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Covariant perturbation theory and the Randall–Sundrum picture
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Abstract

The effective action for quantum fields on ad-dimensional spacetime can be computed using a non-local expansion in powers
of the curvature. We show explicitly that, for conformal fields and up to quadratic order in the curvature, the non-local effective
action is equivalent to thed + 1 action for classical gravity in AdSd+1 restricted to a (d − 1)-brane. This generalizes previous
results about quantum corrections to the Newtonian potential and provides an alternative method for making local a non-local
effective action. The equivalence can be easily understood by comparing the Kallen–Lehmann decomposition of the classical
propagator with the spectral representation of the non-local form factors in the quantum effective action. 2001 Published by
Elsevier Science B.V.

1. The analysis of the physical effects of quantum fields on the background geometry requires the calculation
of the effective action. This is a complicated object even for free fields. With the exception of a few highly
symmetric background metrics, it cannot be computed exactly. Moreover, in order to study problems like black
hole evaporation or the physics of the early universe, it is necessary to compute the effective action for an arbitrary
metric, that should be fixed at the end by minimizing the effective action.

A useful approach for the approximate computation of the effective action is the so-called covariant perturbation
theory [1]. In this approach, that can be understood as a summation the Schwinger–DeWitt expansion, the effective
action is written in powers of curvatures. This approximation contains non-local terms that include important
physical information like gravitational particle creation and the leading long distance quantum corrections to
general relativity.

For conformal fields, in two spacetime dimensions thequadratic term in the covariant perturbation theory
reproduces the (exact) Polyakov action. It is possible to derive Hawking radiation from it [2]. In four dimensions
this has still not been done, and indeed it is a very difficult task because Hawking radiation is contained in thecubic
terms of the expansion.
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The four-dimensionalquadratic effective action has been used to compute the leading long distance 1/r3

corrections to the Newtonian potential [3]

(1)V (r)= −GM

r

(
1− (16π)2GB4

r3

)
,

where the constantB4 depends on the spin and number of quantum matter fields. These corrections have been
computed by other methods a long time ago [4]. For related works see [5].

In a recent paper, Duff and Liu [6] proved that the same kind of corrections to the gravitational potential do
appear in the Randall–Sundrum brane-world proposal [7]. When a 3-brane is inserted into AdS5, and for classical
matter fields in the brane, the classical metric in five dimensions restricted to the brane reproduces the classical
Newtonian potential plus the 1/r3 corrections. The coefficient of 1/r3 that appears in this scenario coincides with
the coefficient due to closed loops ofN = 4 superconformalU(N) Yang–Mills theory in the four-dimensional
theory. This is in tune with the AdS/CFT correspondence [8].

In this Letter we will extend the results of Ref. [6]. We will prove that, up to quadratic order in the curvature
and for free conformal fields, the non-locald-dimensional effective action coincides with the restriction of the
gravitational action in AdSd+1 to a (d − 1)-brane. The results are valid ford > 2. We stress that we are not trying
to check the consistency between the AdS/CFT and the brane-world relations, as in Ref. [6]. Our aim is to provide
an alternative representation for the non-locald-dimensional effective action.

2. For a scalar field in curved spacetimes the effective action is given byΓ = 1
2 lndet(O/µ2), where

O = −gµν∇µ∇ν + m2 + ξR is the operator of the classical field equation,µ is an arbitrary parameter with
dimensions of mass,m is the mass of the scalar field, andξ is the coupling to the scalar curvature. The conformal
coupling ind dimensions isξ = ξc = 1

4
d−2
d−1.

Using heat kernel techniques [9] it is possible to obtain the Schwinger–DeWitt expansion for the effective action

(2)Γ = − 1

2(4π)d/2

∞∫
0

ds

s1+ d
2

e−m2s
∑
l�0

(−s)l
l!

∫
ddx

√
g al(x).

The Schwinger–DeWitt coefficientsal are functions of the curvature and its covariant derivatives. When integrating
out term by term the expression above, an expansion in inverse powers of the mass is obtained. The expansion
is valid for slowly varying metrics that satisfyR � m2 (R denotes components of the curvature tensor). The
expansion is local, and adequate for the analysis of the divergences of the theory, which are contained in the terms
with l less or equal to the integer part ofd/2. However, it misses very important physical effects (like particle
creation), and it is not adequate for massless quantum fields.

