rg

N2−1 = − ε

8κ2

((
1 + ρ2

r2n

)
φ2

N − 1

)(
1 + ρ2

r2n

)
φ2

N .

The same argument applied to χ and φ determines that χ = αφ, but since φ(∞) = 1 and χ(∞) = 0, α must vanish, and so χ = 0
everywhere. The solutions we obtain are then the most general ones. The energy is independent of the complex parameter ρ, which
is then associated with the “size moduli”. One has in general, ni complex parameters ρi for arbitrary flavor Nf > N . For elementary
strings one can see that ni = Nf − N (since we are considering Nf = N + 1, we have in this case just one complex parameter).

From Fig. 3 we see that the solutions spread when the parameter |ρ| is incremented. As ρ increases, since the flux is con-
served, the extremum of the magnetic field must approach to the origin to compensate the spread towards spatial infinity. A similar
phenomenon occurs with the energy.

4.2. U(1)gauge × SU(N)gauge × SU(N + 1)flavor semi-local solutions

We consider now the case in which κ1 �= κ2. The same arguments as above lead to χ(r) = 0, so that the flavor group is in fact
reduced from SU(2N) to SU(N + 1). Similarly, the relation (38) holds, and the differential equations do not decouple. The system
is very analogous to the system (19)–(22) obtained for the local case, with the only difference that, in the equations for the f ’s, the
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field φN gets locally scaled

(40)φ2
N → φ2

N

(
1 + ρ2

r2n

)
.

Then, semi-local solutions arising from these equations are similar to those shown in Fig. 2 for the local case, with the only
difference that they are smoother since they decay as powers of r at spatial infinity.

In summary, our main task in this work was to solve the BPS equations for a non-Abelian Chern–Simons–Higgs theory. By
proposing an axially symmetric ansatz we obtained non-Abelian vortex solutions and discussed their properties. A class of vortex
solutions in non-Abelian CS theories were already known [9–11,15]. The solutions discussed here correspond to more fundamental
vortices in the sense that they are genuinely non-Abelian while the former correspond to ZN vortices with the gauge flux in the
Cartan algebra of SU(N)).

The model discussed here is indeed related to the one analyzed by [17–19] except that in our case the dynamics of the gauge
fields is governed by a CS action instead of a Yang–Mills one. This drastically changes the vortex properties, in particular forcing
them to carry electric charge.

In the case of local vortices, our solutions generalize those discussed in [20] to the case in which the gauge group is U(1) ×
SU(N), with the Abelian and non-Abelian sectors having different gauge coupling constants. When both couplings are equal, the
equations decouple into two sets of equations that coincide with those arising in the Abelian case. This is not the case when the
couplings are different and the BPS equations do not decouple. Nevertheless we were able to construct explicit solutions and discuss
their properties.

Further, we have also considered semi-local vortices, by allowing the flavor number Nf to be larger than the color number Nc.
As already noted for the Yang–Mills–Higgs system, the main feature in this case is that the solutions develop an additional moduli ρ

related to the vortex transverse size, thus modifying the asymptotic behavior of the fields, from exponential decay for the case of
local vortices, to a decay as negative power of the radial coordinate for the semi-local ones. Interestingly enough, one can see from
our explicit solutions how the size of the vortex grows with ρ.
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