
Theoretical Computer Science 438 (2012) 62–73

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A linearly computable measure of string complexity
Verónica Becher ∗, Pablo Ariel Heiber
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & CONICET, Argentina

a r t i c l e i n f o

Article history:
Received 10 February 2011
Received in revised form 20 December 2011
Accepted 7 March 2012
Communicated by B. Durand

a b s t r a c t

We present a measure of string complexity, called I-complexity, computable in linear
time and space. It counts the number of different substrings in a given string. The least
complex strings are the runs of a single symbol, themost complex are the de Bruijn strings.
Although the I-complexity of a string is not the length of any minimal description of the
string, it satisfies many basic properties of classical description complexity. In particular,
the number of strings with I-complexity up to a given value is bounded, and most strings
of each length have high I-complexity.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We present a measure of complexity of strings that counts the number of different substrings in a given string. We call
it I-complexity. The least complex strings are, as one may expect, the runs of a single symbol. The most complex strings
are those having the largest number of different substrings, the de Bruijn strings [5]. A combinatorial definition yields big
families of strings with close to maximal complexity (Theorem 34).

The I-complexity is invariant under alphabet permutation, monotone in the prefix ordering of strings, smooth for
prefixing or suffixing one symbol, and subadditive for concatenation. The I-complexity of a string is upper bounded by the
string length, and most strings have I-complexity close to the maximum (Theorem 38). We also prove that the number
of strings with I-complexity up to a given value is bounded (Corollary 31). These properties merit our definition to be
considered a measure of string complexity. In fact, except for monotonicity, these are all basic properties of classical
description complexity (program-size complexity or Kolmogorov complexity) [12,8]. On the other hand, the property of
monotonicity is central in the monotone complexities, the variants of Kolmogorov complexity independently introduced
in [22] and [16] (see [19] for a comparison).

The I-complexity is defined from combinatorial conditions on strings, while description complexity, in each of its
varieties, has been defined as a minimal description length for a given description method. So, it is not surprising that the
I-complexity is not a measure of information content in the sense of Shannon [18,8]. The same happens to other complexity
measures that are not defined as the length of an injective encoding, as the Lempel–Ziv complexity [13] (not to be confused
with the Lempel–Ziv compression algorithm [21]). Indeed, the I-complexity and the Lempel–Ziv complexity share many
properties: their values are close, they have a similar upper bound, and they are both monotone in the prefix ordering and
subadditive for concatenation. Also both functions are linearly computable. However, the Lempel–Ziv complexity has two
main drawbacks that the I-complexity overcomes. First, there are infinitely many strings with Lempel–Ziv complexity up
to any given value. Second, Lempel–Ziv complexity is defined by a purely procedural string description in such a way that it
is hard to prove properties. For instance, Jack Lutz’s one-bit catastrophe question ‘‘Is the Lempel–Ziv complexity of strings s
and 0s necessarily close?’’ [14], is still unknown.

It has been hard, if at all possible, to relate description complexities with combinatorial properties of strings. With the
I-complexity we aim to narrow the gap between the two views, and to marry the notion of string complexity with string

∗ Corresponding author. Tel.: +54 11 4576 3359; fax: +54 11 4576 3359.
E-mail addresses: vbecher@dc.uba.ar (V. Becher), pheiber@dc.uba.ar (P.A. Heiber).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.03.007

http://dx.doi.org/10.1016/j.tcs.2012.03.007
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:vbecher@dc.uba.ar
mailto:pheiber@dc.uba.ar
http://dx.doi.org/10.1016/j.tcs.2012.03.007

V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73 63

processing algorithms and data structures. The value of the I-complexity of a given string is obtained by giving a score to each
position in a string, according to how many new substrings are given rise by the symbol at that position. The accumulation
of the single scores yields a global indicator of the repeated substrings in the given string. Our scoring rule for each position
is exactly that used by Ehrenfeucht andMycielski in [10]. The definition of the I-complexity function is based on a repetitions
array that allows for algebraic manipulation. This is an array of non-negative integers that indicates, at each position, the
length of the largest repeated substring. The repetitions array is indeed a permutation of the well known Longest Common
Prefix array (LCP), the companion data structure of the suffix array [15] (Theorem 18). Since the LCP array is computable in
linear time and space [1] and we can linearly compute the I-complexity from the LCP array, the I-complexity is also linearly
computable (Theorem 39).

We see the I-complexity as a trade-off of desirable but, thus far, incompatible features. The soundest computable string
complexity measure is the resource bounded Kolmogorov complexity [6], because it preserves the neat properties of classical
Kolmogorov complexity; but it lacks an efficient algorithm to compute it. Finite state complexities [7,17], the variants
that replaces Turing machines with finite transducers, have the same difficulty. An efficiently computable alternative is
the approximation to description complexity by compression length using standard compressors, as done by Cilibrasi and
Vitanyi in [9], but it is not subadditive for concatenation. For instance, in dictionary compressors such as the Lempel–Ziv
compression algorithm [21] the total dictionary size affects the length of the encoding. A related problem occurs in block
compressors based on the Burrows Wheeler Transform plus the Move To Front algorithm [1]. While compression length
has been successfully used in experimentation, the property of subadditivity is a concern when dealing with large data, or
when it is used to approximate information distance [20]. And,more fundamentally, compression length is only procedurally
defined, so it is difficult to abstract combinatorial properties.

We carried out some experimentation to test the I-complexity on different sorts of data. Unexpectedly, in these inputs
the behavior of the I-complexity turned out to be similar to compression length. These experiments are reported in graphical
and numerical form in http://kapow.dc.uba.ar/complexity.

The present paper is devoted to introduce the definition of the I-complexity and prove the basic results. Section 2
introduces the repetitions array and develops its properties. Section 3 treats the I-complexity function. Section 4 compares
the Lempel–Ziv complexity with the I-complexity. And the last Section 5 proposes a research line on the I-complexity. A
calculator of the I-complexity is available in http://kapow.dc.uba.ar/calci.

1.1. Notation

The cardinality of a set S is denoted as |S|. We denote by Sℓ the set of sequences of exactly ℓ elements in the set S and
by S∗

=

ℓ∈N Sℓ the set of finite sequences of elements in S. Given a sequence x ∈ S∗, |x| is its length, and its elements
are x[1], . . . , x[|x|]. If 1 ≤ i ≤ j ≤ |x|, x[i..j] is the sequence of length j − i + 1 that has x[i], . . . , x[j] as elements. If i > j,
x[i..j] is the empty sequence. We write xy for the concatenation of the sequences x and y, and for a rational k, xk denotes
the sequence of length k|x| such that xk[i] = x[((i − 1)mod |x|) + 1]. We say x is a subsequence of y, and write x ⊆ y, iff
there are sequences w, z such that wxz = y. We denote by xr the permutation of xwith the elements of x in reversed order,
xr = x[|x|], . . . , x[1]. We write elements(x) ⊆ S to denote the set of elements that appear in a sequence x. For a fixed finite
alphabet A of α = |A| ≥ 2 symbols, we call the elements of A∗ strings. We call the elements of N∗ arrays. Along the text,
we use lowercase letters close to the beginning of the alphabet (a, b, c, d) to denote elements of A, letters close to the end
of the alphabet (s, t,) to denote strings, letters in the middle (i, j, k, ℓ, n,m) to denote integers and uppercase letters to
denote arrays. We use x and y occasionally for real numbers. We write Ji, jK to denote the array A of length j − i + 1 such
that A[k] = i + k − 1 for 1 ≤ k ≤ j − i + 1.

