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a b s t r a c t

We use a finite state (FSA) construction approach to address the problem of propositional
satisfiability (SAT). We present a very simple translation from formulas in conjunctive
normal form (CNF) to regular expressions and use regular expressions to construct an
FSA. As a consequence of the FSA construction, we obtain an ALL-SAT solver and model
counter. This automata construction can be considered essentially a finite state intersection
grammar (FSIG). We also show how an FSIG approach can be encoded. Several variable
ordering (state ordering) heuristics are compared in terms of the running time of the
FSA and FSIG construction. We also present a strategy for clause ordering (automata
composition). Running times of state-of-the-artmodel counters and BDDbased SAT solvers
are compared and we show that both the FSA and FSIG approaches obtain an state-of-
the-art performance on some hard unsatisfiable benchmarks. It is also shown that clause
learning techniques can help improve performance. This work brings up many questions
on the possible use of automata and grammar models to address SAT.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There is a long tradition that analyzed transformations of logic formulas and automata formally [9,15,39,38]. Early studies
by Büchi [9], Elgot [15] and Trakhtenbrot analyzed transformations from formulas to automata and vice versa in the context
of the relation between FSA andMonadic SecondOrder logic (MSO). Sometimes referenced as the Büchi–Elgot–Trakhtenbrot
Theorem, it was established that FSA andMSO have the same expressive power [38]. This was the basis of the approach that
uses Büchi automata to decide satisfiability of modal logic formulas (LTL) [39]. This is also the only reference to an automata
based approach to satisfiability found in [7]. Schützenberger, McNaughton, Papert and Kamp established the equivalence
between star-free regular expressions, counter-free finite state automata, first-order logic and temporal logic, see [32].

Propositional satisfiability (SAT) solving has many practical applications ranging from artificial intelligence to software
verification. Search-based techniques in SAT solving have been enormously successful. State-of-the-art SAT solvers are based
on the DPLL (Davis–Putnam–Logemann–Loveland) algorithm, augmented with a number of features. Current research in
this area has beenmainly dominated by the DPLL algorithm, a search approach. This is explained partly by its success. A few
other approaches were also considered; resolution based algorithms (DP), graph based algorithms (BDD) to name the most
important. Little or no effort has gone into investigating alternative techniques.

There are applications that require not only a boolean answer but also the number of models for a propositional formula,
or to know which are those models (ALL-SAT), or testing for functional equivalence. These tasks are performed using
knowledge compilation. In knowledge compilation, a representation in a source language is compiled into a target language
in order to perform reasoning tasks in polynomial time. Popular target languages are binary decision diagrams (BDD) and
decomposable negation normal form (d-NNF).
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Model counters [18] haven’t progressed as much as SAT solvers because SAT heuristics designed to reduce the search
space are, in many cases, not applicable, or their effectiveness is heavily reduced. BDD based solving has been an active
research topic and there are efficient BDD based SAT solvers and model counters available, since the model count of a
formula can be obtained from a BDD encoding. Efficient algorithms for model counting will have a significant impact on
many application areas.

The approach presented here is framed into a more general enquiry about propositional satisfiability as a language or
automata problem. As far as we know this question has not been pursued. It is difficult to know whether some of the
results that are brought to attention in this work were not considered interesting or were not known, even though the
existing connections and theoretical results were already present in the literature. From a different perspective, there are
a number of works that relate satisfiability to language problems in order to show NP-completeness of the recognition
problem for a particular language. Examples of this approach are the proofs that the word and generation problems for Two
Level Morphology (TLM) are NP-complete [5]. There are a number of proofs for many other language classes. It should be
stressed that the focus in these cases is the NP-completeness property and not an approach to solving SAT.

This work focuses on finite state techniques for SAT solving, an almost totally ignored approach. Approaching SAT as an
FSA construction problem offers knowledge compilation capabilities. We can obtain model counting, equivalence testing
and ALL-SAT answers from the constructed FSA. An FSA approach offers the advantages of a vast body of research and very
simple and thoroughly studied algorithms.

Given the similarities with BDDs [20], it is rather surprising that this approach has not been explored more deeply in the
context of propositional satisfiability. It was recently proved that acyclic deterministic finite state automata are equivalent
to sequence binary decision diagrams, SDD [14]. A full comparisonwith BDDs and an understanding of why BDDswere used
instead of using a more general machinery as FSA is beyond the scope of this work. We show however that an FSA approach
can have competitive results with BDDs on a number of benchmarks.

In order to use FSA in the context of SAT, every valuation satisfying a propositional formulawith variables vi with i ∈ [1, n]
can be represented by a string in en, where e is either 1 or 0. If the i-th character of the string is 1 then vi is True in that
valuation, otherwise, vi is False (cf. [40] and Theorem 7.3.8 and its corollary in [28]1). Two crucial aspects are important
for this approach to have any reasonable performance: variable ordering (the same as in BDD), and clause ordering, if the
formula is in conjunctive normal form (CNF). Consequently satisfying valuations for a formula in propositional logic with
n variables can be represented as a subset of Ln, the language of all possible valuations for n variables. This is clearly a
regular language, in particular an acyclic regular language, where each word in the language has the same length. Acyclic
regular languages have brought a lot of attention in particular for constructing DAWGs (Directed Acyclic Word Graphs).
However those approaches are focused on incrementally constructing the automaton, given instances of the strings in the
language (like in dictionary construction). In a SAT problem, given an ordering of variables the propositional formula can
be interpreted as specifying the language (the set of valuation words), but the problem is finding out that set. Words are
not given (as in the dictionary construction), instead ‘a grammar’, or a description of an automaton is given. A propositional
formula can be interpreted as a description of the automaton, in particular as a regular expression which describes the
automaton. Therefore, the costly operations to construct the automaton will be intersection and union, see [44]. From a
theoretical point of view, this is no improvement, given that automata intersection is P-SPACE complete [17].

We show that for every propositional formula we can construct a regular acyclic automaton that describes the set of
satisfying valuations. Given that satisfiability is a problem that is by itself in the realm of FSA, it is therefore expected to be
solved by FSM in general, and any other machinery higher in the hierarchy. It also brings into question the power of FSA
intersection to capture phenomena that are supposedly beyond context freeness, but that can be solved increasing the size
of a grammar/automaton, or by automaton construction. This approach was briefly described in [10].

In the present work we report experiments on a number of benchmarks and show how variable ordering and clause
ordering considerably affect the performance. An FSA can be constructed in a competitive time compared to state-of-the-
art SAT solvers. We also present an approach to SAT solving as a parsing problem using Finite State Intersection Grammars
(FSIGs) [42]. Given FSA intersection is P-Space complete [17] it is no surprise that FSIGs are able to encode SAT problems.
It has also been shown that intersection ordering in FSA is NP-complete [8]. It should also be noted that such an approach
to parsing is also a natural consequence to considering parsing as a CFG and automata intersection in [25,19]. In [25] it is
shown that this approach can be used with formalisms more powerful than CF. As a consequence of the FSIG approach it
is shown that parsing as CFG and automata intersection is NP-hard if no restriction is set on the description of the input
automata. This is a consequence of building the automata and the complexity of intersection and union operations. It was
shown that SAT problems encode unrestricted crossing dependencies (see [31,10]), and therefore the descriptive problem
we are looking at is one that is at the heart of many natural problems (e.g. natural languages and biological sequences).

The remainder of this paper is organized as follows. In Section 2weprovide some basic definitions. Section 3 describes the
approach presented in [10,11] to construct an automaton that defines the language of possible valuations of a propositional
formula. Section 4 describes the variable ordering and clause ordering heuristics. In Section 5 we describe the experiments
performed that show the possibilities of an FSA approach to SAT. Section 6 presents the generalization of the FSA approach
to the FSIG approach, and the experimental results that show that such a grammar approach can bring significant

1 Thanks to the anonymous reviewers for pointing out these references.
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improvements to the FSA approach to SAT solving. In Section 7 clause learning is addressed as a pre-processing step that
improves performance, despite increasing the number of intersections. In Section 8, non-clausal propositional satisfiability
experiments are reported. Finally in Section 9 we present conclusions and questions for future work.

