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Abstract

We study the generation of primordial magnetic fields, coherent over cosmologically interesting scales, by gravitational
creation of charged scalar particles during the reheating period. We show that magnetic fields consistent with those detected
by observation may be obtained if the particle mean life 74 isin therange 10~ s < 7, < 10~ " s. We apply this mechanism
to minima gauge-mediated supersymmetry-breaking models, in the case in which the lightest stau 7, is the next-to-lightest
supersymmetric particle. We show that, for a large range of phenomenologically acceptable values of the supersymmetry-
breaking scale VF, the generated primordial magnetic field can be strong enough to seed the galactic dynamo. © 2000

Elsevier Science B.V. All rights reserved.

Quite homogeneous magnetic fields of intensity
B=3xX10"° Gauss are present in al structures of
our Universe: galaxies, galaxy clusters and hydrogen
clouds [1-4]. One of the mechanisms for the genera-
tion of magnetic fields is the primordial generation
of a seed field that is further amplified by gravita
tional collapse and/or dynamo [1]. For the origin of
the seed field, severa mechanisms have been pro-
posed recently: it has been suggested that a primor-
dial field might be produced during the inflationary
period if conformal invariance is broken [5,6]; in
superstring-inspired models, the coupling between
the electromagnetic field and the dilaton breaks con-
formal invariance and might produce the seed field
[7,8]; gauge-invariant couplings between the electro-

magnetic field and the space-time curvature also
break conformal invariance, but produces in general
an uninterestingly small seed field [9]; other mecha-
nisms are based on, for example, first order cosmo-
logical phase transitions and on the existence of
topological defects [10-12].

Recently, a new mechanism for cosmological
magnetic field generation was proposed [13], based
on the presence during inflation of a charged, mini-
mally coupled scalar field in its invariant vacuum
state [14]. When the transition to radiation takes
place, quantum creation of charged particles occurs
because of the release of gravitationa energy. The
mean electric current is zero, but stochastic fluctua
tions around that mean give a non-vanishing contri-

0370-2693,/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

Pll: S0370-2693(99)01389-1



288 A Kandus et al. / Physics Letters B 472 (2000) 287-294

bution. The magnetic field induced by this stochastic
current was sufficient to seed the galactic dynamo.
However, there remained the important issue of find-
ing a suitable scalar particle to generate the electric
current source of the magnetic field.

In this letter we address this problem in the
context of gauge-mediated supersymmetry-breaking
models (GMSB). In the simplest version of these
models, supersymmetry-breaking is communicated to
the visible sector through a set of massive fields,
called messengers, which carry non-trivial quantum
numbers under the gauge group [15,16]. The messen-
gers @,, @, are assumed to acquire an explicit mass
M, by the vacuum expectation value of a singlet
field { X,;) = M,, via a superpotential coupling

W=X & . (1)

A vacuum expectation value of the auxiliary compo-
nent F, of the field X, breaks supersymmetry and
induces, through the gauge interactions of the mes-
senger fields, the supersymmetry-breaking masses in
the observable sector. For the simplest case of N
sets of messenger fields belonging to the fundamen-
tal representation of SU(5) and a single field X, one
gets gaugino masses

M Ne; F )
T (2)

where i = 1,2,3 are associated with the gauge groups
U(D),3J(2) and U(3),, respectively.

The scalar masses not affected by Yukawa cou-
plings are given by

2 Nck aiz(O)(%)z

mé(u)=@

a?( ) — a?(0)
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- TMi (0) aiZ(O)

), (3)

where mg are the supersymmetry-breaking masses
for gauginos and scalars, respectively, u is the
renormalization group scale with w = 0 being identi-
fied with the messenger mass scale, cf is the
quadratic Casimir of the scalar particle under the
i-gauge group, and «; and b, are the corresponding
gauge coupling and MSSM beta function coeffi-

cients . From the above, it is easy to see that the
right-handed sleptons are the lightest scalars in the
spectrum and, for N> 1, the lighest stau can easily
become lighter than the lightest neutralino. The light-
est stau can aso become lighter than the lightest
neutralino due to mixing effects, for moderate and
large values of tanB, for any value of N. For the
characteristic values of the supersymmetry-breaking
scale F, however, the lightest supersymmetric parti-
cle is the gravitino. Indeed, the gravitino mass is
given by
F 4

mg BM, (4)

where My, is the Planck scale (we are identifying F
with the fundamental supersymmetry-breaking scale
Fy). Hence, the gravitino is the lightest supersym-
metric particle for any messenger mass M much
lower than the GUT scale.

