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Abstract

We show that the Pauli–Villars regularized action for a scalar field in a gravitational background in 1q1 dimensions
Ž .has, for any value of the cutoff M, a symmetry which involves non-local transformations of the regulator field plus local

Weyl transformations of the metric tensor. These transformations, an extension to the regularized action of the usual Weyl
symmetry transformations of the classical action, lead to a new interpretation of the conformal anomaly in terms of the
Ž .non-anomalous Jacobian for this symmetry. Moreover, the Jacobian is automatically regularized, and yields the correct

1result when the masses of the regulators tend to infinity. In this limit the transformations, which are non-local on a scale of ,M

become the usual Weyl transformations of the metric. We also present the example of the chiral anomaly in 1q1
dimensions, showing that the Pauli–Villars regularized action has a non-local symmetry. This symmetry is similar to the one

Ž .of lattice Ginsparg–Wilson fermions, with the ultraviolet cutoff playing the role of the inverse of the lattice spacing.
q 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Anomalies are one of the most striking manifesta-
tions of the presence of ultraviolet infinities in quan-
tum field theory phenomena. They have important

Žconsequences for the quantum consistency unitarity
.and renormalizability of different models, as well as

for the study of the theoretical structure of quantum
field theory, providing interesting relations with
mathematical objects.

The regularization of a theory is a procedure with,
by its very definition, produces a violent modifica-
tion in its large momentum behaviour. Anomalies

1 E-mail: fosco@cab.cnea.gov.ar
2 E-mail: fmazzi@df.uba.ar

arise when this modification, whatever the particular
regularization method applied, violates a classical
symmetry. In the resulting renormalized quantum
field theory, the quantum counterpart of that symme-
try becomes ‘anomalous’. In particular, continuum
symmetries will no longer lead to the conservation of
a current, thus modifying the naive Ward identities.

In the functional integral representation, anoma-
lies are usually attributed to the fact that, while the
classical action is invariant under a given symmetry
transformation, the integration measure is not. When
performing a change of variables associated to the
classical symmetry, the Jacobian of the transforma-
tion is, due to ultraviolet divergences, not well de-
fined. When carefully evaluated, by introducing a
proper regularization, this Jacobian gives rise to an
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w xanomalous term in the effective action 1 , or, de-
pending on the context, to anomalous Ward identi-
ties.

In this approach, the symmetry transformations
are implemented on the unregularized action, which
is formally invariant, and the regularization is only
implemented afterwards, when computing the Jaco-
bian 3 of the transformation. It is worth remarking
that the unregularized action contains field compo-
nents at all the momentum scales, in particular the
ones that are above the cutoff. To avoid this unpleas-
ant feature, we shall start by considering the regular-
ized action, and restrict our study to transformations
that leave this functional invariant. Of course, we
shall impose the constraint that the resulting transfor-
mations should tend to the usual ones when the
cutoff is removed. Also, due to the fact that they
avoid the large momentum modes, they will neces-
sarily have to be non local, although in a scale of the
order of the inverse of the cutoff.

As a particularly convenient form of the regular-
ized action, which we will use in this note, we shall
introduce a set of Pauli–Villars regulator fields, with
carefully tuned masses M that tend to infinity at thei

end of the calculation. Due to the presence of the
regulator masses, the regularized action will be no
longer invariant under some the classical symme-
tries, namely, those that rely on the masslessness of
the fields in the action.

In the present letter, we will point out that this
regularized action does have a generalized, non local
symmetry, that reproduces the classical symmetry in
the limit M™`. Moreover, when performing ai

change of variables in the path integral based on this
symmetry, the associated Jacobian is finite, repro-
ducing the anomalous term in the effective action,
when the cutoff tends to infinity.