2. Definitions

Most of SAT related definitions and notation follow the ones given in [29].
L(A) denotes the language generated by an Automaton or Grammar, A.
A clause is a propositional formula of the form l1 ∨ · · · ∨ ln, where each li is a literal i.e. a positive or negated propositional
variable.
A term is a propositional formula of the form l1 ∧ · · · ∧ ln.
Valuations are defined as functions v on a set of variables Var andwith values in {0, 1}. Valuations assign a truth value from
{0, 1} to each propositional variable p ∈ Var . We denote the set of literals (positive or negated variables) determined by the
set of variables Var by Lit . Then if |Var| = n, |Lit| = 2n. We say that a valuation v satisfies a formula φ or v |H φ.
Complete set of literals. A complete set of literals is a set S ⊆ Lit such that for every p ∈ Var exactly one of p, ¬p belongs
to S. There is a bijective correspondence between valuations and complete sets of literals. One such mapping associates
positive literals with 1 and negative literals with 0. An alternative mapping associates positive literals with 0 and negative
literals with 1. It follows that if |Var| = n, then there are 2n complete sets of literals over the set Var .
Total ordering. Truth values are ordered, 0 ≤ 1. Given an arbitrary ordering of Var there is a total (linear) ordering of
valuations, which can be ordered lexicographically or anti-lexicographically. Valuations can be thought of as elements of the
Cartesian product Val =


p∈Var{0, 1}. The Cartesian product Val can be ordered lexicographically or anti-lexicographically.

Ordered elements of Val are represented as boolean n-tuples (given |Var| = n). Consequently the least element in Val is the
n-tuple (01, . . . , 0i, . . . , 0n), where 0 ≤ i ≤ n, and the maximum element in a valuation is (11, . . . , 1i, . . . , 1n).
Valuations as strings. There is a correspondence between valuations and strings in {0, 1}n. Ordered elements in Val can be
represented as strings in {0, 1}n, which can be (anti-)lexicographically ordered.Wewill say that awordw satisfies a formula
φ (w |H φ) iff w is the string representation of an element v ∈ Val and v |H φ.
Regex (anti-)lexicographical order. Regular expressions of the same length allow us to define sets of words that satisfy a
formula. These can be ordered (anti-)lexicographically. Anti-lexicographic (colexicographic) order starts from the right. We
use anti-lexicographic order in the translation of clauses to regular expressions. Alternatively lexicographic order could be
usedwith a reverse clause ordering.Wedefine anti-lexicographic order for regular expressions of the same length as follows:

Given ak, bk ∈ {0, 1, ?}, with < a total order such that ? < 0 < 1:
[a1a2 . . . an] <alex [b1b2 . . . bn] ⇔

(∃j 0 < j ≤ n, ∀i j < i ≤ n, (ai = bi) ∧ (aj < bj))2

Such a clause order will place clauses with lower variables first and those containing higher variables later.
Finite State Intersection Grammar (FSIG).A finite state intersection grammar is the product of the intersection of an acyclic
sentence finite state automaton S and a set of finite automata C1, . . . Cn, usually called constraints: G = S ∩ C1, . . . ∩ Cn.

3. Satisfiability as a regular language problem

Barton [5] uses a finite statemachine (FSM) to solve propositional SAT in order to show that the descriptive and generative
power of PC-Kimmo and Two Level Morphology (TLM) as a grammar device are NP-complete. TLM and PC-Kimmo aimed at
the description of morphological properties in a computational linguistics frame. The approach presented in [40] is in the
more general framework of constraint satisfaction and introduces a representation of valuations as tuples. However [40]
focuses on the construction of theminimized finite state automata (MDFA), an issue that wewill ignore. We believe that the
prohibitive cost of a direct translation is the reason why such an approach was not further explored. In order to construct
the MDFA we assume we have a library that takes as input a regular expression and builds the MDFA. There will be issues
of efficiency that will be idiosyncratic and dependant for each implementation of well known algorithms.

We describe how to construct an FSA automaton A for each formula φ in CNF,3 such that the formula is satisfiable iff the
language of A is not empty and for every word w in the language of A, w |H φ, i.e. L(A) = {w ∈ {0, 1}n|w |H φ, n = |Vφ |}.
This means that the language of the automaton is the string representation of the set of valuations v such that v |H φ.

The construction is based on the mapping between clauses and the dual terms. It is also based on the direct
translation between boolean formulas and regular expressions, given the direct correspondence between ∨, ∧, ¬ and |,&,
˜, respectively and the closure properties of finite state automata.

2 Note the difference with lexicographic order where the precedence is i < j.
3 The translation can be easily extended to formulas not in CNF. We performed experiments on formulas not in CNF, in edimacs and iscas format, see

Section 8.
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Table 1
A propositional formula translated into a regular expression.

Formula Regular expression String in {a, b, _}n

[1|0]10 &
(¬v1 ∨ ¬v3 ∨ ¬v5) ∧ ˜[1 ? 1 ? 1 ? ? ? ? ?] & a_a_a_____
(¬v1 ∨ v3 ∨ v6) ∧ ˜[1 ? 0 ? ? 0 ? ? ? ?] & a_b__b____
(v1 ∨ v4 ∨ v6) ∧ ˜[0 ? ? 0 ? 0 ? ? ? ?] & b__b_b____
(¬v3 ∨ v5 ∨ v8) ∧ ˜[? ? 1 ? 0 ? ? 0 ? ?] & __a_b__b__
(¬v2 ∨ v5 ∨ ¬v8) ∧ ˜[? 1 ? ? 0 ? ? 1 ? ?] & _a__b__a__
(v2 ∨ v7 ∨ v9) ∧ ˜[? 0 ? ? ? ? 0 ? 0 ?] & _b____b_b_
(¬v2 ∨ v7 ∨ v9) ∧ ˜[? 1 ? ? ? ? 0 ? 0 ?] & _a____b_b_
(v2 ∨ ¬v7 ∨ v9) ∧ ˜[? 0 ? ? ? ? 1 ? 0 ?] & _b____a_b_
(¬v2 ∨ ¬v7 ∨ v9) ∧ ˜[? 1 ? ? ? ? 1 ? 0 ?] & _a____a_b_
(v2 ∨ ¬v7 ∨ ¬v9) ∧ ˜[? 0 ? ? ? ? 1 ? 1 ?] & _b____a_b_
(¬v2 ∨ ¬v7 ∨ ¬v9) ∧ ˜[? 1 ? ? ? ? 1 ? 1 ?] & _a____a_a_
(v4 ∨ ¬v6 ∨ v10) ∧ ˜[? ? ? 0 ? 1 ? ? ? 0] & ___b_a___b
(¬v4 ∨ ¬v9 ∨ v10) ∧ ˜[? ? ? 1 ? ? ? ? 1 0] & ___a____ab
(v7 ∨ ¬v9 ∨ ¬v10) ˜[? ? ? ? ? ? 0 ? 1 1] ______b_aa

Each clause in a CNF formula will be interpreted as a regular expression that describes the automaton representing the
set of valuations that satisfy that clause. For instance, a clause such as v1 ∨ v2 ∨ v3, from a formula in CNF, with |Var| = 10,
will be translated as the regular expression ˜[0 0 0 ? ? ? ? ? ? ?]. We use the notation used in XFST (Xerox Finite State Tool
[6]) which we used to do the experimentation. This is equivalent to ˆ‘000.......’ in languages like Python, awk or perl, with an
extended use of the complement operator (ˆ), which is used in these languages as a single character complement. Thus ˜[0
0 0 ? ? ? ? ? ? ?] matches any string in (0|1)10 that does not start with 000.4

In Table 1 we show how a formula with ten variables is translated into a regular expression (second column) and a string
(third column). Each clause and the corresponding regular expression are matched in a line. The first line in the regular
expression column specifies the valuation space.

An automaton constructed this way may be used to check which are the strings generated. The translated regular
expression is used directly by XFST to compute the automaton. In this case the string generated by the automaton,
representing the satisfying valuation of φ, will be ‘1010000110’ (or ‘ababbbbaab’ using the third column representation).

For a formula with m clauses the automaton to be constructed will be equal to the intersection of the corresponding
m sub-automata. Therefore the asymptotic complexity of this construction is O(|Var|m), which might be worse than the
exponential boundaryO(2n). This is no surprise given that the automata intersection problem is a PSPACEproblem; therefore
this does not bring any theoretically interesting result in terms of computational complexity. It is however at the heart of a
number of correlated problems, see [23].

This well known fact about the complexity of automata intersection and union [44], provides an explanation as to why,
even if this approach is so transparent, it looks like nobody has considered it interesting. A direct implementation will
result in an inefficient approach as we will see in the next section. We show that it is possible to address SAT problems
using automata construction, and that this approach is capable of reaching a reasonable performance compared to other
equivalent approaches, in particular we compare themwith BDD and NNF approaches [12], and also it will be more efficient
in unsatisfiable hard cases with state-of-the-art DPLL SAT solvers.