In general, under the assumption of R-parity con-
servation [18], the next-to-lightest SUSY particle will
decay into a gravitino and a standard particle with an
inverse decay rate [19]

JE 4

3x10"Gev 1,
100TeV

(5

where my, o is the mass of the NLSP particle and k
is a projection factor equal to the component in the
NLSP of the superpartner of the particle the NLSP is
decaying into. For the case of the stau decaying into
atau and a gravitino, k= 1.

Congtraints on the value of the supersymmetry-
breaking scale may be obtained, for example, by the
requirement that the gravitino density does not over-
close the Universe. For instance, if the gravitino
mass mg > 1 keV, the temperature at the beginning
of the radiation-dominated epoch, called the reheat
temperature T, should be much smaller than the
GUT scale in order to avoid overproduction of grav-
itinos [20]. The exact bound on T, depends on the
gravitino mass. For relatively large values of the
gravitino mass, corresponding to VF = 10° GeV,

1 (1OOGeV)5(
T= ==
k2

MyLsp

! For more genera expressions see, for instance, Ref. [17]
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(M = 10" GeV), an upper bound on T, of the order
of 107 GeV is obtained 2. The bound becomeﬁ even
smaller for smaller values of F. On the other hand,
for ms <1 keV and for any value of the reheat
temperature larger than the weak scale, the gravitinos
will be in thermal equilibrium at early times and, for
these range of masses, the gravitinos are sufficiently
light to lead to cosmologically acceptable values of
the relic density.

The reheating period can be characterized by the
temperature T, obtained by thermalization after pre-
heating and T, the temperature at the beginning of
the radiation dominated epoch [22]. In Ref. [13] an
inflationary model with instantaneous reheating was
considered. In the more realistic case in which the
reheating is extended in time, the number of particles
created at the two main transitions, namely
inflation-reheating and reheating—radiation, as well
as during the reheating period itself should be calcu-
lated.

We will work in conformal time, which is given
by dn=dt/a(t). Defining 7= Hn, where H is the
Hubble constant during inflation, and assuming that
during reheating the Universe is matter-dominated
[23], the scale factors for the different epochs of the
Universe read

inflation a,(7) = TSy (6)
reheating ag(7) = [1+ %r (7
1/2b T 1/2b
radiation ay(7)=(? lr+2—(?') .
(8)

T, and T, are the temperatures of the Universe at the
beginning of reheating and at the beginning of radia-
tion, respectively. We have assumed that during
radiation the temperature of the Universe scales with
a(7) asTaa(r) ' while during reheating it goes
asTa a(a-) , with0< b < 1[24].

2 For large values of the gravitino mass, the non-thermal pro-
duction of gravitinos tends to be dominant, and induces a tighter
bound on the reheat temperature, which may be of the order of the
weak scale [21].

The evolution of a charged scalar field is given
by the Klein—Gordon equation. If we expand the
real and imaginary parts of the fiedd as (27)
3% d% (7)€" + h.c. , the field equation reads

‘9—2+k2+(—) a%(r) — (1- Gf)ag ;

ar?
X ¢ (1) =0, (9)

where k=H % (x being the comoving wavenum-
ber) and where ¢ is the coupling to the curvature.
We will consider the mass as built up from two
contributions, the zero-temperature mass m(0) =
and the thermal corrections, so that we have m? =
m?(0) + gT%(7), where g is of the order of the
particle gauge coupling constants.

For the inflationary period, we do not need the
thermal corrections, as the temperature of that period
is too low to be important. However, in supergravity
theories, the possible presence of a non-renormaliz-
able coupling of the inflaton field | to the scalar
fields in the Kahler potential [21]

K —C—ilTldﬁb (10)
N VE
would naturally lead to a mass contribution §m? =
C, H?. Hence, in genera, an effective mass of the
order of the Hubble constant will be generated,
although the coefficient C,;, may be small or even
zero in the case when the specific effective coupling
is forbidden by symmetries of the theory [25].
The positive-frequency solution to Eg. (9) for
inflation reads