In Section 2 we discuss this procedure in detail
for the gravitational conformal anomaly of a mass-
less real scalar field in 1q1 dimensions. We exhibit
the explicit form of the non local symmetry of the
regularized action and compute the conformal
anomaly, which of course agrees with the Liouville

w xaction 2,3 . In Section 3 we consider massless

3 The regularization of this Jacobian is of course related to the
definition of the integration measure.

fermions in 1q1 dimensions coupled to the electro-
magnetic field. Again we present a generalized chiral
symmetry of the regularized action and compute the
chiral anomaly. Section 4 contains our conclusions.

2. The conformal anomaly in 1H1 dimensions

In this section we shall consider the partition
w xfunction ZZ g , corresponding to a massless scalarmn

field in the presence of an external gravitational
background in 1q1 dimensions:

w x w x iSw w , gmn xZZ g s DDw e 1Ž .gHmn

where

1 2 mn'w xS w , g s d x yg g E wE w 2Ž .Hmn m n2

Ž . Ž .and gsdet g . In Eq. 1 we have made it ex-mn

plicit the fact that the definition of the scalar field
integration measure depends upon the background
metric g .mn

w xThe classical action S w, g is invariant undermn

Weyl transformations of the metric:

g ™g v x sv x g x 3Ž . Ž . Ž . Ž .mn mn mn

v w xS w , g sS w , g 4Ž .mn mn

Ž . Ž .for any strictly positive v x . In adequate coordi-
nates, any metric in two dimensions is conformally
flat:

g ses Ž x .h 5Ž .mn mn

Ž .where h sdiag 1,y1 denotes the flat Minkowskimn

metric. The classical dynamics of a scalar field in a
gravitational background in 1q1 dimensions is
therefore trivial:

1 2 mnw x w xS w , g sS w ,h s d x h E wE w . 6Ž .Hmn mn m n2

This conclusion does not hold true, of course, for the
quantum dynamics, the reason being the existence of
the conformal or trace anomaly, which spoils the

Ž .symmetry under the transformations 3 and pro-
duces a non vanishing trace in the energy momentum

w xtensor 4 .
In the usual setting, one derives the quantum

Ž .effects by dealing with the vacuum functional 1 .
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Ž .Under a Weyl transformation 3 , and using the
Ž .property 4 , we see that

v iSw w , g xmnvw xZZ g s DDw e . 7Ž .gHmn

Namely, any possible quantum effect must come
from the non-invariance of the integration measure
under Weyl transformations of the metric.

w xAs shown by Polyakov 2,3 , there is, indeed, an
anomalous Jacobian, the exponential of the Liouville
action

w x v w x w xDDw s DDw J sg g

w x w xs DDw expi AA g ,w 8Ž .g mn

w xwhere AA g ,w is the anomaly, a local functionalmn

of g .mn

Ž .By using the decomposition 5 , and normalizing
w xZZ such that ZZ h s1, one also sees thatmn

w x w x w xZZ g sJ s sexpi AA w , 9Ž .mn

w x w xwhere AA w 'AA h ,w is given bymn

1 1
2 mw xAA w s d x E wE w . 10Ž .H m296p w

As can be easily proved from the perturbative deriva-
w xtion of the anomaly given in Ref. 3 , when the

system consists of d bosonic scalar fields and d
w xGrassmann scalar fields the Jacobian becomes J s

Ž . w xsexpi dyd AA g,w .
In what follows we will show that, if one works

with the regularized action rather than the classical
w xaction S w, g , there is a non local symmetry, and

one can compute the anomaly as the Jacobian associ-
ated to a non local redefinition of the fields. The
Pauli–Villars method, first applied to this system in

w xRef. 5 , amounts to the introduction of three ‘regu-
lator fields’ x ,x ,h and a cutoff M so that

regS w ,x ,x ,h , g , Mmn

1 2 mn mn's d x yg g E wE wqg E xE xH ž m n m n2

2 mn 2 2yM xxqg E hE hy2 M h 11Ž ./m n

where x ,x are complex Grassmann fields, while h

is a real scalar field. The number and masses of the
regulators are just right to make the vacuum energy
in a non-trivial background finite. For the sake of

