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Abstract

We consider the transverse-momentum (qT ) distribution of Higgs bosons produced at hadron colliders. We use a form
that uniformly treats both the small-qT and large-qT regions in QCD perturbation theory. At smallqT (qT � MH , MH being
the mass of the Higgs boson), we implement an all-order resummation of logarithmically-enhanced contributions up
to-next-to-leading logarithmic accuracy. At largeqT (qT � MH ), we use fixed-order perturbation theory up to next-to-lead
order. The resummed and fixed-order approaches are consistently matched by avoiding double-counting in the intermqT
region. In this region, the introduction of unjustified higher-order terms is avoided by imposing unitarity constraints, so
integral of theqT spectrum exactly reproduces the perturbative result for the total cross section up to next-to-next-to
order. Numerical results at the LHC are presented. These show that the main features of theqT distribution are quite stable wit
respect to perturbative QCD uncertainties.
 2003 Elsevier Science B.V. Open access under CC BY license.
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The Standard Model (SM) of electroweak intera
tions has been spectacularly confirmed by experim
tal data. However, the mechanism of mass genera
remains to be understood. In its minimal version,
model predicts the existence of a scalar particle,
Higgs boson [1], as a vehicle of electroweak symm
try breaking, but this particle has so far eluded exp
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imental discovery. The LEP collaborations have pu
lower limit on the massMH of the SM Higgs boson
at about 114 GeV [2], whereas fits to electroweak d
preferMH � 200 GeV at 95% CL [3]. The next searc
for Higgs boson(s) will be carried out at hadron coll
ers, namely the Fermilab Tevatron [4] and the CE
LHC [5].

The main SM Higgs production mechanism
hadron colliders is the gluon fusion process. At le
ing order (LO), O(α2

S), in the QCD couplingαS
this process occurs through a heavy-quark (top-qu
loop and, being a gluon-initiated process, it is expec
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to receive large radiative corrections. It is thus imp
tant to perform an accurate evaluation of higher-or
QCD contributions, together with a reliable estima
of the associated theoretical uncertainty.

The next-to-leading order (NLO) perturbative co
rections to the total cross section for Higgs boson p
duction via gluon fusion were computed in Ref. [6] (
the limit of an infinitely-heavy top quark) and [7] (in
cluding the dependence on the finite massMt of the
top quark) and were found to be large (of the orde
80–100%), thus casting doubts upon the reliability
the perturbative expansion. In the last two years m
effort has been devoted to improving the accur
of the perturbative calculation. In the large-Mt limit,
the next-to-next-to-leading order (NNLO) contrib
tion has been computed in Ref. [8] and still high
order contributions have been evaluated in Ref.
by implementing soft-gluon resummation. Since th
beyond-NLO corrections are moderate, the pertu
tive QCD predictions for the total cross section are
der good control now.

In this Letter we consider a less inclusive obse
able, the transverse-momentum (qT ) distribution of
the Higgs boson. An accurate theoretical prediction
this observable at the LHC [5] can be important to
hance the statistical significance of the signal over
background and to improve strategies for the extr
tion of the Higgs boson signal.

When studying theqT distribution of the Higgs
boson in QCD perturbation theory, it is convenie
to start by considering separately the large-qT and
small-qT regions. Roughly speaking, the large-qT
region is identified by the conditionqT � MH . In
this region, the perturbative series is controlled b
small expansion parameter,αS(M

2
H ), and calculations

based on the truncation of the series at a fixed-orde
αS are theoretically justified.2 In the small-qT region
(qT � MH ), where the bulk of events is produced, t
convergence of the fixed-order expansion is spoi
since the coefficients of the perturbative series
αS(M

2
H ) are enhanced by powers of large logarithm

terms, lnm(M2
H/q2

T ). To obtain reliable perturbativ
predictions, these terms have to be systematic
resummed to all orders inαS [11]. The fixed-order

2 We are not considering the extreme limitqT � MH , where a
resummation of enhanced perturbative terms is required [10].
and resummed approaches have then to be consist
matched at intermediate values ofqT , so as to avoid
the introduction of ad-hoc boundaries between
large-qT and small-qT regions.