The NP-completeness of TLM (transducer and FSA composition in general) generation and recognition is derived from
the expressive power of FSA, although the automaton construction is approached in a slightly different way. The transducer
automata composition in TLM is made through the translation of the formula, into a string {0, 1}m of all possible valuations
in the formula (m is the number of clauses). So the composition has to deal with 2n possible representations of the formula,
where n is the number of variables. This approach does not allow us to use the construction presented by Barton for SAT
solving.

From a different perspective, if satisfiability is approached with machinery beyond context-free power, for any control
language (in Weir’s sense [41]), the control device will have to be at least as powerful as a FSA. Efficiency or complexity
issues that are dealt at the FSA construction level will also be present at any other possible control device. Therefore if there
is an efficient algorithm to make a control device, then it seems there is an efficient algorithm for FSA construction.

4. Variable and clause ordering heuristics

The approach presented in [11] was tested performing several fixed steps in order to produce the automaton. The steps
were:

1. Produce a variable order
2. Produce a clause order

4 In what follows we use a for 1 and b for 0, due to restrictions on XFST use of 0.
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3. Translate the input formula into a regular expression, where the translation essentially produces a regular expression
with as many intersections as clauses in the formula.

4. Build the automaton. This step was performed using a FSA manipulation toolbox.

The variable ordering heuristics we decided to test ranged from very simple ones to some very elaborate.
Freq. This is the simplest variable ordering heuristic. We sort variables according to the number of clauses they participate
in, placing the most frequent first. In this way frequent variables will correspond to states located at the beginning of the
FSA. The increased probability of obtaining a single path or no path at the early states will reduce the size of the constructed
automata. If there are ties there is no preference strategy.
Max and Min. These two heuristics are extensions of the previous heuristic (Freq). In Freq, the order of a variable was not
affected by its frequency as a positive or negated literal.Max gives preference in the ordering to variables that appear most
of the time either negated or positive.Minwill order first those variables that appear a similar number of times as a positive
and negated literal.
Johnson. This heuristic is based on the heuristic for the maximum satisfiability (Max-SAT) problem proposed by Johnson
[21]. Johnson’s heuristic will iteratively satisfy the most frequent literal. Clauses that contain this literal are removed, and
the dual literal is removed from the clauses that contain it. The proposed order is the one in which the variables are set. It is
another variation of Freq heuristics.
Force. Force is a variable ordering heuristic intended to be used with BDDs and SAT solvers [2]. Force is particularly suitable
for problems that possess a structure. This iterative algorithm, like MINCE (Min-cut vertex/variable reordering), tries to get
the minimal cut value for variables (vertex or state). The cut value of a variable with index i is the number of clauses that
contain variables with indices both > i + 0.5 and ≤ i + 0.5. This also reduces the average clause span.
Anti-Lexicographic Clause Reordering. Anti-lexicographic ordering was used in [10] in order to decide the satisfiability of
formulas in CCNF (i.e., where each clause has the full set of variables) in polynomial time O(n6).

In the translation of CNF formulas to XFST regular expressions the following order was used: ? < a < b (a was used
instead of 1 and b instead of 0, as we mentioned above). The order of the second and third columns in Table 1 follows
the anti-lexicographic ordering. For instance if we have three variables, and each clause has exactly two literals, the anti-
lexicographic order in XFST regex will be as follows:

1. [a a ?]
2. [b a ?]
3. [a b ?]
... . . .
27. [? b b].

This heuristic combined with a variable ordering heuristic has the effect of computing first the intersection of clauses
with variables that have higher priority order and postpone the computation of intersection in clauses with variables that
have less priority. Also due to the anti-lexicographic ordering, clauses with smaller span (less difference between smallest
and largest variables) will be given priority over clauses with bigger span. A third consequence is that clauses that share
variables will be placed together in the ordering. All these facts are exemplified in Table 1, third column, above.

5. Experimental results with a FSA approach

5.1. Tool and setting

In order to test the possibilities of using the FSA construction approach as an ALL-SAT and model counter, we translated
CNF encoded formulas into regular expressions as explained above. Then we used XFST to build the automata. XFST has the
advantage of having a team with a sound experience of FSA tools. These tools have been developed with other purposes
in mind (natural language processing, NLP). There are many open source tools that can be more attractive due to the
possibility to modify them to try optimizations or profiling. Given this is a first approach in order to build a proof of concept,
we considered that it would be a better choice to use a heavily tested and widely used tool. At the same time, the goal
of these experiments was not about the FSA implementation of well known algorithms, but testing on differences in the
running time due to variable (state) ordering and clause (sub-automata) intersection, or a more structured FSIG approach.
XFST documentation is described extensively in [6]. We used XFST PARC version 2.15.2 available online. Variable ordering
heuristics as well as clause reordering were developed in C++ and Python. The applications were attached together with
Python and bash scripts. Both variable ordering and clause ordering heuristics were done without prioritizing performance
because the goal was to compare as many heuristics as possible. It is worth noting that running time of variable and clause
ordering heuristics seem negligible. Of course, if wewere considering the strict performance of solvers, all these details have
to be taken into account. All these algorithms have limited time and space complexity.

The sequence, as mentioned in the previous section and repeated here, is as follows:

1. Compute a variable order
2. Compute the anti-lexicographic order of clauses
3. Translate into a regular expression
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Table 2
uf50 average running time on 1000 instances.

Freq-AL 1.62 s
Force-AL 2.14 s
Johnson-AL 4.20 s

4. Run XFST on the regular expression to build the automaton.
5. The output of XFST shows the properties of the automaton built with the number of solutions.

The running time of each application was observed using the Python time-it module. Each running time corresponds to
a single run of the heuristics followed by XFST, except in the case of Force. Since Force has stochastic behavior, we decided
to run the heuristic with XFST 5 times for each test case, computing the average running time. Experiments were run on a
Linux machine with an Intel Xeon X3430, 2.40 GHz processor with 8 GB of memory.

5.2. Experiments with randomly generated instances

Initially we had run some experiments on a slower machine. It was observed that the direct translation of the formula to
a regular expression had a prohibitive processing time, using the XFST regular expression compilation. Those experiments
were run on some randomly chosen formulas. For example, processing the translated formula uf50-03.cnf from SATLIB
(50 variables/218 clauses), took 864 s by XFST. However, after reordering variables by frequency and then reordering the
formula in anti-lexicographic ordering it took only 0.533 s. It is worth mentioning that processing time reflects the size
of intermediate automata in the construction. The final size of the constructed automaton is not representative of the
complexity of intermediate steps. Reordering the same formula with the well known static variable reordering algorithm,
Force [2], did not improve the running time as much. For instance on the same formula uf50-03, after reordering variables
with Force, the processing time of XFST took 527 s. If we compare this with the compilation of the same formula by Ebddres,
an state-of-the-art solver that is based in OBDD (16 s), we obtain a much better performance.

The following table compares two instances of the SATLIB uf50 benchmark with no variable and clause ordering (No
Reorder) and Force [2] a static variable ordering algorithm, variable ordering by frequency and anti-lexicographic ordering
of clauses (Freq-Anti-Lex) and Ebddress, a BDD based SAT-solver. Ebddress was chosen because it was the latest BDD based
SAT-solver and it was developed by a team with long experience in SAT-solving.

Problem No reorder Force Freq-Anti-Lex Ebddress

uf50-01 1460.12 328.67 2.28 s, 2.5 kb 13.7 s, 376 MB
uf50-03 863.9 527.45 0.5328 s, 19.8 kb 11.9 s, 376 MB

Later, we ran all the heuristics on 1000 formulas of the uf50 SATLIB benchmark. Most of the heuristics exceeded the time
limit of 30 s that we had set. The rest had the average timings given in Table 2.

The first part of the heuristic names refers to the variable ordering heuristics described above in Section 4. The second
part of the names, AL, refers to anti-lexicographic ordering. In the next subsection, we use NR, denoting no reordering of the
original clause ordering. The anti-lexicographic ordering has been shown to be a consistent strategy to limit the explosion
of state size in the computation of automata intersection.