Vo
$u() = 5 VI-rHP[k(1-7)], (1)
where HY are the Hankel functions, with
3 \/1 16 4m »
) e i ()

where for the characteristic values of m(0) and H
during inflation, m?/H?=C,. We will assume
throughout this article that the scalar field couples
minimally to the curvature, ¢ = 0, and that the coef-
ficient C,, < 1; we will briefly discuss the implica-
tions of different values of these quantities at the end
of this article. For reheating and radiation domi-
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nance, we propose a WKB solution

1 T
(1) = ———ex [ii o(T dT’}),
#(7) = ey || £ e ()
(13)
where
reheating w( )
rn(O)Z T2
=\/k2+ oA+ oAt ()~ fag(n)
(14)

radiation w(7)

\/ 2 m(0)2 2 TVZ 2
=1/ k*+ g ay(r)+gma\/(7y). (15)

It is important to note that the frequency changes
from imaginary to real values, at a certain time 7,
during reheating.

We match the solutions to the field eguation in
the different epochs at the transition between them,
i.e. a the end of inflation and at the end of reheating.
At both times we demand continuity of the corre-
sponding modes and their first time derivatives. Care
must be taken to match the WKB solutions through
7., Where w(7,) = 0. We obtain

b (7) =ak¢;«/(7) +Bk¢|:y(7)’ (16)

where by ¢,, we denote the modes during radiation
and with

ak=—

elkmm/d 1 17+ 2/2
23/4  |K3/2 ! 3

17— 22
16

[‘E'“"dTID} _ %, (17)

17+2/2
—i—
17— 2/2
T)
}~@’(1)

gk+m/8
Bk = 23/4 | K3/2

o 1o
o]

In the above, we are ignoring the effects produced by
the change of the effective Hubble constant during
the inflationary period, which results in a change of
the Bogoliubov coefficients in the far ultraviolet [26].
These effects, however, are small in the range of
wavelengths relevant for the analysis of the genera-
tion of magnetic fields, k < k,q, Where Kk, is the
comoving wave number of the relevant astrophysical
scale under study (see below).

In order to proceed with our phenomenological
analysis, the values of T, T, and H in the previous
expressions must be specified. They can be related
by the age of the Universe, which can be well
approximated by the duration of the matter-dominated
epoch. Thisis given by

2 T| 3/2b( Ty )2 (TM )3/2 .
TM Ttod

o = 3 T,

where T,., = 107*® GeV is the present temperature
of the Universe, Ty, = 1 €V is its temperature at the
beginning of the matter dominated epoch and for the
Hubble constant during inflation, we shall assume
that 10" GeV <H < 10™ GeV. From Eq. (19) we
obtain

—+

=z (18)

. (19)

_ T(3-4b)/3 3H 1/213/2 e
TI _Ty TTM Ttod X g

2b/3

HMp,
: (20)

=T|—=
2
T’Y

Y

where the last equality stems from t, =M,/
T4 2T/ ? [23]. For H = 10" GeV we have

10 Gev | ***

—

v

T=T, (21)

Therefore, independently of the value of b and for
the values of the cosmological parameters considered
above, the relation T, > T, is fulfilled for any value
of T,< 10" GeV.
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In order to compute the magnetic field, we con-
sider the Maxwell equation

(92

J
?—VZ-F(T(T)a—T B=VXj, (22)

where o(7) is the time-dependent conductivity of
the medium and | is the electric current generated
by the charged scalar particles. Although { j)=0,
the two-point correlation function is different from
zero and produces a non-vanishing magnetic field.
This field can be expressed in terms of the two-point
function of the scalar field as (see Ref. [13] for
details)

!

dkdk
(B?) = e2H4ded7/[W7/k2k,(A)|k X K'|?

X Gl (7o07) Gl (70,7 ) [4GR(7,7')

X8G (7,7 + 8le(7,7’)8le/(7,T')] ,

(23)
where
Go(7.,7') = EEEQgﬁifll, (24)
Jo(r)w(7’)
8Gu(7.7") = 24 B i (T) i (')
+ 20 By i (7) iy ()
+ 2| Bl*Gh(7,), (25)

with (7)= ["dr'o(7"), ¢y, (¢,) the positive
(negative) frequency modes of the scalar field during
rediation dominance and with G[¢, ,(7,,7) the re-
tarded propagator for the electromagnetic field.
Z7(A)y is the window function that filters scales
smaller than A. Eq. (23) then gives the magnetic
energy of a field which is homogeneous over vol-
umes of order A3, the intensity of the field therefore

being estimated as /( BZ). From now on it will be
understood A = k3. where, as mentioned above,
Kioq IS the comoving wavenumber of the astrophysi-
cal scale we are interested in.