2. The repetitions array

Definition 1 (Sorting Array). Given an array A, its sorting
−→
A is the array of the same length that contains the same elements

as A, but in non-decreasing order.

Clearly,
−→
A =

−→
B iff A is a permutation of B. We introduce a partial order on arrays that we call domination, and it is

defined pointwise.

Definition 2 (Domination Order). An array A is dominated by an array B, written A ≼ B, iff |A| = |B| and for every i ∈ [1, |A|],
A[i] ≤ B[i]. We write A ≺ B if A ≼ B and A ≠ B.

Observation 3. For every array A, B:

1. If A ≺ B then
−→
A ≺

−→
B ; and if A = B then

−→
A =

−→
B .

2. A ≼ B iff for every i, j, A[i..j] ≼ B[i..j].

Proof. Direct from Definitions 1 and 2. �

Definition 4 (Repetitions Arrays). The forward repetitions array of a given string s, Fs, is an array of length |s| such that
Fs[i] = max{ℓ : s[i..i + ℓ − 1] ⊆ s[i + 1..|s|]}. Analogously, the backward repetitions array of s, Bs, is such that |Bs| = |s|
and Bs[i] = max{ℓ : s[i − ℓ + 1..i] ⊆ s[1..i − 1]}.

http://kapow.dc.uba.ar/complexity
http://kapow.dc.uba.ar/complexity
http://kapow.dc.uba.ar/complexity
http://kapow.dc.uba.ar/complexity
http://kapow.dc.uba.ar/complexity
http://kapow.dc.uba.ar/complexity
http://kapow.dc.uba.ar/calci
http://kapow.dc.uba.ar/calci
http://kapow.dc.uba.ar/calci
http://kapow.dc.uba.ar/calci
http://kapow.dc.uba.ar/calci
http://kapow.dc.uba.ar/calci

64 V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73

Observation 5. For all strings s, t and i in range:

1. Fs[|s|] = Bs[1] = 0.
2. Fs[i] = Bsr [|s| − i − 1].
3. Fs[i] ≤ Fst [i], Bt [i] ≤ Bst [|s| + i], Ft [i] = Fst [|s| + i] and Bs[i] = Bst [i].
4. Fs[i] ≤ Fs[i + 1] + 1 and Bs[i + 1] ≤ Bs[i] + 1.

Proof. Direct from Definition 4. �

The next two lemmas prove invariant properties of the repetitions array. The first, Lemma 6, shows that Bs and Fs are
invariant through permutations in the alphabet. Lemma 7 relates a structural property of strings and the values in the
repetitions array. It proves that for a given length ℓ, the difference between the number of positions in Bs with values less
than ℓ, and the number of different substrings of length ℓ in s, is exactly the length ℓ minus one. This lemma is crucial for
the results to come.

Lemma 6. Given a string s and a function p : elements(s) → A, let t be such that |t| = |s| and t[i] = p(s[i]). Then, Bs ≼ Bt
and Fs ≼ Ft , and the equality holds only when p is injective.

Proof. If p is injective, it is clear by definition that Bs = Bt . It is also clear that Bt [i] cannot be less than Bs[i] because if
s[i − Bs[i] + 1..i] ⊆ s[1..i − 1] then t[i − Bs[i] + 1..i] ⊆ t[1..i − 1] at the same position. Finally, if p is not injective, let
c, d ∈ elements(s) be such that c ≠ d and p(c) = p(d). Let ic be the leftmost occurrence of c in s, and id analogously for d.
Without loss of generality assume ic < id. By definition Bs[ic] = Bs[id] = 0 but Bt [id] ≥ 1 because t[id..id] = p(d) occurs in
t[1..id − 1] (where p(c) = p(d) appears). Therefore, in this case, Bt ≠ Bs. By Observation 5.2 the same holds for F . �

Lemma 7 (Invariant Property of Bs). Given a non-empty string s and a length ℓ ≤ |s|, let n be the number of different substrings
of length ℓ in s and letm be the number of elements in Bs strictly less than ℓ, namely, n = |{t ∈ Aℓ

: t ⊆ s}|,m = |{i : Bs[i] < ℓ}|.
Then the following holds: n + ℓ − 1 = m.

Proof. By induction on the length of s. If |s| = ℓ, then n = 1 and all elements of Bs are less than |s|, som = |s| = ℓ = ℓ+n−1.
If |s| > ℓ, Bs = Bs[1..|s|−1]Bs[|s|] (see Observation 5.3). Let us call n′ the number of different substrings of length ℓ in
s[1..|s| − 1] and m′ the number of elements less than ℓ in Bs[1..|s|−1]. By inductive hypothesis n′

+ ℓ − 1 = m′. Now, if
the string s[|s| − ℓ + 1..|s|] ⊆ s[1..|s| − 1] then n = n′ and, by definition, Bs[|s|] ≥ ℓ, so m = m′ and the equation holds. If
s[|s| − ℓ + 1..|s|] ⊈ s[1..|s| − 1], then n = n′

+ 1 and Bs[|s|] < ℓ, therefore,m = m′
+ 1, so the result also holds. �

Corollary 8. Given a string s and a positive integer k, the number of times that k occurs in Bs is one more than the difference
between the number of different substrings of lengths k and k + 1 in s.

Proof. Let nk be the number of different substrings of length k in s and mk the number of elements strictly less than k
in Bs. By Lemma 7, nk + k − 1 = mk and nk+1 + k + 1 − 1 = mk+1, therefore the number of times k occurs in Bs is
mk+1 − mk = nk+1 − nk + 1. �

The next theorem allows us to regard the array representation as giving a global view of the repetitions in a string,
independent of the apparently arbitrary direction. After this theorem, we use only Bs because it simplifies notation, but
analogous results apply to Fs.

Theorem 9.
−→
Fs =

−→
Fsr =

−→
Bs =

−→
Bsr .

Proof. Weprove
−→
Bs =

−→
Bsr , the other equalities followbyObservations 3 and5.2. Since t ⊆ s ⇔ t r ⊆ sr , the set of substrings

of s of any given length has the same cardinality as the set of substrings of sr of that same length. Applying Corollary 8 to
both we obtain that, for each value k, the number of occurrences of k in Bs and Bsr coincide. �

The following example illustrates that not only trivial structural operations, such as reversing or relabeling the alphabet,
make two strings to be considered equal in the repetitions view.