5.3. Hard benchmarks experiments

Initially we performed tests using some of the Ebddres benchmarks used in [34].5 We chose them in order to compare
with Ebddres, given it is a BDDbased solver. These are hard unsatisfiable problems.Manyof these problemshave been looked
at even with local search solutions [3,1]. ph files are instances of the pigeon hole problems. Chnl are unsatisfiable instances
that model the routing of X wires in N channels [1]. Urq files are unsatisfiable randomized instances based on expander
graphs [37]. Fpga are some satisfiable and unsatisfiable instances from FPGA routing. Mutcb instances correspond to the
mutilated checker board. Then we added some other classes known to be hard, instances from the Beijing and Hanoi set
(2bit, hanoi) from SATLIB. We also added some of the BMC-dimacs benchmarks (barrel, queueinv, longmult). The details
and properties of these benchmarks can be found in Table 14.

The results were very good considering we were just implementing very few heuristics. However, they were rather
disparate on some benchmarks.

Table 3 summarizes Min, Max, and Force variable reordering heuristics, with NR (no clause reordering). Null-NR,
corresponds to the direct translation of the formula into a regular expression (no variable nor clause reordering). As can

5 They are available at the Ebddres web page.
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Table 3
FSA variable ordering heuristics with no clause reordering.

File Force-NR Null-NR Min-NR Max-NR

Total sec 16455 18384 20618 21771
# not solved 24 25 29 33

Table 4
FSA with variable and anti-lexicographic clause reordering heuristics.

File Force-AL Min-AL Max-AL Null-AL Freq-AL Johnson-AL

Total sec 10847 18052 19129 19710 21017 25297
# not solved 17 26 27 28 30 40

Table 5
FSA with Force and AL clause ordering vs other solvers.

Heuristics Force-AL sbsat ebddres c2d relsat sharpsat clasp

Total time 10847 18051 10764 16969 21638 18321 15471
Not solved 15 28 17 27 29 29 21
Solving T. 1847 4250 564 2569 4237 920 2871
# solved 36 23 34 24 22 22 30
Average T. 52.77 29.59 16.61 107.04 192.72 41.86 78.31

be seen Force-NR is the best in this set, although Null-NR (plain translation) is pretty close. The good performance of the
NR class follows from the fact that some of these instances were constructed with some sort of anti-lexicographic ordering.
Also in some cases the ordering of the variables seems to be close to the ordering computed by some heuristics.

Table 4 summarizes Freq, Min, Max, and Force, Johnson variable reordering heuristics combined with anti-lexicographic
ordering (AL). Null-AL, corresponds to no variable re-ordering. Given the performance on the uf50 benchmark, the heuristics
combinedwith ALwere expected to have better performance. Force-ALwas the best performing in both classes (NR and AL).

In order to have an approximate comparison with alternative approaches with model counting or ALL-SAT capabilities,
we ran experiments with the following solvers: clasp, Ebddres, sbsat, sharpSAT, c2d and relsat. Model counting and ALL-SAT
is not relevant for unsatisfiable instances anyway (most of them), given the number of models is zero.6

• Clasp obtained the goldmedal for SAT/UNSAT crafted problems, in the 2009 SAT competition. It contains many advanced
features, and also the capability to work as a model counter or ALL-SAT.

• Ebddres [34] (version 1.0), is a BDD based SAT solver that can generate extended resolution proof traces.
• Sbsat [16] is a state-based, BDD-based satisfiability solver. We used version sbsat-2.7b.
• Relsat is a model counter that was developed some years ago.
• Sharpsat [36], is a #SAT solver that is based on the DPLL algorithm. It is supposed to have a good performance on large

structure problems.
• C2d [12] compiles CNF into d-NNF (decomposable negation normal form), a generalization of BDD. SharpSAT was also

used to compile CNF into d-NNF[30].

In Table 5 we compare Force-AL, which showed the best performance among the heuristics we tried, against the above
mentioned solvers. As can be seen its overall performance is very good. It is almost tied with ebddres in total time used but
Force-AL solvedmore problems. However the average time used by Force-AL per solved instance is higher than the one used
by ebddres and sharpsat.

In Table 6, we present the first four solvers or FSA construction strategy that had the best timings for each subset of
problems. It can be seen that, for a number of problems (ph, Urq, chnll, fpga), the first positions are dominated by the FSA
construction strategies, Force-AL being the most predominant. However for other subsets, current solvers perform much
better.

6 These are the parameters we used to run each solver when we did not use the default values:

• clingo –clasp -n 0 -q (clasp mode, enumerate all models, quite mode)
• NetPlacer -c 6 (affects the output variable order, this is one of the Force executables)
• relsat -♯count -t600 (Count models, time limit)
• sbsat -All 0 -In 0 –max-solutions 0 -t –debug 0 (disable preprocessing options, disable inferences, find all solutions, start a stripped down version of

the SMURF solver, disable debug).
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Table 6
Best timings for problem subsets.

Problem set First Time Second Time Third Time

ph Force-NR 844 Force-AL 1847 Max-AL 4060
mutcb ebddres 7 c2d 264 clasp 844
Urq ebddres 629 Force-AL 700 Force-NR 825
chnll Force-AL 33 ebddres 49 Null-NR 999
fpga Force-AL 908 ebddres 1266 Null-NR 2644
sat-grid sbsat 3 ebddres 7 Max-AL 7.15
barrel sbsat 3 relsat 3 clasp 3
queueinv sbsat 2 relsat 2 clasp 2
hanoi sbsat 2 clasp 9 relsat 605
2bit clasp 1213 ebddres 1242 c2d 1242

If we analyze the data from these sets of instances, we can observe significant differences between them. It looks like
problems like ph,unsat-fpga cannot be solved with usual features in most solvers, due to a similar distribution of variables
in clauses (e.g. each variable occurs the same number of times, see Table 15 in the Appendix).

6. SAT as a Finite State Intersection Grammar (FSIG) recognition problem

There are a number of candidate grammatical formalisms that can be used to recognize the language of satisfiable
propositional formulas (LSAT ), whose recognition problem has been shown to be NP-complete or NP-hard. Among many of
themwe canmention LCFRS [31], set automata [27], and FSIG [5]. Using a parser/recognizer for the corresponding formalism
(if available), the set of possible valuations is obtained as a result of the parsing process. There is no proof we know of that
the languages of FSIGs are NP-hard without use of transducer operations as is done by [5]. Although NP-completeness of the
recognition problem in FSIGs follows from properties of automata intersection, the construction we show here is new.

A crucial step to use a parsing algorithm for LSAT seems to be to build an appropriate data structure to control the deriva-
tion,7 keeping track of the possible valuations as discussed in [10]. Building an FSA automaton to control the derivation of
a CFG back-bone will have the same cost as building the FSA automaton and testing for emptiness. The latter was the ap-
proach followed by [11] and discussed above. A Finite State Intersection Grammar (FSIG) [24,42,35,43] has a flat structure:
S → cl1 ∩ cl2 . . . ∩ cln. This can be seen also as an extreme in the approach of parsing as intersection [25]. In a parsing as
intersection approach, the input string is generalized into an input automaton. In the formalization presented above there
is no parsing in practice, and intersection is performed as established by the input automaton. The approach presented in
this section puts some more work to be done by the grammar side allowing us to model in a different way the input au-
tomaton. A grammar formalism that encodes the possible valuations in the preterminal nodes can be easily encoded using
a grammar-like notation with the following productions:

S → Tk S | Fk S | ϵ

where Tk denotes a true assignment and Fk a false assignment for the corresponding variable (k). The effect of the grammar-
like back-bone is that each derivation or parsing tree encodes a possible valuation for each variable. Consequently for each
variable we have two productions:

Tk → clsk ∩ ctk and Fk → clsk ∩ cfk,8

where clsk are the translated regular expression of the clauses that contain variable k as its highest variable and ctk and cfk
are the constraints imposed to vk according to the truth value assignment. For example,

• ct6: [? ? ? ? ? 1 ? ? ? ? ] (setting v6 to 1)
• cf6: [? ? ? ? ? 0 ? ? ? ? ] (setting v6 to 0)
• cls6: ˜[1 ? 0 ? ? 0 ? ? ? ?] & ˜[0 ? ? 0 ? 0 ? ? ? ?]

( from (¬v1 ∨ v3 ∨ v6) ∧ (v1 ∨ v4 ∨ v6) )
• T6 → ct6 & cls6
• F6 → cf6 & cls6

We still need to make sure that constraints with possible valuations are checked at every step in the
derivation/recognition process (i.e. control the derivation).