Higgs boson production at largeqT has to be
accompanied by the radiation of at least one recoi
parton, so the LO term for this observable is ofO(α3

S).
The LO calculation was reported in Ref. [12]; it sho
that the large-Mt approximation works well as long a
bothMH andqT are smaller thanMt . Similar results
on the validity of the large-Mt approximation were
obtained in the case of the associated production
Higgs boson plus 2 jets (2 recoiling partons at la
transverse momenta) [13]. In the framework of
large-Mt approximation, the NLO QCD correction
to the transverse-momentum distribution of the Hig
boson were computed first numerically [14] and la
analytically [15,16]. In the large-qT region, the overal
effect of the NLO corrections to theqT distribution is
of the same size as that of the NLO corrections to
total cross section.

The method to systematically perform all-order
summation of logarithmically-enhanced terms at sm
qT is known [11,17–21] (see also the list of refe
ences in Section 5 of Ref. [22]). To correctly ta
into account the kinematics constraint of transver
momentum conservation, the resummation proced
has to be carried out inb space, where the impact p
rameterb is the variable conjugate toqT through a
Fourier transformation. In the case of the Higgs bos
b-space resummation has been explicitly worked
at leading logarithmic (LL), next-to-leading logarit
mic (NLL) [23,24] and next-to-next-to-leading log
rithmic (NNLL) [25] level. TheqT distribution is then
obtained by performing the inverse Fourier (Bess
transformation with respect tob. Various implemen-
tation formalisms [21,26–31] have been proposed
transform the resummed expressions back toqT space
and to perform the matching with the fixed-order
sults at largeqT . Phenomenological applications to t
Higgs bosonqT distribution have been presented
Refs. [24,32–37], by combining resummed and fix
order perturbation theory at different levels of theor
ical accuracy.

In the following we use the formalism described
Ref. [31] to compute the Higgs bosonqT distribution
at the LHC. In particular, we combine the mo
advanced perturbative information that is available
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present: NNLL resummation at smallqT and NLO
calculations at largeqT . More details will be given
elsewhere.

We consider the collision of two hadronsh1 and
h2 with centre-of-mass energy

√
s. According to the

QCD factorization theorem (see Ref. [38] and ref
ences therein), the transverse-momentum differe
cross section for the production of the SM Higgs b
son can be written as

dσ

dq2
T

(qT ,MH , s)

(1)

=
∑
a,b

1∫
0

dx1

1∫
0

dx2fa/h1

(
x1,µ

2
F

)
fb/h2

(
x2,µ

2
F

)

× dσ̂ab

dq2
T

(
qT ,MH , ŝ;αS

(
µ2

R

)
,µ2

R,µ
2
F

)
,

wherefa/h(x,µ2
F ) (a = q, q̄, g) are the parton dens

ties of the colliding hadrons at the factorization sc
µF , dσ̂ab/dq

2
T are the partonic cross sections,ŝ =

x1x2s is the partonic centre-of-mass energy, andµR

is the renormalization scale. Throughout the Letter
use parton densities as defined in theMS factorization
scheme, andαS(q

2) is the QCD running coupling in
theMS renormalization scheme.

The partonic cross section is computable in Q
perturbation theory and, as discussed above,
evaluated by introducing the decomposition

(2)
dσ̂ab

dq2
T

= dσ̂
(res.)
ab

dq2
T

+ dσ̂
(fin.)
ab

dq2
T

.

The first term on the right-hand side contains all
logarithmically-enhanced contributions,(αn

S/q
2
T ) ×

lnmQ2/q2
T , at smallqT , and has to be evaluated b

resumming them to all orders inαS. The second term
is free of such contributions, and can be computed
fixed-order truncation of the perturbative series.

The resummed componentdσ̂
(res.)
ac of the partonic

cross section is written as

dσ̂
(res.)
ac

dq2
T

(
qT ,MH , ŝ;αS

(
µ2

R

)
,µ2

R,µ
2
F

)

(3)

= 1

2

∞∫
0

db bJ0(bqT )

×Wac

(
b,MH , ŝ;αS

(
µ2

R

)
,µ2

R,µ
2
F

)
,

where J0(x) is the 0th-order Bessel function. Th
factor W embodies the all-order dependence on
large logarithmsL = lnM2

Hb2 at large b, which
corresponds to theqT -space terms lnM2

H/q2
T that

are logarithmically enhanced at smallqT (the limit
qT � MH corresponds toMHb � 1, becauseb is
the variable conjugate toqT ). Resummation of thes
large logarithms is better expressed by defining
N -momentsWN of W with respect toz = M2

H/ŝ at
fixedMH :

Wac,N

(
b,MH ;αS

(
µ2

R

)
,µ2

R,µ
2
F

)

(4)

≡
1∫

0

dz zN−1

×Wac

(
b,MH, ŝ = M2

H/z;αS
(
µ2

R

)
,µ2

R,µ
2
F

)
.