It is possible to perform a partial summation of the Schwinger–DeWitt expansion by keeping terms up to a given
order in the curvature. The idea was introduced in Ref. [10] and further developed in Refs. [1,11]. The effective
action for a massless scalar field ind spacetime dimensions, up to quadratic order in the curvature, can be written
as [11]

(3)Γ = Γlocal + Γnonloc,

where

(4)Γlocal =
∫
ddx

√−g
[
−Λ(d) +Md−2

(d) R(d) −
k∑
l=0

(
α(l)R(d)✷lR(d) + β(l)Rµν(d)✷lR

µν

(d)

)]

and

(5)Γnonloc= −α
∫

ddx
√−g(aR(d)f (✷)R(d) + bRµν(d)f (✷)Rµν

(d)

)
.
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Heregµν , xµ, M(d) andΛ(d) are thed-dimensional metric, coordinates, Planck mass (M2
(4) = 1/16πGNewton) and

cosmological constant,R(d) andRµν(d) the Ricci tensor and scalar, respectively,

α = (4π)−d/2
√
π

8Γ ((d − 1)/2)
,

a = (ξ − ξc)
2 − d

8(d − 1)2(d + 1)
, b= 1

2(d2 − 1)
,

and

f (✷)=



(−1)

d
2

(−✷
4

) d
2 −2

ln

(−✷
4µ2

)
, d even,

(−1)
d−1

2 π

(−✷
4

) d
2 −2

, d odd.

The summation in Eq. (4) runs up tok, the integer part ofd/2 − 2. These terms are needed to renormalize the
theory. After renormalization, the coefficientsα(l), β(l) andΛ(d) might take arbitrary values. For simplicity we
will takeΛ(d) = 0 in what follows.

The results for the effective action can be extended for fields of arbitrary spin [11]. For example, for a massless
Dirac field in four dimensions, the effective action is six times the result for a conformally coupled scalar field [12].

Forgµν = ηµν + hµν , and in the harmonic gauge (i.e.,hµν,ν = 1
2hα

α
,µ), Eq. (3) can be rewritten as

(6)Γ (2) = −1

4

∫
ddx hµν(∆

−1)µνρσ h
ρσ ,

where

(∆−1)µνρσ = −Md−2
(d) ✷

(
ηµρ η

ν
σ − 1

2
ηµνηρσ

)
+ α✷2f (✷)(bηµρ ηνσ + aηµνηρσ

)

(7)+
k∑
l=0

✷l+2(α(l)ηµνηρσ + β(l)ηµρ η
ν
σ

)
.

If we add to the theory classical matter described by an energy–momentum tensorT µν , the spacetime metric
satisfies

(8)hµν =∆αβ
µν Tαβ .

In the low-energy approximation the quantum correction in Eq. (7) can be treated as a small perturbation. Using
that the inverse ofAηµνηρσ + Bη

µ
ρ η

ν
σ is given by −A

B(B+A·d)η
αβηµν + 1

B
ηαµη

β
ν , it is straightforward to check that,

up to leading order,

∆αβ
µν = −1

Md−2
(d) ✷

(
ηαµη

β
ν − 1

d − 2
ηαβηµν

)

− α

2(d2 − 1)M2(d−2)
(d)

f (✷)
(
ηαµη

β
ν −

[
1

d − 1
− (ξ − ξc)

2 8
d2 − 1

(d − 2)2

]
ηαβηµν

)

(9)+
k̃∑

j=0

g
(1)
j ✷j ηαµη

β
ν + g

(2)
j ✷j ηαβηµν.
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The constantsg(i)j depend ond , M(d), α(l) andβ(l). The summation here and in what follows is only ford � 5;

k̃ is equal tok whend is odd and tok − 1 whend is even.
The meaning of Eq. (9) is very simple: the first term corresponds to the classical propagation while the second

contains the quantum corrections and is easily traced back to the non-local part of the action, Eq. (5). The analytic
terms (proportional to✷j ), will not contribute in the large distance/low-energy limit (see below).

3. We will now prove that a propagator similar to Eq. (9) describes the classical propagation on a brane inserted
into AdSd+1 [13]. If the d-dimensional spacetime is thought as a(d − 1)-brane in a (d + 1)-dimensional theory
then the classical action reads

(10)
∫

dd+1X
√−G(

Md−1
(d+1)R(d+1) −Λ(d+1) +Lmatter

) −
∫

ddx
√−g τ.