7 In the sense of grammars with controlled derivation [13].
8 This is more or less the approach used in [31] to prove the NP-completeness of LCFRS. The intersection operation is performed using the tuple

representation.
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In order to do that we are going to use a FSIG; however there are no productions in FSIGs. FSIGs are based inmodel theory
and set theory [42]. A production like backbone is reduced to a FSA which is intersected with the set of constraints. The ef-
fect of control of the derivation is performed by the automata intersection operation. This is quite similar to the control of the
derivation that is done by a set automata [27], or that could be donewith a Stack Automaton [22].We simulate the rules back-
bone with variable definitions used by the FSIG toolbox (XFST). We are simplifying the input to the toolbox in order to apply
the preprocessing techniques to the formula independently. Therefore the sentence automaton that recognizes the clauses
and performs the corresponding translations to the proper FSA constraints is done as part of the preprocessing process.

A FSIG grammar for a formula with n variables can be represented as follows, where k denotes a given order of Var:

W = {Tk, Fk} is the set of terminal constraints or unit words, as defined by the translation above.
N = {Sk|k ∈ [0, n]} is the set of non-terminal variables (or sub-automata).
Skh is the axiom or designated symbol, where kh represents the highest k order.
The set of productions is: {Sk → Sk−1 ∩ Tk, Sk → Sk−1 ∩ Fk|k ∈ [1, |W |/2]}.

It should be noted that each production is defining a sub-automaton (i.e. a sublanguage).
In these productions the terminal constraints control the derivation. The base constraint S0(B0 from now on) is (t|f )n,

which defines the space of possible valuations. Tk, Fk are the set of constraints corresponding to the translation of a set of
clauses clsk, with the addition of a unit clause with the variable k set to true or false, respectively as we have seen above.
Therefore Tk will produce all valuations that simultaneously satisfy a unit clause vk and all clauses c ∈ Ck. Conversely, Ck
will produce all valuations that simultaneously satisfy a unit clause ¬vk and all clauses c ∈ Ck. Any clause c ∈ Ck has vk or
¬vk as its literal and vk as its highest variable.

One of the guidelines to pursue a grammar-like encoding is to use the grammar in order to separate the problem into
subproblems, i.e. unrelated sets of clauses. The otherwas to simulate value assignment andunit resolution. The FSA approach
[11] translated each clause into a regular expression and incrementally built the automaton by intersecting the already
processed clauses with the next clause. This was equivalent to considering each clause a terminal symbol, or base word. In
the approach presented here a set of clauses that share a variable in the last position are considered aword. As a consequence
of processing all clauses together, in the case of anti-lexicographic order, the range of variables being analyzed was fixed
on the lower end by the first variable and on the higher end by the highest variable processed so far. This meant that the
variable range was always increasing; thus the full intermediate automaton had to be manipulated in each intersection,
even when the added clause was unrelated to many of the previous clauses.

Changing the clause order means changing the order of intersections. The order of intersections affects the size of
intermediate automata. The FSIG approach presented in this section reduces the impact of clause order because clauses
will be grouped in smaller sets according to the grammar representation that is used. By separating the clauses into
sets, the automaton can still be built incrementally but only considering a subset of the variables and clauses. This
organization of the clauses into sets leads to an incremental construction of the automaton by intersecting the intermediate
automata corresponding to each set of clauses. We believe this reduces the size of intermediate automata, because some
restrictions imposed by a truth value assignment for a particular variable vk will be expressed earlier, when the automaton
corresponding to the set of clauses Ck is built.

This means that clause order only matters inside a set. The order of intersections between sets will be determined by the
grammar. The steps to produce the desired automaton using a FSIG approach are the following.
1. Produce a variable order
2. Produce a clause order.
3. Translate the formula into a grammar formalism (FSIG)
4. Use a compiler (parser) to compute whether the formula is satisfiable or not.

6.1. Example with a grammar

Weuse XFST as the toolbox for FSIGs. As wementioned above XFST (FSIGs) does not have a notation for CF grammars, but
it is possible to define aliases for sub-automata. The generated input is compiled by XFST into the automaton that accepts
the same language as the grammar.

The original formula from Table 1 in Section 3 has 14 clauses and 10 variables. The translation into XFST uses the define
function for names of automata. It was translated as follows:

First, all the terminals are defined as in Table 7 as constraints in XFST (the second column). This is equivalent to initializing
the terminals in a table for parsing.

The definitions given in Table 8 were added, where B0 represents [t|f ]10.

6.2. NP hardness

In this section we have explained a reduction of SAT to the recognition problem for FSIGs and parsing as intersection
of a context-free grammar and an input finite state automata. Both problems derive from well known properties of FSA
composition.
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Table 7
FSIG definition of words or terminals.

Formula Regular expression

define B0 [0|1]n
define T5 define F5
[? ? ? ? 1 ? ? ? ? ?] & [? ? ? ? 0 ? ? ? ? ?] &

(¬v1 ∨ ¬v3 ∨ ¬v5) ∧ ˜[1 ? 1 ? 1 ? ? ? ? ?]; ˜[1 ? 1 ? 1 ? ? ? ? ?] ;

define T6 define F6
[? ? ? ? ? 1 ? ? ? ? ] & [? ? ? ? ? 0 ? ? ? ? ] &

(¬v1 ∨ v3 ∨ v6) ∧ ˜[1 ? 0 ? ? 0 ? ? ? ?] & ˜[1 ? 0 ? ? 0 ? ? ? ?] &
(v1 ∨ v4 ∨ v6) ∧ ˜[0 ? ? 0 ? 0 ? ? ? ?] ; ˜[0 ? ? 0 ? 0 ? ? ? ?] ;

define T8 define F8
[? ? ? ? ? ? ? 1 ? ? ] & [? ? ? ? ? ? ? 0 ? ? ] &

(¬v3 ∨ v5 ∨ v8) ∧ ˜[? ? 1 ? 0 ? ? 0 ? ?] & ˜[? ? 1 ? 0 ? ? 0 ? ?] &
(¬v2 ∨ v5 ∨ ¬v8) ∧ ˜[? 1 ? ? 0 ? ? 1 ? ?] ; ˜[? 1 ? ? 0 ? ? 1 ? ?];

define T9 define F9
[? ? ? ? ? ? ? ? 1 ? ] & [? ? ? ? ? ? ? ? 0 ? ] &

(v2 ∨ v7 ∨ v9) ∧ ˜[? 0 ? ? ? ? 0 ? 0 ?] & [? 0 ? ? ? ? 0 ? 0 ?] &
(¬v2 ∨ v7 ∨ v9) ∧ ˜[? 1 ? ? ? ? 0 ? 0 ?] & ˜[? 1 ? ? ? ? 0 ? 0 ?]&
(v2 ∨ ¬v7 ∨ v9) ∧ ˜[? 0 ? ? ? ? 1 ? 0 ?] & ˜[? 0 ? ? ? ? 1 ? 0 ?]&
(¬v2 ∨ ¬v7 ∨ v9) ∧ ˜[? 1 ? ? ? ? 1 ? 0 ?] & ˜[? 1 ? ? ? ? 1 ? 0 ?]&
(v2 ∨ ¬v7 ∨ ¬v9) ∧ ˜[? 0 ? ? ? ? 1 ? 1 ?] & ˜[? 0 ? ? ? ? 1 ? 1 ?]&
(¬v2 ∨ ¬v7 ∨ ¬v9) ∧ ˜[? 1 ? ? ? ? 1 ? 1 ?] & ˜[? 1 ? ? ? ? 1 ? 1 ?]

define T10 define F10
[? ? ? ? ? ? ? ? ? 1 ] [? ? ? ? ? ? ? ? ? 0 ]

(v4 ∨ ¬v6 ∨ v10) ∧ ˜[? ? ? 0 ? 1 ? ? ? 0] & ˜[? ? ? 0 ? 1 ? ? ? 0] &
(¬v4 ∨ ¬v9 ∨ v10) ∧ ˜[? ? ? 1 ? ? ? ? 1 0] & ˜[? ? ? 1 ? ? ? ? 1 0] &
(v7 ∨ ¬v9 ∨ ¬v10) ˜[? ? ? ? ? ? 0 ? 1 1] ; ˜[? ? ? ? ? ? 0 ? 1 1]

Table 8
FSIG definition of productions.

XFST notation Grammar-like notation

Define S6 (T5 | F5 ) & B0; S6 → B0 T5 | B0 F5
Define S7 (T6 | F6 ) & S6; S7 → S6 T6 | S6 F6
Define S8 (T8 | F8 ) & S7; S8 → S7 T8 | S7 F8
Define S9 (T9 | F9 ) & S8; S9 → S8 T9 | S8 F9
Define S10 (T10 | F10) & S9; S10 → S9 T10 | S9 F10

The translation of each clause into a regular expression can be performed in time polynomial to the size of the original
formula, since the size of each regular expressionwill be proportional to thenumber of variables in the formula. The grammar
back-bone itself has a constant size. The grouping of clauses into sets can also be done in time polynomial to the size of the
formula. As a result, the whole translation is finished in time polynomial to the size of the original formula.