Rea particle propagation can be considered as
such from the moment when the frequency becomes

real, i.e. from 7. To evaluate Eq. (23) we shall
proceed in the same way as in [13], and consider
only the main contribution, which originates from
the last term between brackets, which is quartic in
the Bogoliubov coefficients and, within this term,
from the non-oscillatory contributions. We perform
the k integration with the same window function
used in [13], i.e. a top-hat one. We propagate the
magnetic field during reheating and radiation domi-
nance until the moment of detection with the pro-
pagator given by the equation [0%/d72 + k® +
o(7)3/ 07 1G4 w((76,7) = 8(7, — 7), Where o(r)
is the electric conductivity of the Universe. After the
particles decay, the field propagates conformally. We
assume that during all these periods the conductivity
of the Universe is given by [27]

e T

(7) - (26)
o(7) = = =

H (r—1,)
where a=2b, 7, = —2 and o,=T,/e*H for re-

heating, and =1, 7, = —2+(T|/Ty)l/2b and o,
= T/?°T}~1/22 /&’H for radiation dominance.
For 7, > 1, we have

(r—7)"
Gl (oi7) = = (27)
0
The Bogoliubov coefficients are the ones given in
Egs. (17) and (18). Now we are ready to evaluate the
time integrals in Eq. (23). It can be checked that the
contribution from reheating is negligible with respect
to the one from the radiation period. Also, the mass
term dominates over the thermal correction for a
particle lifetime t,,, > 10"* s. We therefore con-

sider the time integral

e G(T,75)
f dr’ - =
w(7')

Te

2195/2 5/4b
_ 2e?H%/ (E)
Tym(O) T,
3/211/2

{ : (

X [ tax + =—

2H
(28)

Now we are ready to evaluate the magnetic field. For
this purpose it is convenient to express the comoving
wave number in terms of the present one as K4 =

T
T’Y
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:<t0dT7(TI /Ty)l/ b /HT,q. Replacing everything in Eq.
(23) we obtain

(B?) —ee H® 4 T ) T
= K — —
Ym0 T2 N Tea ) T,

v

7/4b

tra - (29)

Eqg. (29) gives the intensity of the field at the
moment when the electric current vanishes. After
that, the field propagates as BP™S(t) = /(B?)
a(ty.)°/a(t)® (i.e. magnetic flux conservation).
Using the relation a(t) oc 1 /T, the present value of
the magnetic field is given by

2
(B = \[(BZ) ( TT“’ ) , (30)

where T, is the temperature of the Universe when
the particles decay, given by T, =Ta(r,)/

(T ) = T¥/4°T}73/%0 /2 Ht,, . Replacing ev-
erything in Eq. (30) we obtain

3147/2,.2 —-5/8b
(BPYS) = &H Mg [T £3/2. (31)
m(0)T, | T,

In the above, we have only considered the effect
induced by the scalar particle and not by the charged
particles resulting from its decay. This might seem
surprising since, due to charge current conservation,
the charged particles coming from the scalar particle
decay might also contribute in a relevant way to the
magnetic field generation. However, the decay of a
massive scalar particle, like the stau in the case
under study, will lead mostly to charged fermions
(tau leptons, in this case) with wavelengths much
shorter than the ones of the origina scalar field.
These fermions might eventually generate magnetic
fields, but, due to the wavelengths involved, these
fields will not be coherent in the scales of interest for
our study.

In order to apply the above formalism to the case
of gauge mediated supersymmetry-breaking models,
we should recall Eg. (5), which gives the lifetime of
the NLSP, .=t as a function of the supersym-
metry-breaking scale and the mass of the lightest

stau. Replacing Egs. (20) and (5) into Eq. (31), we
obtain

e°H "y
T/ HMp 1> X 100 GeV
17/3( \/E )4

100TeV

(Bpve) =

1 ( 100 GeV
k_( m(0)

3/2

X 3x 10" Gev~* (32)

We see that the b-dependence has disappeared, i.e.
the result does not depend on the details of the
reheating period. Using the equivalence 1GeV? =
10%° Gauss and the numerical estimates H = 10™
GeV, T,= 10" GeV, K,y = 107 % GeV (for a galac-
tic scale of the order of 1 Mpc), m(0) = 100 GeV
and \/F_/r( = 10° GeV, we obtain

(BPY) = 107!2 Gauss. (33)

This value of the generated magnetic field is suffi-
cient to seed the galactic dynamo, being also consis-
tent with the bounds imposed by the anisotropies in
the CMBR and by primordial nucleosynthesis[28,29].