Example 10. Bcddc = Bcdcc = 0011.

As expected, the domination relation is subadditive for string concatenation.

Lemma 11 (Subadditivity for Concatenation). For all strings s, t, BsBt ≼ Bst , and equality holds if and only if elements(s) ∩

elements(t) = ∅.

Proof. Immediate by Observation 5.3. �

2.1. The least and greatest sorted arrays in the domination preorder

The domination relation on sorted repetitions arrays of a given length is a partial order with a least and greatest element.
We now prove that such greatest array is the sorted array of the string that consists of run of a single symbol, as cℓ.

V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73 65

The least sorted repetitions array is associated to those strings having all their repeated substrings as short as possible.
These are exactly the de Bruijn strings of order k when considering lengths of the form αk

+ k − 1. However, for arbitrary
lengths, we need to consider extensions of de Bruijn strings of the closest lower order.
Lemma 12 ([4], Theorem 1). In alphabets with at least three symbols, de Bruijn strings of order k can be extended to order k+1.
In a two-symbol alphabet, de Bruijn strings of order k cannot be extended to order k+ 1, but they can be extended to order k+ 2.

The next definition introduces the array Zℓ, the sorted repetitions array of (extended) de Bruijn strings for alphabets of
at least three symbols. In the case of a two-letter alphabet, for every de Bruijn length ℓ, Zℓ also coincides with the sorted
arrays of de Bruijn strings. However, since de Bruijn strings of order k − 1 cannot be extended to order k, but to order k + 1
(Lemma 12), for many lengths ℓ that are not of the form 2k

+ k − 1, Zℓ is not the sorted array of any binary string. But it
is quite close to the sorted repetitions array of extended de Bruijn strings, because at just a few positions Zℓ is exceeded
by

−→
Bs by only 1. Then Lemma 14 proves that for α ≥ 3, Zℓ is the least element in the domination partial order of sorted

repetitions arrays of length ℓ. The result also holds for α = 2 for de Bruijn lengths, and it is closely below the minimum for
other lengths.
Definition 13 (Sorted Repetitions Array of Extended de Bruijn Strings). Let Zℓ be the array of length ℓ such that, for 1 ≤ i ≤ ℓ,
Zℓ[i] = k ⇔ αk

+ k ≤ i < αk+1
+ k + 1.

Note that Zℓ is a non-decreasing array, hence Zℓ =
−→
Zℓ .

Lemma 14 (Tight Bounds of
−→
Bs). For every s ∈ A∗, Z|s| ≼

−→
Bs ≼ J0, |s| − 1K, and the bounds are tight.

Proof. By Observation 5, Bs[1] = 0 and Bs[i + 1] ≤ Bs[i] + 1. By induction on i, these two properties imply Bs[i] ≤ i − 1,
which in turn implies

−→
Bs ≼ J0, |s| − 1K. This upper bound is tight because for each c ∈ A, Bcℓ = J0, |s| − 1K.

Let us see the lower bound. Let i be a position in
−→
Bs . Let k = max{j : αj

+ j ≤ i}. By Lemma 7 there are exactly n + k − 1
elements strictly less than k inBs, wheren is the number of different substrings of length k in s; therefore,n+k−1 ≤ αk

+k−1.
Since

−→
Bs is sorted, this means

−→
Bs [i] ≥ k. Also, by definition Z|s|[i] = k. This implies Z|s|[i] ≤

−→
Bs [i] for any position i. Let us

see that for an alphabet A with more than two symbols this lower bound is tight. For any given string length ℓ, let k be the
smallest integer such that αk

+ k − 1 ≥ ℓ. Let s0 be a non-cyclic de Bruijn string of order k − 1 in alphabet A and let s1
be a de Bruijn string of order k that extends s0, which, by Lemma 12, exists. So, s0 contains every substring of length k − 1
exactly once, and s1 contains every substring of length k exactly once. Consider s = s1[1..ℓ]. Note that s0 ⊆ s. Since s does
not contain any substring of length k more than once, all values in Bs are strictly less than k. Also, every substring of length
ℓ ≤ k−1 appears, so there are amaximum of αℓ substrings of length ℓ, and there is also amaximum of |s|−k+1 substrings
of length k. Applying Corollary 8 it follows that the number of occurrences of each value in Bs and in Z|s| is the same. �

2.2. The repetitions array is a permutation of the Longest Common Prefix

We show that the repetitions array Bs is a permutation of the Longest Common Prefix array, the companion data structure
of the suffix array [15]. A suffix array represents a lexicographically sorted list of all the suffixes in a string, and the LCP array
stores the lengths of the longest common prefixes of adjacent suffixes in the suffix array. These two data structures are so
well known because they allow many string processing problems to be solved in optimal time and space.
Definition 15 (Suffix Array Ss [15]). The suffix array Ss of a string s is an array of length |s| such that for every i, s[Ss[i]..|s|]
is lexicographically less than s[Ss[i + 1]..|s|].
Definition 16 (LCP Array). For a non-empty string s, LCPs is an array of length |s| − 1 such that for each i, LCPs[i] = max{ℓ :

s[Ss[i]..Ss[i] + ℓ − 1] = s[Ss[i + 1]..Ss[i + 1] + ℓ − 1]}.
The next lemma proves that the LCP array possesses an analogous invariance property as that we proved for the

repetitions array in Lemma 7. Since the length of LCPs is |s| − 1 instead of |s|, it misses one position, and this is reflected in
the invariance property.
Lemma 17 (Invariance Property of LCP). Given a non-empty string s and a length ℓ ≤ |s|, let n be the number of different
substrings of length ℓ in s and, let m be the number of elements in LCPs strictly less than ℓ, namely, n = |{t ∈ Aℓ

: t ⊆ s}|,
m = |{i : LCPs[i] < ℓ}|. Then the following holds: n + ℓ − 2 = m.
Proof. Fix ℓ. Consider a relation∼ between suffixes of s such that s[i..|s|] ∼ s[j..|s|] ⇔ (i, j ≤ |s|−ℓ+1 ∧ s[i..i+ℓ−1] =

s[j..j + ℓ − 1]). Clearly, ∼ is an equivalence relation, and let k be the number of classes. All elements in each equivalence
class are consecutive in Ss. Also, by definition, the length of the longest common prefix of two consecutive suffixes in the
lexicographic order is strictly less than ℓ if and only if they belong to different classes. Therefore, m = k − 1. Note that
there are exactly ℓ − 1 suffixes of length less than ℓ, and necessarily each of them forms a singleton class. Each of the other
classes must be represented by a different substring of length ℓ, which is a prefix of all the suffixes in the class. Therefore,
k = ℓ − 1 + n. Putting all together m = k − 1 = ℓ − 1 + n − 1 = n + ℓ − 2. �

Theorem 18. J0, 0K
−−→
LCPs =

−→
Bs .