The resummation structure ofWac,N can indeed be
organized in exponential form as follows:

WN

(
b,MH ;αS

(
µ2

R

)
,µ2

R,µ
2
F

)
=HN

(
αS

(
µ2

R

);M2
H/µ2

R,M
2
H/µ2

F

)

(5)

× exp
{
GN

(
αS

(
µ2

R

)
, bMH ;M2

H/µ2
R,M

2
H/µ2

F

)}
,

where the subscripts denoting the flavour indices
understood.3

All the large logarithmic termsαn
SL

m = αn
S lnm

MHb with 1 � m � 2n are included (actually, th
complete dependence onb is included) in the form
factor exp{G}. More importantly, all the logarithmic
contributions toG with n+ 2 � m � 2n are vanishing
Thus, the exponentG can systematically be expand
as

GN

(
αS, bMH ;M2

H/µ2
R,M

2
H/µ2

F

)
= L̃g(1)(αSL̃

) + g
(2)
N

(
αSL̃;M2

H/µ2
R

)
(6)+ αSg

(3)
N

(
αSL̃;M2

H/µ2
R,M

2
H/µ2

F

) + · · · ,
whereαS = αS(µ

2
R) and the functionsg(n)(αSL̃) are

defined such thatg(n) = 0 whenαSL̃ = 0. Thus the

3 More precisely, we are presenting the resummation form
in a simplified form which is valid when there is a single spec
of partons. In general, the exponential is replaced by an expone
matrix with respect to the flavour indices of the partons.
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term L̃g(1) collects the LL contributionsαn
SL̃

n+1; the
functiong(2) resums the NLL contributionsαn

SL̃
n; g(3)

controls the NNLL termsαn
SL̃

n−1, and so forth. Note
that in the expansion (6) the logarithmic variableL has
been replaced by

(7)L̃ = ln
(
M2

Hb2/b2
0 + 1

)
,

whereb0 = 2e−γ . In the resummation regionMHb �
1, the replacement is fully legitimate sinceL̃ ∼ L. The
reason for using̃L rather thanL is discussed below.

The function HN in Eq. (5) does not depen
on b and, hence, its evaluation does not requ
resummation of large logarithmic terms. It can
expanded in powers ofαS = αS(µ

2
R) as

HN

(
αS;M2

H/µ2
R,M

2
H/µ2

F

)

(8)

= σ0α
2
S

[
1+ αS

2π
H(1)

N

(
M2

H/µ2
R,M

2
H/µ2

F

)

+
(
αS

2π

)2

H(2)
N

(
M2

H/µ2
R,M

2
H/µ2

F

)
+ · · ·

]
,

whereσ0 = GF/(288π
√

2) is the Born level cross
section in the large-Mt approximation, andGF =
1.16639× 10−5 GeV−2 is the Fermi constant.

The ‘finite’ componentdσ̂ (fin.)
ab of the partonic

cross section does not require resummation of la
logarithmic terms either. We compute it as follows:

(9)
dσ̂

(fin.)
ab

dq2
T

=
[
dσ̂ab

dq2
T

]
f.o.

−
[
dσ̂

(res.)
ab

dq2
T

]
f.o.

.

The first term on the right-hand side is the usual per
bative series for the partonic cross section truncate
a given fixed order inαS. The second term is obtaine
by truncating the resummed component in Eq. (3
thesame fixed order inαS. The (small-qT ) resummed
and (large-qT ) fixed-order approaches are thus co
sistently matched by avoiding double-counting in
intermediate-qT region. This procedure guarante
that the right-hand side of Eq. (2) contains the f
information of the perturbative calculation up to t
fixed order specified by Eq. (3) plus resummat
of logarithmically-enhancedcontributions from high
orders.