HereXI = (y, xρ) are the (d + 1)-dimensional coordinates,GIJ the metric ind + 1 dimensions, andτ the brane
tension. TheLmatter term may include a matter source in the brane as well as in the bulk. The brane geometry is
chosen such thaty is the coordinate in the bulk andxρ are coordinates along the brane (which is located aty = 0),
then small fluctuations to the metric are represented by

(11)ds2 = dy2 + e−2|y|/L(
ηµν + hµν(x

ρ, y)
)
dxµ dxν,

whereL=
√

−d(d − 1)M d−1
(d+1)/Λ(d+1).

We are only interested inhµν(xρ, y = 0) when the matter source is located on the brane. In this situation, it has
been shown that the effective propagator on the brane is given by [13]

(12)∆αβ
µν = − d − 2

LMd−1
(d+1)

1

✷
(
ηαµη

β
ν − 1

d − 2
ηαβηµν

)
− 1

Md−1
(d+1)

∆KK
(√−✷ )(

ηαµη
β
ν − 1

d − 1
ηαβηµν

)
,

where

(13)∆KK
(√−✷ ) = −1√−✷

Kd/2−2(
√−✷L)

Kd/2−1(
√−✷L).

Again Eq. (12) has a simple interpretation: the first term describes the zero mode graviton localized on the brane,
while the second term corresponds to the continuum Kaluza–Klein graviton modes.

At large distances, corresponding to
√−✷L � 1, Eq. (13) can be expanded to give, up to the first term non-

analytic-in-✷,

(14)
1

L
∆KK

(√−✷ ) ≈




k̃∑
l=0

c
(e)
l

(✷L2
)l + c

(e)
d/2−2(−1)

d
2

(−✷
4

L2
) d

2 −2

ln
(−✷L2

)
, d even,

k̃∑
l=0

c
(o)
l

(✷L2
)l + πc

(o)
d/2−2(−1)

d−1
2

(−✷
4

L2
) d

2 −2

, d odd.

The coefficientsc(i)l can be easily obtained, but we will not need the explicit expression in what follows.
Now we compare Eqs. (12) and (9). The classical terms in both propagators coincide if we choose the coupling

constants such that d−2
LMd−1

(d+1)
= 1

Md−2
(d)

. In order to have agreement between the leading non-analytic terms, the

coupling must be conformal, i.e.,ξ = ξc . Moreover, we must havec(e,o)d/2−2L
d−3/Md−1

(d+1) = α(2(d2 −1)M2(d−2)
(d) )−1.

These equations relate the values of thed + 1 cosmological constant and Planck mass with Planck mass ind

dimensions. Had we considered a different free field content on the brane (Ns fields of spins) the only difference
would have been a different relation between the values of these parameters.
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It is not necessary to require agreement between the terms analytic in✷ since, as shown below, they are
not relevant in the low-energy limit. However, it is worth noting that with the choiceg

(2)
j = − 1

d−1g
(1)
j and

g
(1)
j = −c(e,o)j L2j+1/Md−1

(d+1) the analytic terms also coincide. This would imply particular values for the constants

α(l) andβ(l) in the non-local effective action Eq. (5), all of them determined byM(d+1) andΛ(d+1).
We will now show that analytic terms are not relevant in the low-energy limit. To illustrate this point we

compute the quantum corrections to thed-dimensional Newtonian potential,−1
2h

00(x). We assume a classical
massM fixed at the origin of coordinates, namelyT µν(x)= δ

µ
0 δ

ν
0 M δ(d−1)(x). Herex are the space coordinates,

x = (x1, x2, . . . , xd−1). With this in mind, using Eqs. (8) and (9), the quantum corrected Newtonian potential reads1

V (r)= −1

2
h00(r)=



B3

M

M2
(3)

1
r
, d = 3,

Ad
M

Md−2
(d)

1
rd−3 +Bd

M

M
2(d−2)
(d)

1
r2d−5 − M

2

∑k̃
j=0

(
g
(1)
j ✷j + g

(2)
j ✷j

)
δ(d−1)(x), d � 4,

whereAd and Bd are constants andr = |x|. As anticipated, the analytic terms proportional to✷j produce
quantum corrections localized at the origin. They are therefore irrelevant at large distances. In four dimensions,
the Newtonian potential reads

(15)V (r)= −GM

r

[
1+ G

45πr2

(
1+ 45

(
ξ − 1

6

)2)]
,

and agrees with previous results forξ = 1/6 [6,12]. If we considerN0 scalar fields andN1/2 Dirac fields, the
Newtonian potential becomes

(16)V (r)= −GM

r

{
1+ G

45πr2

[
N0

(
1+ 45

(
ξ − 1

6

)2)
+ 6N1/2

]}
.