Proof. Put together Lemma 7 and Lemma 17 and observe that every value except 0 occurs the same number of times in LCPs
as in Bs. There is exactly one more 0 in Bs. �

66 V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73

3. The I-complexity function

The function I is defined so as to have smaller values on strings with more and longer repeated substrings. For a given
string, the value of I is the accumulation of a score given to each string position, and this score is inversely related to the
length of the repetition raised by the symbol at that position, namely, the value of the repetitions array in that position. To
achieve the wanted logarithmic complexity of strings of the form cℓ we use the discrete derivative function of log, dlog, for
each given base n.

Definition 19 (Discrete Derivative Function of log). dlogn(x) = logn(x + 1) − logn(x).

Observation 20. For every positive x, 1/(x + 1) < (ln n) dlogn x < 1/x.

Proof. (ln n) dlogn x = ln(x + 1) − ln x =
 x+1
x 1/y dy < 1/x

 x+1
x 1 dy = 1/x.

(ln n) dlogn x = ln(x + 1) − ln x =
 x+1
x 1/y dy > 1/(x + 1)

 x+1
x 1 dy = 1/(x + 1). �

From Observation 20 follows that dlogn is a non-increasing function.

Definition 21 (I-complexity Function). The complexity function I : N∗
→ R is defined as follows: for any repetitions

array A,

I(A) =

|A|
i=1

dlogα(A[i] + 1).

The complexity function I : A∗
→ R is defined from its counterpart on arrays: for any string s,

I(s) = I(Bs).

Observation 22. For every array A, B, if A ≺ B then I(A) > I(B), and if A ≼ B then I(A) ≥ I(B).

Proof. Immediate from the definitions. �

Observation 23. I(Jx, x + ℓ − 1K) = logα(x + ℓ + 1) − logα(x − 1).

Proof. I(Jx, x + ℓ − 1K) =
x+ℓ−1

i=x dlogα(i + 1) = logα(x + ℓ + 1) − logα(x − 1). �

Theorem 24. If ℓ ≥ α, then I(Zℓ) < 2ℓ/ ln ℓ.

Proof. By induction on ℓ. Firstly, Zα = J0, 0Kα , therefore, I(Zα) = α dlogα 1 = α logα 2 = α/ log2 α < α/ lnα. A simple
check shows that I(Zℓ) < 2ℓ/ ln ℓ, for each ℓ ≤ 20 and each α ≤ ℓ. Thus, in the sequel assume ℓ > max(α, 20). Let k be the
largest integer such that αk

+ k ≤ ℓ. So, ℓ ≤ αk+1
+ k. Note that Zℓ = Zℓ−1Jk, kK. By the inductive hypothesis,

I(Zℓ) = I(Zℓ−1) + dlogα(k + 1) <
2(ℓ − 1)
ln(ℓ − 1)

+
1

(k + 1) lnα
.

We give an upper bound of logα ℓ to derive an upper bound of 1
(k+1) lnα

:

logα ℓ =

k
i=1

dlogα(ℓ − i) + logα(ℓ − k) <
k

(ℓ − k) lnα
+ logα(αk+1) =

k
(ℓ − k) lnα

+ k + 1.

Then, logα ℓ −
k

(ℓ−k) lnα
< k + 1; hence, 1

(k+1) lnα
< ℓ−k

(ℓ−k) ln ℓ−k .
Since ℓ ≤ (ℓ − k) ln ℓ, then ℓ−k

(ℓ−k) ln ℓ−k ≤
ℓ

(ℓ−k) ln ℓ
.

Thus, 1
(k+1) lnα

< ℓ
(ℓ−k) ln ℓ

.

To prove I(Zℓ) < 2ℓ/ ln ℓ it suffices to show 2(ℓ−1)
ln(ℓ−1) +

ℓ
(ℓ−k) ln ℓ

≤
2ℓ
ln ℓ

.

This is equivalent to 2ℓ
ln(ℓ−1) −

2ℓ
ln ℓ

≤
2

ln(ℓ−1) −
ℓ

(ℓ−k) ln ℓ
, which, in turn, it is equivalent to 2ℓ dloge(ℓ − 1) ≤

2(ℓ−k) ln ℓ−ℓ ln(ℓ−1)
ℓ−k .

Using the upper bound of dloge it suffices to show

2ℓ
ℓ − 1

≤ 2 ln ℓ −
ℓ ln(ℓ − 1)

ℓ − k
⇔ ℓ ln(ℓ − 1)

1 +

k − 1
ℓ − k

+ 2ℓ + 2 ln ℓ ≤ 2ℓ ln ℓ.

This last inequality holds because 1 +
k−1
ℓ−k +

2
ln(ℓ−1) +

2
ℓ

< 2, for our assumption ℓ ≥ 20, and k the maximum integer such
that αk

+ k ≤ ℓ. �

Theorem 25 (Basic Properties of I-complexity). For all strings s, t and symbol c,

1. logα(|s| + 1) ≤ I(s).
2. If |s| ≥ α then I(s) < 2|s|/ ln |s|.

V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73 67

3. max(I(s), I(t)) ≤ I(st) ≤ I(s) + I(t).
4. I(s) ≤ I(cs) ≤ I(s) + 1 and I(s) ≤ I(sc) ≤ I(s) + 1.

Proof. For 1 and 2, apply Definition 21, I(s) = I(Bs) = I(
−→
Bs) and the bounds for

−→
Bs in Lemma 14, together with

Observation 22. By Observation 23 and Theorem 24, logα(|s| + 1) = I(J0, |s| − 1K) ≤ I(Bs) ≤ I(Z|s|) < 2 |s|/ ln |s|. Items 3
and 4 follow directly from the definitions and Lemma 11. �

Observation 26 (Families of Maximal and Minimal I-complexity). Among all strings of the same length, runs cℓ have minimal
I-complexity and extended de Bruijn strings have maximal I-complexity.
Proof. Immediate from Lemma 14. �

3.1. On the number of strings with I-complexity up to a given value

To obtain an upper bound of the number of strings with complexity up to a given value k, we give an upper bound of the
number of symbols needed to encode a string with complexity up to k. We first give a negative result, Theorem 27, which
proves that no encoding length is majorized by a linear function of the I-complexity. The positive result, Corollary 31, gives
an encoding whose length is majorized by a quadratic function of the I-complexity. We use the customary asymptotic O(.)
notation to describe the growth rate of the functions.
Theorem 27. log |{s ∈ A∗

: I(s) ≤ k}| ∉ O(k).
Proof. By way of contradiction suppose there is some n ≥ 1 such that

logα |{s ∈ A∗
: I(s) ≤ k}| < nk.