A few distinctive features of the formalism d
scribed so far require some comments.
We implement perturbative QCD resummation
the level of the partonic cross section. In the fact
ization formula (1), the parton densities are thus e
uated at the factorization scaleµF , as in the custom
ary perturbative calculations at largeqT . The central
value ofµF andµR has to be set equal toMH , the
typical hard scale of the process, and the theore
accuracy of the resummed calculation can be inve
gated as in fixed-order calculations, by varyingµF and
µR around this central value.

The variablesL and L̃ are equivalent to organiz
the resummation formalism in the regionMHb � 1.
The use of the variablẽL is inspired by the proce
dure introduced in Ref. [39] to deal with kinematic
constraints when performing soft-gluon resummat
in e+e− event shapes. WhenMHb � 1, L̃ → 0 and
exp{G} → 1. Therefore, using the definition in Eq. (7
we avoid the introduction of all-order contributio
in the small-b region, where the use of the largeb
resummation formalism is not justified. In particul
exp{G} = 1 atb = 0. This implies that the integral ove
qT of dσ/dqT exactly reproduces the fixed-order c
culation of the total cross section. Note that the b
of theqT distribution is in the regionqT � MH . Since
resummed and fixed-order perturbation theory c
trols the small-qT and large-qT regions respectively
the total cross section constraint mainly acts on
size of the higher-order contributions introduced in
intermediate-qT region by the matching procedure.

It is known [26–28,40,41] that non-perturbative e
fects have an increasing role in theqT distribution
as qT decreases. However, we do not include n
perturbative contributions. The main goal of the qu
titative study presented below is to investigate the p
dictivity of QCD within a purely perturbative frame
work. In particular, we want to examine how the Hig
bosonqT distribution is affected by perturbative QC
uncertainties, such as its dependence on scale v
tions and on higher-order contributions.

The functionsg(k)
N (αSL̃) and the coefficientsH(k)

N

in Eqs. (6) and (8) can be expressed (see for insta
Ref. [29]) in terms of perturbative coefficients know
asA(n), B(n), C(n) [21] andH(n) [31]. In particular,
g(1) depends onA(1), g(2)

N also depends onB(1) and
A(2) [23], g(3)

N also depends onH(1), C(1) [24], B(2)

[16,25] andA(3),H(1)
N depends onH(1) andC(1),H(2)

N

also depends onH(2) andC(2). We also observe tha
the functionsg(2)

N andg(3)
N receive additional contribu
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tions respectively from the LO and NLO anomalo
dimensions that control the evolution of the part
densities. The NNLL coefficientA(3) is not yet known.
In the following we assume that its value is the sa
as the one [42] that appears in resummed calculat
of soft-gluon contributions near threshold. The coe
cientH(2)

N is not known in analytic form either. How
ever, within our formalism we can exploit the prope
that the integral of theqT distribution exactly matche
the fixed-order calculation of the total cross secti
From the known NNLO result for the total cross se
tion [8], we thus extractH(2)

N in (approximate) numer
ical form. As pointed out in Ref. [31], the coefficien
B(n),C(n) andH(n) cannot separately be defined wit
out fixing a resummation scheme. Note, however,
the dependence on the choice of the resumma
scheme cancels by recasting the resummed form
in the form of Eq. (5): the functionsg(k)

N (αSL̃) and
the coefficientsH(k)

N in Eqs. (6) and (8) are explicitly
resummation-scheme independent.

The functionsg(k)
N (αSL̃) are singular whenλ =

β0αSL̃ → 1 (β0 is the first coefficient of the QCD
β-function). The singular behaviour is related to t
presence of the Landau pole in the perturbative r
ning of the QCD couplingαS(q

2). To properly define
theb integration in Eq. (3), a prescription to deal wi
these singularities has to be introduced. Here we
low Ref. [43] and deform the integration contour
the complexb space, as an extension of the minim
prescription of Ref. [44].