4. Non-local effective actions have been previously localized through the introduction of auxiliary fields. For
example, in two dimensions, Polyakov’s action

(17)SP = − 1

96π

∫
d2x

√−gR 1

✷R

can be made local by introducing an auxiliary fieldψ and the local action

(18)Slocal = − 1

96π

∫
d2x

√−g (−ψ✷ψ + 2ψR).

On shell for the auxiliary field, both actionsSP andSlocal are equivalent.
In four dimensions, the effective action that reproduces the conformal anomaly is the so-called Reigert’s

action [14]. The non-local part of the Reigert’s action is, schematically,

(19)SR =
∫
d4xR2 1

∆4
R2,

whereR denotes components of the Riemann tensor, and∆4 is the fourth-order operator

∆4 = ✷2 − 2Rµν∇µ∇ν + 2

3
R✷ − 1

3
∇µR∇µ.

1 Note that ford = 3 spacetime is flat outside matter, hence there is no gravitational force. The term proportional toB3 comes from the
quantum correction.
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Reigert’s action can be made local [14,15] by the introduction of auxiliary scalar fields

(20)Slocal =
∫
d4x

(−ψ∆4ψ + 2ψR2).
The localization based in the introduction of auxiliary fields works only when the form factors in the non-local

effective action are the inverse of polynomials in✷ and∇µ. Here the form factors does not satisfy this property. An
extra dimension is needed to make local the action. The mathematical reason for this can be understood as follows.
The non-analytic form factors can be represented in the form of spectral integrals [1]. For example, in three and
four dimensions the form factors can be written as

(21)ln

(−✷
µ2

)
=

∞∫
0

dλ

(
1

λ− ✷ − 1

λ+µ2

)
, (−✷)−1/2 = 2

π

∞∫
0

dλ

(
1

λ2 − ✷
)
.

Similar expressions can be found for other dimensions. Note that the non-analytic functions of✷ are written as
integrals that involve massive propagators

( 1
λ−✷ or 1

λ2−✷
)
.

On the other hand, the restriction of a masslessd + 1 propagator on a(d − 1)-brane also admits an analogous
representation [16]. Indeed, let us consider the metricds2 = dy2 + w2(y)gµν(x) dx

µ dxν . The D’Alambertian
operator can be written as

(22)✷d+1 = ✷
w2

+ ∂2

∂y2
+ d

w′

w

∂

∂y
≡ ✷
w2

+ ✷y,

where✷ is thed-dimensional D’Alambertian associated togµν .

We introduce the eigenfunctionsθ(i)λ (y), that satisfy✷yθ
(i)
λ = − λ

w2 θ
(i)
λ . It can be easily shown [16] that the

massless propagator∆= 1✷d+1
, restricted to a fixed slicey = const, admits the following representation

(23)∆(x,y, x ′, y)=
∑
i,λ

∣∣θ(i)λ (y)
∣∣2 1

✷ − λ
.

This is analogous to the Kallen–Lehman decomposition in quantum field theory, with a weight functionµ(λ,y)=∑
i |θ(i)λ (y)|2.
The similarity between the form factors in the non-local quantum effective action and the restriction of the

classical propagator on a brane is now clear (compare Eqs. (21) and (23)). Roughly speaking, in this Letter we have
shown that the weight function in AdSd+1 spacetime reproduces the spectral representation of thed-dimensional
form factor for conformal fields. It is possible that, by taking a different metric in the bulk, one could reproduce
the non-local effective action for non-conformal fields. Alternatively, a different quantum field theory on the brane
could reproduce the AdSd+1 propagator beyond leading order.

The equivalence shown in this Letter could be useful as a tool for computations of the effects of quantum fields on
the spacetime metric, since it may be technically more easy to work with an extra dimension than with a non-local
effective action.
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