In the above we have given results for specific
values of VF, H and T,, for minimal coupling and
for C, =0, that is for v=3/2. It is interesting to
discuss the dependence on VF, C,,, as well as on
departures from minimal coupling. In this case it can
be checked that for small k.4, the Bogoliubov coef-
ficients are given by o~ B, ~@(Dk™", with v
given by Eqg. (12). Considering a stau lifetime 7. =
tmax = 10" GeV ! and a stau mass m. = 100 GeV,
the value of the physical magnetic field is given by

( B/\phys> — 10(118/3)(v—3/2)~106/3+3n/2

107 GeV (7—4v)/6

T

v

X Gauss

H (25+8v)/12
X .
( 10M GeVv )

( Kiod
X

(B5-2v)
—_— . 34
1038 GeV ) (34)
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Acceptable values of the magnetic field, consistent
with the cosmological bounds [28,29] are in the
range

1079 Gauss > Bf"S > 10~ Gauss. (35)

For the case v = 3 /2, and for the mean values of the
parameters taken above, this implies 158/9 > n >
86,9, or, equivaently,

10 ¥s< <107 's. (36)

The variation of the above bounds with the cosmo-
logical parameters can be easily obtained from Eq.
(34).

On the other hand, for arbitrary values of v, the
following bound is obtained:

3 79 9 3 43 9
S5tis —mN=v>5+ 15 — 3N (37)

In gauge-mediated supersymmetry-breaking mod-
els, for a stau mass m. = 100 GeV and values of the
gravitino mass mg < 1 keV, the stau lifetime, Eq.
(5), is such that 11 < n < 16, or equivalently

10 Bs< <107 %s GMSBfor mg < 1keV.
(38)

For a mimimal stau coupling to the curvature and
Cy < 1, that is for v=3/2, Eq. (38) is in remark-
able agreement with the values required to generate
an acceptable magnetic field, Eq. (36).

The bounds on n in gauge mediated supersymme-
try breaking models also imply bounds on »

1.72> v> 1.25. (39)

Comparing this expression with the value of v for
minimal coupling of the scalar field, v =
3/2/1-4C,/9, we obtain that C,, < 0.68 in order
to generate cosmologically relevant values of the
magnetic field. As follows from Eq. (34), only small
modifications of the bound on C,, may be obtained
for different values of the cosmological parameters.

Consider now the departure from minima cou-
pling. Assuming that C, <1 we have v=
3/2y/1—16£/3. The bounds on the lifetime of the
stau are satisfied for

0< £<0.06; (40)

we thus obtained for a non-negligible interval of
coupling values, magnetic fields of an intensity suffi-
cient for these to be cosmologically important. The
upper bounds on C,; and ¢ quoted above can only
be obtained for values of VF (or equivalently n)
such that the gravitino mass mg is close to 1 keV.

The results given above were obtained for a re-
heat temperature T, = 10" GeV. As we emphasized
above, for the range of gravitino masses we are
concentrating on, the most relevant bound on the
reheat temperature comes from Eq. (20), which as-
sures the consistency of the whole approach. Larger
values of the magnetic fields may be obtained by
lowering the value of the reheat temperature. How-
ever, the fina result for the magnetic field, Eq. (32),
depends very weakly on the value of the reheat
temperature T,. No relevant departures from the
obtained values would be obtained even if the reheat
temperature were as low as T = 10° GeV.

In summary, we have shown that cosmologically
relevant magnetic fields may be generated by a
scalar field, minimally coupled to the curvature, so
far its lifetime is bounded by Eq. (36). The bounds
on the lifetime are in excellent agreement with those
obtained in minimal gauge mediated super-
symmetry-breaking models with the lightest stau as
the next-to-lightest supersymmetric particle, for val-
ues of the supersymmetry-breaking scale such that
mg < 1 keV. This conclusion is very weakly depen-
dent on the assumed values of the cosmological
parameters. Moreover, contrary to many models for
magnetic field generation proposed in the literature,
the present one is related to the properties of the low
energy effective theory and these properties can be
tested in accelerator experiments in the near future
[30].
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