Once the input has been built, the original formula will be satisfiable if and only if the language of the resulting FSA is not
empty [40,28] (FSIG) and therefore there is a parse tree in the parsing as an intersection approach9 for the translated input.

6.3. Experimental results with an FSIG approach

Asmentioned in the previous section, one of the advantages of the grammar-like approach presented here is the potential
reduction in size of intermediate automata. The performance gain obtained in the experiments shows that the size of
intermediate automata is indeed reduced. We compared the running time of the FSA approach versus the FSIG approach
using the uf50 set from SATLIB. The FSA approach had an average running time of 1.62 s. The averagewith the FSIG approach
reduced to 0.45 s.

We also ran an FSIG implementation on those hard unsatifiable instances detailed in Section 5.3. The complete results can
be seen in Table 14. Each column of the table shows the running time of a different solver or model counter. It is interesting
to analyze the overall performance and how it compares to that of the other solvers. Table 9 summarizes the total running
time, including time spent on unsolved instances, number of instances solved and average running time per solved instance.

9 The tree representing the generation of the formula.
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Table 9
Overall performance comparison.

FSIG FSA ebddres clasp c2d sbsat sharpsat

Total time 8699 10246 11315 14271 15769 16851 17121
Not solved 12 14 18 20 25 27 27
Solving time 1499 1847 515 2271 769 651 920.99
Solved 37 35 31 29 24 22 22
Average 40.51 52.77 16.61 78.31 32.04 29.59 41.86

Table 10
Effect of clause learning on clauses with 100 variables.

Problem Lit. limit Time # clauses

uf100-01 4 248.78 3976
uf100-01 5 49.57 9091
uuf100-01 5 4.84 9667

Table 11
Iscas 85 benchmark results.

Problem Var R Var O c2dr c2dt

c499.bench 6.54 2.44 8 9.40
c880.bench 0.36 134.62 46 49.92
c1355.bench 6.55 4.38 18 20.46
c1908.bench 1.24 1.99 81 222
c2670.bench 324.57 OM 350 1018.18
c3540.bench 73.47 107.94 – –
c5315.bench 678.58 OM – –
c7552.bench OM OM 384 >2700

The number of instances solved by the FSIG has increasedwith respect to the original FSA approach, and the average running
timehas also decreased.Weused the sameparameters for variable ordering (Force) and clause ordering (anti-lexicographic).

7. Clause learning

Clause learning [33] was introduced as an improvement to the DPLL algorithm. Clause learning has been shown to be
equivalent to unrestricted resolution and there have been variations to make it more efficient (e.g. [4]). We present a clause
learning scheme intended to be used as a preprocess of a CNF encoded formula. The restrictions we impose on resolution
are: generating deductions in a particular order and discarding resolvents that exceed a number of literals.

This alternative and simple limitations to unrestricted resolution allow an implementation that results in little overhead
and a series of possible customizations.

The algorithm we use to implement this kind of clause learning uses two loops based on the anti-lexicographic order of
clauses and assumes there is a convenient order of variables (we used Freq as described in Section 4). It also uses sets of
clauses grouped by the highest order variable in each clause, as we used in the FSIG section to define terminals. It compares
clauses that share some literal and its dual. The corresponding resolvents are added to the appropriate set if they satisfy the
literal limit and they are not tautological. For instance, if we have the clauses v1 ∨ v3 ∨ v5 and ¬v1 ∨ ¬v2 ∨ v6, we can add
the clause ¬v2 ∨ v3 ∨ v5 ∨ v6 to the set of clauses that have variable v6.

The first loop starts from the first (lowest andmost frequent) variable to the last (and least frequent) variable. All clauses
that share the lowest variable in the clause will be compared (e.g. previous resolution example), adding resolvent clauses to
the appropriate set. This loop has the effect of adding clauses to the most sparse space of the formula (right part of Fig. 1).

The second loop starts with the last (highest and least frequent) variable and performs the same operation. Deduced
clauses in the previous loop will be available. Deduced clauses will be stored in the corresponding set, and given we started
from the last variable, the deduced clauses in this loop will also be available. The effect of this second loop is to fill with
learnt clauses the initial space of the formula (left part of Figs. 1 and 2).

The effect of clause learning can be appreciated in Figs. 1 and 2. In Fig. 1 a formula with 20 variables is represented in
anti-lexicographic order. Each vertical line represents a clause with a literal in each position. The leftmost corner contains
the shortest span in the most frequent variables. This is the starting point of the first loop. The rightmost part contains the
largest span (from variables 1–20). This is the starting point of the second loop. Fig. 2 shows the space of variables 1–5 that
is now filledwith new learnt clauses. These new clauses restrict the space of possible solutions in that range of variables.
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Table 12
Variable ordering heuristics combined with anti-lexicographic ordering.

File Min AL Force-AL Johnson-AL Null-AL Freq-AL Max-AL

ph07.cnf 1.031 1.036 1.046 1.04 1.04899 1.074
ph08.cnf 1.031 1.042 1.036 4.08 1.026 1.047
ph09.cnf 3.03 1.046 3.069 261.06 3.028 3.036
ph10.cnf 13.04 5.06 20.16 * 12.08 13.07
ph11.cnf 68.05 8.27 83.234 * 67.043 39.05
ph12.cnf 335.05 14.09 362.31 * 146.06 68.05
ph13.cnf * 23.11 * * 332.05 335.07
ph14.cnf * 42.34 * * * *
ph15.cnf * 77.37 * * * *
ph16.cnf * 151.21 * * * *
ph17.cnf * 322.05 * * * *
ph18.cnf * * * * * *
mutcb8 1.039 1.048 * 1.03 345.31 33.03
mutcb9 3.03 3.05 * 3.03 * 517.00
mutcb10 7.046 6.059 * 6.05 * *
mutcb11 24.09 22.075 * 20.05 * *
mutcb12 78.08 70.08 * 65.05 * *
mutcb13 314.09 269.89 * 241.06 * *
mutcb14 * * * * * *
Urq3_5.cnf 2.05 6.06 * 395.06 18.07 2.05
Urq4_5.cnf 242.06 94.07 * * 269.09 242.06
Urq5_5.cnf * * * * * *
chnl10_11.cnf 69.07 2.09 * 69.07 69.08 60.07
chnl10_12.cnf 70.07 3.10 * 70.07 69.09 70.07
chnl10_13.cnf 70.09 3.11 * 71.09 70.10 70.09
chnl11_12.cnf 337.08 4.11 * 335.08 332.11 338.08
chnl11_13.cnf 336.09 5.12 * 337.08 333.09 337.09
chnl11_20.cnf 347.21 15.27 * 345.18 343.28 346.21
fpga11_15_unsat * 12.16 * * * *
fpga11_20_unsat * 20.48 * * * *
fpga12_11_sat * 173.08 * * * *
fpga12_12_sat * 101.89 * * * *
fpga13_9_sat * * * * * *
sat-grid-pbl-0010 72.03 1.06 * 1.03 250.05 1.05
sat-grid-pbl-0015 * 47.05 * 46.05 * 1.04
sat-grid-pbl-0020 * * * * * 5.06
barrel2 1.81 1.03 1.98 2.93 1.86 1.85
barrel3 4.15 268.08 8.22 310.12 9.42 10.16
barrel4 50.14 * 186.46 * 332.33 432.17
queueinv2 2.08 3.05 30.07 1.51 12.06 2.06
queueinv4 * * * 245.08 * *
longmult0 * * * * *
longmult1 * * * * *
hanoi4 * 63.38 * 78.27 * *
hanoi5 * * * * * *
2bitcomp_5 * 4.04 * * * *
2bitmax_6 * * * * * *
2bitadd_10/11/12 * * * * * *

Fig. 1. Translated formula uf20-010.cnf from SATLIB without clause learning.

Fig. 2. Translated deduced clauses for formula uf20-010.cnf variables 1–5.

Table 10 shows some experiments using clause learning with different limits in the number of literals, where lit. limit is
the maximum number of literals allowed in a learnt clause, and # clauses are the total number of clauses after the clause
learning process finished. One of the conclusions we can obtain is that it is not the number of intersections to be performed,
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Table 13
Variable ordering heuristics without anti-lexicographic ordering.