Let ℓ = α2n/ lnα . If |s| ≤ ℓ then, by Theorem 25, I(s) < 2|s|/ ln |s| ≤ ℓ/n. Therefore, {s ∈ A∗
: |s| ≤ ℓ} ⊆ {s ∈ A∗

: I(s) ≤

ℓ/n}. Now, logα |{s ∈ A∗
: |s| ≤ ℓ}| > ℓ, but logα |{s ∈ A∗

: I(s) ≤ ℓ/n}| < nℓ/n = ℓ, which is a contradiction. �

Now let us briefly recall the encoding presented by Lempel and Ziv in [13]. A production is a transformation of a string
that consists on appending a copy of a number of previously occurring consecutive symbols plus a single extra symbol. In
this way, a production can be encoded as a triple (i, ℓ, c), where i indicates the position of the source string to start copying,
ℓ indicates howmany symbols to copy and c is the symbol to append at the end. When the production (i, ℓ, c) is applied to
s the result is s(s[i..|s|]ℓ/(|s|−i+1))c . A string can be described completely by a production history, that is, a list of such triples
that, when iteratively applied, generate the string from the empty string. Note that every string has a production history,
and usually many.
Definition 28 ([13]). Given a string, its exhaustive production history is such that every production, except possibly the last
one, copy as many symbols as possible.
Lemma 29. The exhaustive production history of a string s consists of at most 2(log2 α)I(s) productions.
Proof. Let n be the length of the exhaustive production history of s. If n = 1, then |s| = 1 and I(s) = logα 2 = 1/ log2 α,
so the inequality trivially holds. Assume now n > 1 and thus |s| > 1. For 1 ≤ i ≤ n, let pi be the index of the first symbol
produced by production i in the exhaustive production history of s. For completion, let pn+1 = |s| + 1. Let ℓi = pi+1 − pi
be the length of each production, and set ℓ0 = 0. By definition of exhaustive productions, in production i the substring
s[pi..pi+1 − 1] does not occur in s[1..pi+1 − 2], with the possible exception of the last production. This means that for every
i such that 1 ≤ i < n, Bs[pi+1 − 1] < ℓi. Applying Observation 5.4 we can say that Bs[pi+1] ≤ ℓi. By Observation 5.1
Bs[p1] = 0 ≤ ℓ0, so for every i such that 1 ≤ i ≤ n, Bs[pi] ≤ ℓi−1. Then, using Observation 5.4 again we obtain that for each
j, Bs[pi + j] ≤ ℓi−1 + j and Bs[pi..pi+1 − 1] ≼ Jℓi−1, ℓi−1 + ℓi − 1K.

I(s) = I(Bs) =

n
i=1

I(Bs[pi..pi+1 − 1])

≥

n
i=1

I(Jℓi−1, ℓi−1 + ℓi − 1K) =

n
i=1

logα(ℓi−1 + ℓi + 1) − logα(ℓi−1 + 1).

2I(s) ≥

n
i=1

2 logα(ℓi−1 + ℓi + 1) − 2 logα(ℓi−1 + 1)

= 2 logα(ℓn−1 + ℓn + 1) − logα(ℓ0 + 1) − logα(ℓn−1 + 1)

+

n−1
i=1

logα(ℓi−1 + ℓi + 1) − logα(ℓi−1 + 1) + logα(ℓi−1 + ℓi + 1) − logα(ℓi + 1)

= logα

(ℓn−1 + ℓn + 1)2

(ℓn−1 + 1)

+

n−1
i=1

logα

(ℓi−1 + ℓi + 1)2

(ℓi−1 + 1)(ℓi + 1)

≥ logα 2 + (n − 1) logα 2 = n logα 2.

The last inequality holds since (x+y+1)2

(x+1)(y+1) ≥ 2 for all integers x, y ≥ 1. Hence, n ≤ 2 I(s)(logα 2)−1
= 2(log2 α)I(s). �

68 V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73

Theorem 30. log |{s ∈ A∗
: |s| ≤ ℓ ∧ I(s) ≤ k}| ∈ O(k log(ℓ + 1)).

Proof. Let s ∈ {s ∈ A∗
: |s| ≤ ℓ ∧ I(s) ≤ k}. By Lemma 29, there is a production history of s that consists of at most O(k)

productions. Each production can be encoded in O(log(ℓ + 1)) symbols because it consists of two integers not greater than
ℓ and a symbol of A. �

Corollary 31. log |{s ∈ A∗
: I(s) ≤ k}| ∈ O(k2).

Proof. By Theorem 25.1 I(s) ≥ logα(|s| + 1), which means that {s ∈ A∗
: I(s) ≤ k} = {s ∈ A∗

: |s| ≤ αk
− 1 ∧ I(s) ≤ k}.

Application of Theorem 30 setting ℓ = αk
− 1 yields log |{s ∈ A∗

: I(s) ≤ k}| ∈ O(k2). �

3.2. A large family of strings with almost maximal complexity

As shown in Observation 26, the strings the with maximal I-complexity are the (extended) de Bruijn strings. Their
cardinality the total number of strings of the given de Bruijn length As proved in [5], the cardinality of the acyclic de Bruijn
strings of order k in alphabet A, which have length αk

+ k − 1, is α!
αk−1

/αk. Here we define, for each length, a family of
strings with almost maximal I-complexity and we prove that its cardinality is much larger than that of the de Bruijn family.
We actually prove that for large lengths ℓ, the cardinality of this family is close to the total number of strings of length ℓ,
while its elements keep a high I-complexity.

Recall that the strings of a given length with high I-complexity are exactly the strings with a minimal sorted repetitions
array. We now relax this condition and define a subset of the strings with almost maximal complexity as those having a
close to minimal sorted repetitions array. In a de Bruijn string of order k, each string of length k occurs just once. Hence,
all values of the repetitions array of a de Bruijn string must be smaller than k. We weaken this property requiring it only at
positions with an index multiple of k.

Definition 32 (Bounded Repetitions Family). For given integers ℓ and k ≥ logα ℓ, we define the set of stringsBk
ℓ = {s ∈ Aℓ

:

∀i ≤ ⌊ℓ/k⌋ Bs[ik] < k}.

As the following result shows, the strings in the family Bk
ℓ contain no repeated substring of length 2k − 1, and the

repetitions array of each string is upper bounded as follows.

Observation 33. Let s ∈ Bk
ℓ . Then, Bs ≼ J0, k − 2K(Jk − 1, 2k − 2K(ℓ−k+1)/k).

Proof. First observe that Bs[1..k − 1] ≼ J0, k − 2K is true for any string s. By definition of Bk
ℓ , Bs[ik] ≤ k − 1. Applying

Observation 5.4 it follows that Bs[ik + j] ≤ k − 1 + j for every j, which directly implies the result. �

Theorem 34 (Strings in Bk
ℓ Have Almost Maximal Complexity). If s ∈ Bk

ℓ then

I(s) ≥
ℓ − k + 1

k
logα 2 + logα k.