Ž .convenience, we rewrite 11 in a more compact
form as follows:

regS w ,x ,x ,h , g , Mmn

X X1 2² < < : ² < < :'sy w I w q x I qM yg xŽ .2

X 2² < < :'q h I q2 M yg h 12Ž .Ž .
where

X mn' 'I s yg IsE yg g E 13Ž .m n

and I is the usual curved space Laplacian operator
mn1 'Is E yg g E . We used a Dirac bracketm n

y g'
like notation for the scalar product in flat two
dimensional spacetime:

² < : 2f f s d x f x f x , 14Ž . Ž . Ž .H1 2 1 2

which is convenient, since we have absorbed the
'factor yg of the measure in the operators. It is

X 'worth noting that both I and yg are symmetric
Ž . Ž .real Hermitian operators for the scalar product 14 .
Also, I

X is explicitly invariant under Weyl transfor-
mations.

Due to the presence of the mass terms for the
regulator fields, it is evident that the regularized
action is not invariant under Weyl transformations of
the metric tensor:

reg vS w ,x ,x ,h , g , Mmn

X1 ² < < :sy w I w2

X 2² < < :'q x I qM v yg xŽ .
X 2² < < :'q h I q2 M v yg hŽ .

reg/ S w ,x ,x ,h , g , M . 15Ž .mn

We may, however, compensate the non invariance of
S reg by a transformation of the regulator fields:

< w <w )s w) ,
y1r2Xw 2< 'h )s I q2 M w ygŽ .
1r2X 2 <'= I q2 M yg h) ,Ž .

y1r2Xw 2< 'x )s I qM w ygŽ .
1r2X 2 <'= I qM yg x) 16Ž .Ž .
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after which we see that

w w w w w w xS w ,h ,x ,x , g , M sS w ,h ,x ,x , g , M .reg reg

17Ž .

Ž . Ž .Eqs. 16 and 17 define the non local symmetry of
the regularized action. This symmetry must be stud-
ied of course at the quantum level, by considering
the regularized vacuum functional

w x w xZ g s DDw DDh DDx DDx gHreg mn

= w xexp iS w ,h ,x ,x , g , M . 18Ž .Ž .reg

Ž .Performing the Weyl transformation 3 for g inmn

Ž . Ž .18 followed by the change of variables 16 in the
functional integral, we see that:

w w w w w
wZ g s DDw DDh DDx DDxH greg mn

= w xexp iS w ,h ,x ,x , g , MŽ .reg

w x w xsJ g ,w , M DDw DDh DDx DDx gHreg

= w xexp iS w ,h ,x ,x , g , M 19Ž .Ž .reg

where J denotes the Jacobian for the transforma-reg
Ž .tion 16 :

y1X 2'w xJ g ,w , M sdet I qM ygŽ .reg

=
X 2 'I qM w ygŽ .

y1X 2'=det I q2 M ygŽ .

=
y1r2

X 2 'I q2 M w yg ,Ž .
20Ž .

and the suffix ‘reg’ is used because, as we will see
now, this Jacobian is finite. It is worth noting that,

w xalthough the integration measure for each field DDfi

depends non trivially on the background metric, as in
the unregularized case, the product of the integration
measures for the four fields does not depend on w,
due to the cancellation between the anomalous fac-
tors corresponding to bosonic and Grassmann fields.

These Jacobian factors are independent of the masses
of the fields.

If we define the finite quantities Z and J as the
Ž .limit of Z and J for M™` Eq. 19 impliesreg reg

w w x w x w xthat Z g sJ g,w Z g . Thus we have to evaluate
Ž .Eq. 20 in the limit M™`.

Ž .Let us now calculate the regulated Jacobian 20 .
As the metric is assumed to be conformally flat, and

X Ž .I is invariant under 3 , it is obvious that we may
X 'replace I by I, and that yg s1. We then

rewrite J in the form:reg

w x Ž1.w x Ž2.w xJ h ,w , M sJ w , M =J w , M 21Ž .reg reg reg

where

y1Ž1. 2 2w xJ w , M sdet IqM IqM w ,Ž . Ž .reg

y1r2Ž .Ž2. 1 'w xJ w , M s J w , 2 M . 22Ž .reg reg

We shall now, for calculational purposes, consider
J Ž1. alone, since the factor J Ž2. can be obtained fromreg reg

it by some simple substitutions. However, the two
factors have to be taken together for the cancellation
between UV divergences to happen.