File Min-NR Force-NR Johnson-NR Null-NR Max-NR

ph07.cnf 1.028 1.043 1.031 1.01 1.030
ph08.cnf 1.032 1.041 2.064 1.016 1.032
ph09.cnf 3.036 5.061 66.19 2.02 3.036
ph10.cnf 9.042 8.073 204.23 119.032 9.04
ph11.cnf 38.052 12.091 * 363.04 39.05
ph12.cnf 146.05 18.114 * * 146
ph13.cnf 485.06 27.337 * * 484
ph14.cnf * 39.370 * * *
ph15.cnf * 56.034 * * *
ph16.cnf * 81.038 * * *
ph17.cnf * 118.283 * * *
ph18.cnf * 181.937 * * *
ph19.cnf * 294.20 * * *
mutcb8 1.038 1.057 * 1.01899 33.03
mutcb9 3.044 3.054 * 3.02 517.00
mutcb10 9.045 21.063 * 6.02 *
mutcb11 40.09 66.072 * 20.04 *
mutcb12 148.09 236.279 * 61.05 *
mutcb13 577.08 * * 223.03 *
mutcb14 * * * 592.08 *
Urq3_5.cnf 7.049 8.06 452.89 294.02 7.048
Urq4_5.cnf * 217.87 * * *
Urq5_5.cnf * * * * *
chnl10_11.cnf 47.07 206.47 59.12 30.03 47.09
chnl10_12.cnf 64.07 559.09 80.15 41.03 63.07
chnl10_13.cnf 84.08 * 106.19 55.04 84.09
chnl11_12.cnf 181.08 * 214.21 118.04 181.10
chnl11_13.cnf 236.0989 * 200.21 155.05 236.09
chnl11_20.cnf * * * * *
fpga11_15_unsat * * * * *
fpga11_20_unsat * * * * *
fpga12_11_sat * * * 424.03 *
fpga12_12_sat * * * 420.06 *
fpga13_9_sat * * * * *
sat-grid-pbl-0010 534.49 1.047 * 1.02 2.03
sat-grid-pbl-0015 * 93.054 * 93.00 114.08
sat-grid-pbl-0020 * * * * *
barrel2 3.05 1.037 4.51 2.10 3.25
barrel3 * 71. 08 * 156.11 *
barrel4 * * * * *
queueinv2 * 2.051 * 2.066 *
queueinv4 * * * 200.05 *
longmult0 * * * *
longmult1 * * * *
hanoi4 * * * * *
hanoi5 * * * * *
2bitcomp_5 * 323.78 * * *
2bitmax_6 * * * * *
2bitadd_10 * * * * *
2bitadd_11 * * * * *
2bitadd_12 * * * * *

but how the intersections are made, that has a significant effect on running time. Variables were ordered by Freq heuristic
and clauses by anti-lexicographic order.

Additional experimentation with the FSIG approach described in Section 6 with a more limited clause learning (only the
second loop and literal limit 4) resulted in a sharp improvement using uf100-01, with a resulting time of 24 s (versus 248
above). Using the hard benchmarks, there is little improvement, due to clause learning having little effect (this is one of the
reasons why these benchmarks are hard), although there are two additional files that can be processedwithin the time limit
(Urq5.5 with an average processing time of 100 s, with a wide range variation from 5 to 265 s, barrel3 decreased processing
time from 96 to 46 s and barrel4 finished processing in 420 s). There were no significant changes in the other instances.

8. Non-clausal problems

One of the advantages of using a translation of propositional formulas into regular expressions, to compute an automa-
ton, is that it is not necessary to restrict the input to clausal formulas. Therefore we can translate non-clausal formulas into
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Table 14
Grammar and FSA approach vs other solvers, time limit reached at 600 s. Indicated by ∗.

File Grammar Force-AL sbsat ebddres c2d relsat SharpSAT clasp

ph07 5.040 1.042 1.00 1.00 1.00 1.00 1.00 1.00
ph08 5.036 1.046 1.00 1.00 6.00 2.00 1.00 1.00
ph09 5.038 5.06 0.99 1.00 85.00 18.00 5.00 6.00
ph10 5.044 8.27 1.00 2.00 * 231.00 50.00 48.00
ph11 6.002 14.09 2.00 5.00 * 599.00 * 400.00
ph12 7.000 23.11 30.00 12.00 * 599.00 * *
ph13 9.001 42.34 432.00 39.00 * * * *
ph14 13.001 77.37 * * * * * *
ph15 20.000 151.21 * * * * * *
ph16 35.010 322.05 * * * * * *
ph17 66.402 * * * * * * *
mutcb8 5.034 1.048 1.00 1.0 2.00 1.00 1.00 1.00
mutcb9 7.002 3.05 1.00 1.0 2.00 2.00 1.00 1.00
mutcb10 9.052 6.059 3.00 1.0 3.00 12.00 5.00 1.00
mutcb11 21.001 22.075 * 1.0 5.00 * 98.99 5.00
mutcb12 51.003 70.08 * 1.0 13.00 * 441.00 32.00
mutcb13 154.817 269.89 * 1.0 42.00 * * 204.00
mutcb14 388.692 * * 2.0 197.00 * * *
Urq3_5.cnf 5.033 6.06 * 1.0 23.00 * * 79.00
Urq4_5.cnf 15.003 94.07 * 28.0 234.00 599.99 * *
Urq5_5.cnf * * * * * * * *
chnl10_11.cnf 8.002 2.09 * 2.0 * * 49.00 32.00
chnl10_12.cnf 9.014 3.10 * 3.0 * 599.99 53.00 36.00
chnl10_13.cnf 10.010 3.11 * 3.0 * 599.99 55.00 42.00
chnl11_12.cnf 10.000 4.11 * 6.0 * * * 319.00
chnl11_13.cnf 12.002 5.12 * 7.0 * * * 469.00
chnl11_20.cnf 35.003 15.27 * 28.0 * * * 566.00
fpga11_15_unsat 17.003 12.16 * * * * * *
fpga11_20_unsat 36.003 20.48 * * * * * *
fpga12_11_sat 41.002 173.08 * 14.99 r * * * *
fpga12_12_sat 22.015 101.89 * 18.00 r * * * *
fpga13_9_sat 290.826 * * 33.00 r * * * *
sat-grid-pbl-0010 5.041 1.06 1.00 1.00 2.00 * 1.00 1.00
sat-grid-pbl-0015 57.002 47.05 1.00 1.00 6.00 * * *
sat-grid-pbl-0020 * * 1.00 5.00 84 599.99 * *
barrel2 5.031 1.03 1.00 1.00 1.00 1.00 1.00 1.00
barrel3 96.027 268.08 1.00 * 3.00 1.00 1.00 1.00
barrel4 * * 1.00 * 4.00 1.00 1.00 1.00
queueinv2 6.005 3.05 1.00 1.01 2.00 1.00 1.00 1.00
queueinv4 * * 1.00 293.00 3.00 1.00 1.00 1.00
longmult0 * * * * * * * *
longmult1 * * * * * * * *
hanoi4 * 63.38 1.00 * 9.00 5.00 2.00 1
hanoi5 * * 1.00 * * * * 8
2bitcomp_5 6.003 4.04 7.00 * 2.00 2.00 1.00 1
2bitmax_6 * * * * 12.00 42.00 2.00 2
2bitadd_10 * * 161.00 * 28.00 322.00 149.00 10
2bitadd_11 * * * * * * * *
2bitadd_12 * * * * * * * *

regular expressions, using themapping∨, ∧, ¬ to |,&, ˜ respectively. This can be done in a straightforwardway using XFST.
We used Iscas 85 Benchmark files, which have the following syntax in this order, and one or more lines of each:

INPUT (VAR)
OUTPUT (VAR)
DEFVAR = OP(VARLIST)

where OP are for instance NOT, AND, NAND, NOR, OR and XOR. VARLIST is a list of one or more (according to the operator
arity) INPUT or DEFVARs variables.

The translation using XFST was as follows (see Fig. 3). Start with the first line of the type VAR = OP(VARLIST), and
replace it by define gVAR. The function define in XFST defines an automaton, and gVAR is the variable used by XFST to refer to
this automaton. In the body of the automaton definition we replace the operator by the corresponding regular expression
operator mapping (i.e.∼, | or & ). If there is an input variable in VARLIST, replace it by the regular expression [? ? ...1... ? ?]
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Table 15
Relevant data of the benchmarks.