Proof. Let s ∈ Bk
ℓ . By Definition I(s) = I(Bs), and by Observations 22 and 33,

I(Bs) ≥ I(J0, k − 2KJk − 1, 2k − 2K(ℓ−k+1)/k)

≥

k−2
i=0

dlogα(i + 1) +
ℓ − k + 1

k

2k−2
i=k−1

dlogα(i + 1)

= logα k + (ℓ − k + 1)/k (logα 2k − logα k) = logα k + (logα 2)(ℓ − k + 1)/k. �

Theorem 35 (Bk
ℓ Has a Large Number of Elements). |Bk

ℓ | > αℓ(1−(k lnα)−1).

Proof. We give a lower bound for |Bk
ℓ | by bounding the number of possibilities to construct a string s ∈ Bk

ℓ . We do this
in ⌈ℓ/k⌉ steps, choosing k symbols at step i ≤ ⌊ℓ/k⌋ and ℓmod k symbols in the final step, if it exists. Let si be the string
of length k chosen at step i ≤ ⌊ℓ/k⌋ and w be the (possibly empty) string of symbols of length ℓmod k chosen in the
final step. The constructed string is then s = s1s2...s⌊ℓ/k⌋w. To ensure Bs[ik] < k all we need is to choose si such that
si ⊈ s1s2...si−1si[1..k − 1]. For s1 we can choose any k elements, so there are αk possibilities. There are at most (i − 2)k + 1
choices that result in si ⊆ s1s2...si−1. The other forbidden choices are such that (si−1[2..k]si)[j..j+ k− 1] = si. Note that, for
fixed j, si is univocally defined. Therefore, the number of forbidden choices in this case is at most the number of choices for j,
which are k−1. Overall, we have at most (i−1)k forbidden choices at step i, which implies that there are at least αk

− ik+k
valid possibilities. Finally, w can be chosen in any way, so there are αnmod k possibilities for w. This allows us to construct at
least this number of different strings s ∈ Bk

ℓ :

αℓmod k
⌊ℓ/k⌋
i=1

αk
− ik + k = αℓmod k

⌊ℓ/k⌋−1
i=0

αk
− ik.

V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73 69

We give a lower bound for logα |Bk
ℓ | approximating a sum of logarithmic expressions with their integration. To be sound

we should take the limit of the integral in interval [0, ℓ/k], because it may include the logarithm of zero in its border. In
the limit they are all null because they are multiplied by factors that converge faster to 0. In the next inequalities, we abuse
notation to avoid such technicalities and make the proof easier to follow.

logα |Bk
ℓ | ≥ logα

αℓmod k

⌊ℓ/k⌋−1
i=0

αk
− ik

= ℓmod k +

⌊ℓ/k⌋−1
i=0

logα(αk
− ik)

≥

 ℓ/k

⌊ℓ/k⌋
k dx +

⌊ℓ/k⌋

0
logα(αk

− xk) dx

≥

 ℓ/k

0
logα(αk

− xk) dx

≥
(αk

− ℓ) ln(αk
− ℓ) − αk

+ ℓ − αk lnαk
+ αk

−k lnα

≥
(αk

− ℓ) ln(αk
− ℓ) + ℓ

−k lnα
+ αk

≥ −αk
+ ℓ −

ℓ

k lnα
+ αk

= ℓ(1 − (k lnα)−1).

Hence, there are at least αℓ(1−(k lnα)−1) strings in Bk
ℓ . �

When k increases, the bound for I-complexity of the strings in Bk
ℓ decreases and the total number |Bk

ℓ | slowly increases.
The family associated to the highest complexity is obtained using a small value k = ⌈logα ℓ⌉.

Corollary 36 (B⌈logα ℓ⌉

ℓ is a Large Family of Almost-Maximal Complexity). For s ∈ B
⌈logα ℓ⌉

ℓ ,
1. |s| = ℓ and s contains no repeated substrings of length 2⌈logα ℓ⌉ − 1.
2. I(s) > logα 2 ℓ/⌈logα ℓ⌉, which is greater than ln 2/2 = 0.34657.. times the upper bound of the I-complexity of strings of

that length.
3. The cardinality of B⌈logα ℓ⌉

ℓ is close to the maximum αℓ: |B⌈logα ℓ⌉

ℓ | ≥ αℓ(1−(ln ℓ)−1). Thus, for any ε > 0 and sufficiently large
ℓ, B⌈logα ℓ⌉

ℓ has more than αℓ(1−ε) elements.

Proof. Immediate from Theorems 34 and 35. �

3.3. Most strings have high I-complexity

On Theorem 25.2 we proved 2I(s) < 2|s|/ ln |s|. For sufficiently long strings, we can tighten this result. This is to be
compared with the expected value of the I-complexity given in Theorem 38.

Theorem 37 (Tighter Upper Bound for Large Strings). I(s) ≤ |s|/ ln |s| + O(|s|/ ln2
|s|).

Proof. Let k be the largest integer such that αk
+k ≤ |s|. By Definition 13, each i such that 0 ≤ i ≤ k−1, occurs αi+1

−αi
+1

times in Z|s|, k occurs |s| − αk
− k + 1 times in Z|s|, and other values do not occur at all. Therefore,

I(s) ≤ I(Z|s|) = (|s| − αk
− k + 1) dlogα(k + 1) +

k−1
i=0

(αi+1
− αi

+ 1) dlogα(i + 1).

Using (lnα) dlogα(x) < 1/x and rearranging the sum we obtain:

I(s) lnα < (|s| − αk
− k + 1)/(k + 1) + logα(k + 1) +

k
i=1(α

i
− αi−1)/i

≤ (|s| − k + 1)/(k + 1) − 1 + logα(k + 1) +
k

i=1 αi/i − αi/(i + 1).

The summation is easily bounded as follows:
k

i=1

αi

i(i + 1)
≤

⌈k/2⌉
i=1

αi

i(i + 1)
+

αi+⌈k/2⌉

(i + ⌈k/2⌉)(i + ⌈k/2⌉ + 1)
≤

⌈k/2⌉
i=1

2
αi+⌈k/2⌉

⌈k/2⌉2
≤ 8αk+2/k2.

Using this result, I(s) lnα ≤ |s|/(k + 1) + logα(k + 1) + 8α2
|s|/k2. Since we assumed k to be the largest integer such that

αk
+ k ≤ |s|, we have logα |s| < k + 2. We conclude,

I(s) lnα ≤ |s|/(logα |s| − 1) + logα(k + 1) + 8α2
|s|/(logα |s| − 2)2

≤ |s|/ logα |s|(1 + 1/(logα |s| − 1)) + O(|s|/ ln2
|s|).