In the following we present quantitative results
NLL + LO and NNLL+ NLO accuracy. We imple
ment Eqs. (2) and (9). At NLL+ LO accuracy, we
computedσ (res.) at NLL accuracy (we include the co
efficient H(1)

N and the functionsg(1)
N and g

(2)
N ), and

we match it with [dσ ]f.o. evaluated at LO (i.e., a
O(α3

S)). At NNLL + NLO accuracy, we also includ
H(2)

N and g
(3)
N in the resummed component and w

evaluate[dσ ]f.o. at NLO (i.e. atO(α4
S)). As for the

evaluation of[dσ ]f.o., we use the Monte Carlo pro
gram of Ref. [14]. The numerical results are obtain
by using the MRST2001 set of parton distributio
[45] and choosingMH = 125 GeV. At NLL+ LO
we use LO parton densities and 1-loopαS, whereas
at NNLL + NLO we use NLO parton densities and
loopαS.

The NLL + LO results at the LHC are shown
Fig. 1. In the left-hand side, the full NLL+ LO result
(solid line) is compared with the LO one (dash
line) at the default scalesµF = µR = MH . We see
that the LO calculation diverges to+∞ as qT → 0.
The effect of the resummation is relevant bel
qT ∼ 100 GeV. In the right-hand side we show t
NLL + LO band that is obtained by varyingµF = µR

between 1/2MH and 2MH . The scale dependenc
increases from about±10% at the peak to abou
±20% atqT = 100 GeV. The integral of the resumm
curve is in good agreement with the value of t
NLO total cross section evaluated with LO part
densities and 1-loopαS, the small difference bein
due to the (improvable) numerical precision of o
code.

The NNLL + NLO results at the LHC are show
in Fig. 2. In the left-hand side, the full result (sol
line) is compared with the NLO one (dashed lin
at the default scalesµF = µR = MH . The NLO
result diverges to−∞ as qT → 0 and, at smal
values of qT , it has an unphysical peak (the to
of the peak is above the vertical scale of the p
which is produced by the numerical compensation
negative leading logarithmic and positive sublead
logarithmic contributions. It is interesting to compa
the LO and NLL+ LO curves in Fig. 1 and th
NLO curve in Fig. 2. At qT ∼ 50 GeV, the qT
distribution sizeably increases when going from L
to NLO and from NLO to NLL+ LO. This implies
that in the intermediate-qT region there are importan
contributions that have to be resummed to all ord
rather than simply evaluated at the next perturba
order. TheqT distribution is (moderately) harder
NNLL +NLO than at NLL+LO accuracy. The heigh
of the NNLL peak is a bit lower than the NLL on
This is mainly due to the fact that the total NNL
cross section (computed with NLO parton densit
and 2-loopαS), which fixes the value of theqT integral
of our resummed result, is slightly smaller than t
NLO one, whereas the high-qT tail is higher at NNLL
order, thus leading to a reduction of the cross sec
at small qT . We find that the contribution ofA(3)

(recall that we are using an educated guess on
value of the coefficientA(3)) can safely be neglecte
The coefficientH(2)

N contributes significantly, an
enhances theqT distribution by roughly 20% in the
region of intermediate and small values ofqT . The
resummation effect starts to be visible belowqT ∼
100 GeV, and it increases the NLO result by ab
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Fig. 1. LHC results at NLL+ LO accuracy.

Fig. 2. LHC results at NNLL+ NLO accuracy.
2
g. 1 d

ion.
ns
40% atqT = 50 GeV. The right-hand side of Fig.
shows the scale dependence computed as in Fi
The scale dependence is now about±6% at the peak
and increases to±20% atqT = 100 GeV. Comparing
Figs. 1 and 2, we see that the NNLL+ NLO band is
.
smaller than the NLL+ LO one and overlaps with
the latter atqT � 100 GeV. This suggests a goo
convergence of the resummed perturbative expans

We have considered perturbative QCD predictio
for the Higgs bosonqT distribution at the LHC. We
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have shown that the main features of theqT distrib-
ution are quite stable with respect to perturbative
certainties (scale variations, inclusion of higher ord
in the resummed expansion). More details about
formalism and our numerical results will be presen
in a future publication, where we shall also consid
the inclusion of non-perturbative contributions. Ava
able studies [35–37] of non-perturbative contributio
at the LHC estimate effects (at most) of the order
a few per cent whenqT � 10 GeV. These effects ar
smaller than the resummation effects examined he
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