File #Var #CL # Freq Range Freq Ratio Var/#Range +w -w +-w

ph07 56 204 1 [8, 8] 7 196 8
ph08 72 297 1 [9, 9] 8 288 9
ph09 90 415 1 [10, 10] 9 405 10
ph10 110 561 1 [11, 11] 10 550 11
ph11 132 738 1 [12, 12] 11 726 12
ph12 156 949 1 [13, 13] 12 936 13
ph13 182 1197 1 [14, 14] 13 1183 14
ph14 210 1485 1 [15, 15] 14 1470 15
ph15 240 1816 1 [16, 16] 15 1800 16
ph16 272 2193 1 [17, 17] 16 2176 17
ph17 306 2619 1 [18, 18] 17 2601 18
mutcb8 121 344 4 [5, 8] 15.12 282 62
mutcb9 155 451 4 [5, 8] 19.37 372 79
mutcb10 193 572 4 [5, 8] 24.12 474 98
mutcb11 235 707 4 [5, 8] 29.37 588 119
mutcb12 281 856 4 [5, 8] 35.12 714 142
mutcb13 331 1019 4 [5, 8] 41.37 852 167
mutcb14 385 1196 4 [5, 8] 48.12 1002 194
Urq3_5 46 470 15 [10, 128] 0.35 7 9 454
Urq4_5 74 694 15 [8, 128] 0.57 17 15 662
Urq5_5 121 1210 17 [6, 128] 0.94 23 19 1168
chnl10_11 220 1122 1 [11, 11] 20 1100 22
chnl10_12 240 1344 1 [12, 12] 20 1322 24
chnl10_13 260 1586 1 [13, 13] 20 1560 26
chnl11_12 264 1476 1 [12, 12] 22 1452 24
chnl11_13 286 1742 1 [13, 13] 22 1716 26
chnl11_20 440 4220 1 [20, 20] 22 4180 40
fpga10_9_sat 135 549 2 [10, 13] 10.38
fpga11_15_unsat 330 2340 1 [15, 15] 22 2310 30
fpga11_20_unsat 440 4220 1 [20, 20] 22 4180 40
fpga12_11_sat 198 968 2 [12, 16] 12.37 957 143
fpga12_12_sat 216 1128 2 [13, 17] 12.7 1116 156
fpga13_9_sat 176 759 3 [10, 14, 15] 11.73 750 126
sat-grid-pbl-0010 110 191 6 [3, 8] 13.75 2 10 179
sat-grid-pbl-0015 420 781 6 [3, 8] 52.5 2 15 419
sat-grid-pbl-0020 930 1771 6 [3, 8] 116.25 2 18 759
barrel2 50 159 6 [4, 20] 2.5 12 17 130
barrel3 275 942 8 [3, 29] 9.48 172 10 788
barrel4 578 2035 8 [3, 66] 8.75 160 177 1698
queueinv2 116 399 21 [3, 52] 2.23 39 28 332
queueinv4 256 955 31 [3, 86] 2.97 98 81 776
longmult0 437 1206 14 [0, 232] 1.88 43 102 1061
longmult1 791 2335 17 [0, 234] 3.38 65 203 2067
hanoi4 718 4934 16 [4, 39] 18.41 2780 44 2100
hanoi5 1931 14468 17 [4, 45] 42.91 8164 104 6200
2bitcomp_5 125 310 3 [6, 9, 16] 7.81 30 30 250
2bitmax_6 252 766 3 [6, 16, 17] 14.82 60 46 660
2bitadd_10 590 1422 3 [6, 16, 25] 23.6 360 62 1100
2bitadd_11 649 1562 3 [6, 16, 25] 25.96 286 66 1210

or if it is negated by [? ? ...0... ? ?].10 There are as many positions available, as input variables in the formula. In some cases,
to the definition of the variable we add an intersection with [0|1]n, where n is the number of input variables. This might
seem redundant but it is necessary to restrict undesired strings. Last the OUT variables are defined. If there is only one OUT
variable, the formula is satisfiable iff there is an assignment of values for the input variables that satisfies the conditions of
the OUT variable (and all the variables under it). If there are more OUT variables, it allows us to test the properties of each
OUT variable separately. This can be seen as a bottom-up computation of the different expressions that compose the formula.
The structural definition of the formula is respected. It can be observed in the results presented in the following table that
the ordering of variables has an impact on the performance of the XFST machinery. The reordering of variables was made
using a simple strategy according to the most frequent variable across the subformulas. Table 11 shows the results of using
XFST with andwithout variable reordering. Reordering of variables is referenced by Var R(enaming), and Var O(riginal) with
no variable mapping. We compared XFST with c2d.11 In Table 11 c2dt stands for the timing we obtained in our experiments

10 We repeat that we used a for 1 and b for 0.
11 We used the same parameters for c2d ( -in memory -dt_method 0 -dt_count 25 -count ) reported on the c2d web page, but have some differences in
timing.



J.M. Castaño, R. Castaño / Theoretical Computer Science 450 (2012) 92–108 107

# c17
# 5 inputs
# 2 outputs
# 0 inverter
# 6 gates ( 6 NANDs )

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(6)
INPUT(7)

OUTPUT(22)
OUTPUT(23)

10 = NAND(1, 3) define g10 ~[a ? a ? ?];
11 = NAND(3, 6) define g11 ~[? ? a a ?];
16 = NAND(2, 11) define g16 ~([? a ? ? ?] & g11);
19 = NAND(11, 7) define g19 ~([? ? ? ? a] & g11);
22 = NAND(10, 16) define g22 ~( g10 & g16);
23 = NAND(16, 19) define g23 ~( g16 & g19);

define OUT g22 & g23;

Fig. 3. Iscas85 c17.bench non-clausal formula (left), translated to XFST (right).

and c2dr stands for the compilation time reported at theweb page (see also [12]). OMmeans it has been reached thememory
limit available at XFST.

The results however are not directly comparable, because the XFST implementation, as is apparent from the description,
did not use a CNF input; however c2d was run on the CNF translation of the iscas format.

9. Conclusions and future work

SAT solving and model counting is now present in many practical applications but these are NP- and #NP-complete
problems. This paper makes a number of contributions related to the evaluation of an FSA based SAT approach with ALL-
SAT and model counting capabilities.

As a first step, and most importantly, it is shown that the FSA approach is very competitive versus the traditional DPLL
approach in some hard problems (problems where most of the features added to the basic DPLL algorithm don’t help). This
should not be interpreted as saying that the FSA approach is better than the DPLL or BDD/NNF approaches. There are decades
of research and experience that cannot be surpassed with this initial proposal.

The experiments show variable and clause order have an enormous impact on performance. Variable ordering and clause
ordering (automata intersection) are problems known to be NP-complete. Force heuristic generated far better variable
orderings in problems with a particular structure. That was not the case in random class problems (uf50), where Freq is
better than Force. The anti-lexicographic ordering proved to be a consistent strategy, still with room for improvement.

We also introduce a number of ideas that have shown very promising experimental results, such as amore elaborate FSIG
approach to SAT, a clause-learning implementation as a preprocessing scheme and an extension of the main FSA approach
to deal with formulas in non-clausal representations.

We believe that the most added value of these results are the questions they bring up front. It would be interesting
to assess whether some of the knowledge built upon the DPLL and BDD tradition and experience can be used in an FSA
approach. The formal languages community would be more suitable in finding the optimal way of constructing an MDFA
for this very specific class of languages or pointing out other convenient grammar formalisms. Another important question
that should be elucidated is whether an approach to a fixed large window of k variables and m clauses can solve practical
problems in a different way.12
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Appendix

The following pages contain the complete data of the summarized tables (Tables 12–15) presented in Section 5. Table 15
presents relevant data of the instances from these benchmarks. #Var denotes the number of variables, #CL denotes the

12 See [35,26] for intersection of a limited number of automata.
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number of clauses. # Freq denotes the different number of occurrences for each variable. It is interesting to note that there
are a number of instances that have the same frequency for all variables (#Freq is 1), or a limited variation of frequencies
per variable (e.g. mutcb has 4 different frequencies, which range from 5 to 8. Range Freq denotes the range of different
frequencies, between a minimum of the number of occurrences of a variable and the maximum frequency in the range. +w
denotes the number of clauses that have only positive literals. -w denotes the number of clauses that have only negative
literals and +-w denote the number of clauses that have both positive and negative literals. It is interesting to note that some
of these hard benchmarks have only positive and negative literals.
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