Hence, I(s) ≤ |s|/ ln |s| + O(|s|/ ln2
|s|). �

70 V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73

The next theorem gives a lower bound of the expected value of the I-complexity function on the strings of a given length
for the equiprobably Bernoulli distribution.

Theorem 38 (The Expected Value of I is in the Order of Magnitude of the Maximum).

α−ℓ

s∈Aℓ

I(s) ≥ ℓ/ log2 ℓ − O(ℓ/log2
2ℓ).

Proof. Assume ℓ > α. For any s such that |s| = ℓ, and any given k ≤ ℓ, we can factorize the repetitions array Bs inm = ⌊ℓ/k⌋
blocks and a tail of length 1 + ℓmod k in this way:

Bs = Bs[1..k − 1]Bs[k..2k − 1]...Bs[(m − 1)k..mk − 1]Bs[mk..ℓ].

Then, I(s) = I(Bs[1..k−1])+
m−1

i=1 I(Bs[ik..(i+1)k−1]) +I(Bs[mk..ℓ]). By the same reasoning as in the proof of Theorem35,
for each i ≤ m − 1, we can choose the symbols in all positions except the range [ik − k + 1, ik] and then we still have at
least αk

− ik + k choices that lead to Bs[ik] < k. This means there are at least αℓ−k(αk
− ik + k) strings in which Bs[ik] < k,

Bs[ik..(i + 1)k − 1] ≼ Jk − 1, 2k − 2K and I(Bs[ik..(i + 1)k − 1]) ≥ logα 2. Also, for all s, Bs[1..k − 1] ≼ J0, k − 2K and
I(Bs[1..k − 1]) ≥ logα k. Therefore,

s∈Aℓ

I(s) =

s∈Aℓ

I(Bs[1..k − 1]) +

m−1
i=1

I(Bs[ik..(i + 1)k − 1]) + I(Bs[mk..ℓ])

≥ αℓ logα k +

m−1
i=1

αℓ−k(αk
− ik + k) logα 2.

α−ℓ

s∈Aℓ

I(s) ≥ logα k +

m−2
i=0

(1 − α−kik) logα 2

≥ logα k + (m − 1)(1 − α−kmk) logα 2

≥ ℓ/k (1 − α−kℓ) logα 2 (assuming k ≥ 4).

Now, let k = ⌊logα ℓ + logα logα ℓ⌋,

α−ℓ

s∈Aℓ

I(s) ≥ ℓ/(logα ℓ + logα logα ℓ)(1 − α−(logα ℓ+logα logα ℓ−1)ℓ) logα 2

≥ ℓ/(logα ℓ + logα logα ℓ)(1 − α/ logα ℓ) logα 2
≥ ℓ/ log2 ℓ(1 − logα logα ℓ/(logα ℓ + logα logα ℓ))(1 − α/ logα ℓ). �

We conclude that, for each given length, necessarily most strings have I-complexity close to the maximum. Figs. 1 and 2
depict how the distribution of the I-complexity looks in practice.

3.4. I is computable in linear time and space

The following theorem shows that the function I can be calculated efficiently. The calculation method is straightforward
given amethod to compute the LCP array, for which there is extensive research and available implementations (see [11] and
references in [1]).

Theorem 39. I is computable in linear time and space.

Proof. By Theorem 18, I(s) = I(Bs) = I(J0, 0KLCPs). Since LCPs is computable linear time and space, the function I can be
computed linearly as well. �

4. Comparison with Lempel–Ziv complexity

In [13] Lempel and Ziv define the complexity L : A∗
→ N, as a function that counts the number of operations needed

to reconstruct a string from its production history, a concept that we already introduced in Section 3. L(s) is the length of a
shortest production history of s. In the same work, they prove the following result.

Theorem 40 ([13], Theorem 1). L(s) is equal to the length of the exhaustive production history of s.

4.1. Main differences between Lempel–Ziv complexity and I-complexity

As witnessed by the next example, with the exception of very short lengths, Lempel–Ziv complexity does not have a
proper lower-bound of the complexity of the strings of a given length. It also shows that this complexity is not invariant by
reversing the string.

V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73 71

Fig. 1. For a two-symbol alphabet. Number of strings of length 20 up to given complexity. I-complexity in blue. L-complexity in orange.

Fig. 2. For a two-symbol alphabet. On a Monte Carlo sample of strings up to length 5000.

Example 41. For any c, d ∈ A, c ≠ d and n ≥ 2, L(cnd) = 2 and L((cnd)r) = L(dcn) = 3.

This means the number of strings with L-complexity up to a given value is unbounded. Moreover, for any complexity
greater than one, there are infinitely many strings with exactly that L-complexity.

Lemma 42. For any integer n ≥ 2, there exist infinitely many strings s such that L(s) = n.

Proof. Consider any exhaustive production history of n steps. Changing the length parameter of the last production yields
another production history that is still exhaustive, and changes the length of the produced string. Thus, different values
produce different strings, all having an exhaustive production history of n steps, and by Theorem 40, an L-complexity
of n. �

Given the above result, it is impossible to consider the Lempel–Ziv complexity a measure of the number of symbols
needed to encode a string. By Theorem 39, our I-complexity does not give such a measure either. However, by Corollary 31,
the number of symbols needed to encode a string is bounded by a quadratic function of its I-complexity. So, up to this extent,
the I-complexity can be considered a measure of an encoding size.

4.2. Lempel–Ziv complexity and I-complexity are close

Both functions, L and I , are subadditive for concatenation, monotone in the prefix ordering on strings, and satisfy that
most strings have almost maximal complexity. In spite of their very different behavior on infinitely many strings, they are
close to each other.

Figs. 1 and 2 compare the distributions of the I-complexity (in blue) and of the L-complexity (in orange), for an alphabet
of size 2. Fig. 1 considers all strings of length 20 and depicts the number of strings that have I-complexity up to a given
value. The shape in Fig. 1 shows that the peak of increase in the number of strings of a given I-complexity is not exactly
at the maximum value, but closely below it, which accurately reflects the theoretical results of Section 3. The two graphs
in Fig. 2 use the same Monte Carlo sample of 1, 000, 000 strings of length up to 5000. The left graph depicts their average

72 V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73

complexity per length. The right graph shows the average increase in complexity obtained by adding a symbol (i.e., the
discrete derivative of the previous function). The figures plot a similar behavior of the two complexity functions, though
the I-complexity is smoother. The I-complexity seems to majorize the L-complexity. While this is not a universal truth, for
instance, L(cdc) = 2 < 2+ dlog2 2 = I(cdc), the data supports that it may hold for sufficiently long strings. The next result
bounds the value of I in terms of L.

Theorem 43. For every string s, L(s)/(2 log2 α) ≤ I(s) ≤ L(s) logα(|s| + 1).