Ž1.w xTo evaluate J w, M , we take into account thereg

fact that we will, in the end, be interested in the
M™` limit. This justifies the use of some form of

1expansion in powers of . A small dimensionlessM

parameter has then to be built using M, and the only
Žother dimensionfull object: derivatives of v v it-

.self is dimensionless . We then follow the derivative
w xexpansion technique 6 to split the field v into a

slowly varying part v plus a fluctuating piece a˜

v x sv x qa x , 23Ž . Ž . Ž . Ž .˜

Ž .where v x is to be regarded as a constant when˜
acted by the derivative operator. We then rotate to

Ž1.w xEuclidean spacetime, and expand ln J w, M inreg

powers of a , starting from

yE 2 qM 2ṽ
Ž1.w xln J w , M sTrlnreg 2 2ž /yE qM

M 2a
qTrln 1q , 24Ž .

2 2ž /yE qM ṽ

where E 2 sd E E is the flat, Euclidean spacetimemn m n

Laplace operator. Taking into account that the linear
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term vanishes, and terms with more than two a ’s are
suppressed by negative powers of M, it is sufficient
to use the expansion:

yE 2 qM 2ṽ
Ž1.w xln J w , M sTrlnreg 2 2ž /yE qM

M 2a M 2a
1y Tr2 2 2 2 2ž /yE qM v yE qM v˜ ˜

1
q OO . 25Ž .2ž /M

ŽThe first, zero derivative term, is divergent even for
.finite M . However, remembering that we are using

a Pauli–Villars scheme, we have to evaluate the
momentum integral that results from combining it
with the corresponding contribution from ln J Ž2.. This
produces a finite answer:

yE 2 qM 2v yE 2 q2 M 2v˜ ˜
1Trln y Trln22 2 2 2ž / ž /yE qM yE q2 M

M 2 ln2
s vy1 , 26Ž . Ž .˜

4p

2 Ž .proportional to M . This is finite for finite M , and
this shows that the Jacobian for the non local sym-
metry transformations is indeed finite. Of course,
when M tends to infinite, this contribution diverges.
The term proportional to v requires the introduction˜
of a counterterm of the cosmological constant type.

Ž .The v-independent divergence in Eq. 26 can be˜
absorbed into the normalization factor of ZZ.

ŽFor the second order term which is finite when
.M™` , a standard calculation yields, for M™`

2 2M M
1y Tr a a2 2 2 2 2yE qM v yE qM v˜ ˜

1 1
2 msy d x E aE a . 27Ž .H m248p w̃

w xThe derivative expansion technique implies 6 , on
the other hand, that v may be replaced by v in a˜

second order term, and that derivatives of a are
tantamount to derivatives of v. Then,

2 2M M
1y Tr a a2 2 2 2 2yE qM v yE qM v˜ ˜

1 1
2 msy d x E vE v . 28Ž .H m248p v

This contribution has to be combined with the sec-
ond order term coming from J Ž2., which only differsreg

1in a y global factor. Then,2

1 1
2 mw xlim J h ,w , M sy d x E vE v .Hreg m296p vM™`

29Ž .

Ž .which is the Euclidean Liouville action. Rotating
back to Minkowski spacetime we obtain the result

Ž .given in Eq. 9 .