Proof. The first inequality follows immediately from Lemma 29 and Theorem 40. For the second, the proof is similar to the
one of Lemma 29, and uses the same notation. Let n = L(s). For 1 ≤ i ≤ n, let pi be the first symbol produced by production i
in the exhaustive production history of s. For completion, let pn+1 = |s|+1. Let ℓi = pi+1−pi be the length of each production,
and set ℓ0 = 0. By definition of production, the substring s[pi..pi+1 − 2] is repeated before in the string. This means that for
every 1 ≤ i ≤ n, Bs[pi+1 − 2] ≥ ℓi − 1. Applying Observation 5.4 we can see that for each j, Bs[pi+1 − 2 − j] ≥ ℓi − 1 − j,
which implies J1, ℓi − 1K0 ≼ Bs[pi..pi+1 − 1]. Thus,

I(s) = I(Bs) =

n
i=1

I(Bs[pi..pi+1 − 1]) ≤

n
i=1

I(J1, ℓi − 1K0) =

n
i=1

I(J0, ℓi − 1K)

=

n
i=1

logα(ℓi + 1) ≤ n logα(|s| + 1). �

The question of whether the I-complexity is strictly higher than L-complexity for sufficiently long strings remains open.

5. Open problems and ongoing work on the I-complexity

The study of the I-complexity opens a number of research venues:

Problem 1. Posed by Eugene Asarin1: Develop the I-complexity for timed sequences to obtain an efficient alternative to the
computationally expensive notion of volume of regular timed languages [2,3].

Problem 2. Define a family of low I-complexity strings and study their properties. While I-complexity seems well suited
for this, compressors and Lempel–Ziv complexity are not.

Problem 3. Sorted arrays form a distributive lattice. Investigate the algebraic structure of domination relation on sorted
repetitions arrays.

Problem 4. Study the probability distribution of the I-complexity on the set of strings.

Problem 5 (Technical). Improve the upper bound of the number of strings having I-complexity up to a given value, given
in Corollary 31.

Problem 6. Develop I as an entropy. Although the I-complexity is not the length of a one-to-one encoding of strings, it is
possible to give an entropy interpretation of I based on the upper bound on the number of strings with I-complexity up to
a given value.

Problem 7. Study the theory of the conditional I-complexity and the notion of distance.

Problem 8. Investigate the properties of the I-complexity on infinite sequences; in particular, I-triviality, I-randomness and
normality.

Acknowledgments

We thank Eugene Asarin for his insights on the I-complexity and for posing Problem 5.1. We also thank Alexander Shen,
Laurent Bienvenu and an anonymous referee for their comments. This research has been supported by Agencia Nacional de
Promoción Científica y Tecnológica and Universidad de Buenos Aires.

References

[1] Donald Adjeroh, Tim Bell, AmarMukherjee, The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and PatternMatching, Springer, 2008.
[2] E. Asarin, A. Degorre, Volume and entropy of regular timed languages: Analytic approach, in: FORMATS’09, in: LNCS, vol. 5813, Springer-Verlag, 2009,

pp. 13–27.
[3] E. Asarin, A. Degorre, Volume and entropy of regular timed languages: Discretization approach, in: CONCUR’09, in: LNCS, vol. 5710, Springer-Verlag,

2009, pp. 69–83.

1 Personal communication.

V. Becher, P.A. Heiber / Theoretical Computer Science 438 (2012) 62–73 73

[4] Verónica Becher, Pablo A. Heiber, On extending de Bruijn sequences, Information Processing Letters 111 (2011) 930–932.
[5] N.G. Bruijn, A combinatorial problem, Koninklijke Nederlandse Akademie v. Wetenschappen 49 (1946) 758–764.
[6] Harry Buhrman, Lance Fortnow, Sophie Laplante, Resource-bounded Kolmogorov complexity revisited, in: Proceedings of the 14th Symposium on

Theoretical Aspects of Computer Science, Springer, 1997, pp. 105–116.
[7] Cristian Calude, Kai Salomaa, Tania Roblot, Finite-state complexity and the size of transducers, Proceedings of Descriptional Complexity of Formal

Systems (DCFS) (2010) 38–47.
[8] Gregory J. Chaitin, A theory of program size formally identical to information theory, Journal of the ACM 22 (1975) 329–340.
[9] Rudi Cilibrasi, Paul Vitanyi, Clustering by compression, IEEE Transactions on Information Theory 51 (4) (2005) 1523–1545.

[10] Andrzej Ehrenfeucht, Jan Mycielski, A pseudorandom sequence: how random is it? in Richard K. Guy, Unsolved problems, American Mathematical
Monthly (1992) 373–375.

[11] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, Kunsoo Park, Linear-time longest-common-prefix computation in suffix arrays and its
applications, in: Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching, Springer-Verlag, 2001, pp. 181–192.

[12] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems of Information Transmission 1 (1) (1965) 1–7.
[13] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Transactions on Information Theory 22 (1) (1976) 75–81.
[14] María López-Valdés, Lempel–Ziv dimension for Lempel-Ziv compression, in: MFCS, 2006, pp. 693–703.
[15] Udi Manber, Gene Myers, Suffix arrays: a new method for on-line string searches, SIAM Journal on Computing 22 (5) (1993) 935–948.
[16] C.P. Schnorr, Process complexity and effective random tests, Journal of Computer Systems Science 7 (1973) 376–388.
[17] Jeffrey Shallit, Ming-Wei Wang, Automatic complexity of strings, Journal of Automata, Languages and Combinatorics 6 (4) (2001) 537–554.
[18] C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379–423. 623–656.
[19] V.A. Uspensky, A.Kh. Shen, Relations between varieties of Kolmogorov complexities, Mathematics Systems Theory 29 (1996) 271–292.
[20] Paul Vitányi, Ming Li, An Introduction to Kolmogorov Complexity and Its Applications, 2nd edition, Springer, 1997.
[21] Jacob Ziv, Abraham Lempel, Compression of individual sequences via variable-rate coding, IEEE Transactions on Information Theory 24 (5) (1978)

530–536.
[22] A.K. Zvonkin, L.A. Levin, The complexity of finite objects and the development of the concepts of information and randomness by means of the theory

of algorithms, Russian Mathematical Surveys 25 (1970) 83–124.

	A linearly computable measure of string complexity
	Introduction
	Notation

	The repetitions array
	The least and greatest sorted arrays in the domination preorder
	The repetitions array is a permutation of the Longest Common Prefix

	The I-complexity function
	On the number of strings with I-complexity up to a given value
	A large family of strings with almost maximal complexity
	Most strings have high I-complexity
	I is computable in linear time and space

	Comparison with Lempel--Ziv complexity
	Main differences between Lempel--Ziv complexity and I-complexity
	Lempel--Ziv complexity and I-complexity are close

	Open problems and ongoing work on the I-complexity
	Acknowledgments
	References