3. The chiral anomaly

This example shares many properties with the
previous one of the conformal anomaly, and helps to
understand the general nature of the procedure we
have applied in Section 2.

w xWe shall consider here ZZ A , the vacuum func-
tional for a massless fermion in 1q1 dimensions,

iS wc ,c ; A xFw xZZ A s DDc DDc e 30Ž .H A

with

2S c ,c ; A s d x c iEuyeAu c . 31Ž . Ž .HF

Again, the integration measure depends on the back-
ground field configuration. The background gauge
field A may be decomposed as follows:

eA sE wqe E r , 32Ž .m m mn n

where w and r are scalar and pseudoscalar fields,
respectively. Then one easily sees that the fermionic
action may be rewritten as

2S c ,c ; A s d x c iEuyEu wqg r c ,Ž .Ž .HF 5

33Ž .
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what means that the gauge field may actually be
erased by a gauge plus chiral transformation of the
fermions. This, as for the previous example, implies
that the classical dynamics of the system is trivial.
However, the anomaly under chiral fermionic trans-
formations introduces a non trivial quantum dynam-
ics.

In the usual derivation, one performs chiral trans-
formations of the fermions,

c x seia Ž x .g 5c x ,Ž . Ž .
i a Ž x .g 5c x sc x e , 34Ž . Ž . Ž .

and the chiral anomaly appears from the non-invari-
ance of the fermionic measure.

To consider an alternative derivation, we note that
the Pauli–Villars regularized action in this case re-

Ž .quires the addition of just one massive bosonic
spinor field f, such that

reg 2S c ,c ,f ,f ; A s d x c iEuyeAu cŽ .HF

qf iEuyeAuyM f . 35Ž . Ž .

When a is a constant, the non-local infinitesimal
Ž .chiral symmetry transformations of 35 are,

dcs i a g c , dcs i a cg ,5 5

Du
dfs i a g f ,5 Du y iM

Du
dfs i a f g , 36Ž .5Du y iM

where

Du sEuq ieAu . 37Ž .
The action is invariant under these transforma-

tions, while the Jacobian becomes

y2Du
Jsdet 1q iag 1y 38Ž .5 ž /Du y iM

which may be rewritten as

1
Jsexp y2 ia Trg . 39Ž .5 2Du� 0

1q 2M

The functional trace is finite, and reproduces the
proper result when M™`:

e
2 mnJsexp i a d xe E A . 40Ž .H m n2p

When a is spacetime dependent, the regularized
action is no longer invariant. However, we may use
that kind of transformation to get rid of the depen-
dence in A . Those transformations are defined bym

dcs i a x g c , dcs i cg a x ,Ž . Ž .5 5

Du
dfs i g a x f ,Ž .5 Du y iM

Du
dfs i fa x g , 41Ž . Ž .5Du y iM

and the corresponding variation of the action is

reg 2dS sy d x cEu g a cŽ .HF 5

qfEu g a f . 42Ž . Ž .5

The Jacobian is easily shown to be
e

2 mnJsexp i d xa x e E A . 43Ž . Ž .H m n2p

4. Conclusions

We have presented two concrete examples of
systems where the regularized action has a non local
symmetry which is the natural extension of the stan-
dard symmetry of the unregularized action. More-
over, the application of those transformations in the
functional integral framework yields regularized Ja-
cobians which properly reproduce the anomalies
when the cutoff tends to infinity. This makes the
connection between the regularization of the dia-
grams of a model, and the regularization of its
Jacobian more transparent than in the usual setting.

We remark that our method differs also from
Ž .performing the usual local transformations to the

regularized action. This procedure would give no
Jacobian, due to the cancellation between bare fields
and regulators, while the regularized action would be
non-invariant. The anomaly would appear in this
case from the non-invariance of the regularized ac-
tion.
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Finally, we want to remark that the phenomenon
we have described, namely, the existence of a rem-
nant of the classical symmetry for the regularized
action is not new. It has been recently emphasized
w x7 that massless fermions on the lattice, even thought
the regularization breaks the naive chiral symmetry,
may have a lattice equivalence of that symmetry, if
the lattice Dirac operator satisfies the Ginsparg–Wil-

w xson relation 8 . Indeed, this relation can be used to
derive the chiral anomaly and the related index

w xtheorems on the lattice 9 .
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