
Theoretical Computer Science 270 (2002) 947–958
www.elsevier.com/locate/tcs

Note

An example of a computable absolutely normal number

Ver'onica Becher ∗; 1, Santiago Figueira
Departamento de Computati�on, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Buenos Aires, Argentina

Received January 2001; revised February 2001; accepted February 2001
Communicated by F. Cucker

Abstract

The 2rst example of an absolutely normal number was given by Sierpinski in 1916, twenty
years before the concept of computability was formalized. In this note we give a recursive refor-
mulation of Sierpinski’s construction which produces a computable absolutely normal number.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

“A number which is normal in any scale is called absolutely normal. The existence
of absolutely normal numbers was proved by E. Borel. His proof is based on the
measure theory and, being purely existential, it does not provide any method for
constructing such a number. The 2rst e;ective example of an absolutely normal
number was given by me in the year 1916. As was proved by Borel almost all
(in the sense of measure theory) real numbers are absolutely normal. However,
as regards most of the commonly used numbers, we either know them not to be
normal or we are unable to decide whether they are normal or not. For example
we do not know whether the numbers

√
2, �, e are normal in the scale of 10.

Therefore, though according to the theorem of Borel almost all numbers are abso-
lutely normal, it was by no means easy to construct an example of an absolutely
normal number. Examples of such numbers are fairly complicated.”
(M.W. Sierpinski, 1964, p. 277.)
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A number is normal to base q if every sequence of n consecutive digits in its q-base
expansion appears with limiting probability q−n. A number is absolutely normal if it is
normal to every base q¿2 [2]. For example, the rational number 0:1010101010 : : : is not
normal to base 2 because although the probability to 2nd “1” is 2−1 and so is the prob-
ability to 2nd “0”, the probability to 2nd “11” is not 2−2. There are also irrational num-
bers that are not normal in some base, as 0:101001000100001000001 : : : , which is not
normal to base 2. Another example is Champernowne’s number 0:12345678910111213
1415 : : : which has all natural numbers in their natural order, written in base 10. It can
be proved that Champernowne’s number is normal to base 10, but not in some other
bases. Let us notice that no rational is absolutely normal: a=b with a¡b is written in
base b as 0:a000000000 : : : Moreover, every rational r is not normal to any base q¿2
[4]: the fractional expansion of r in base q will eventually repeat, say with a period
of k, in which case the number r is about as far as being normal to the base qk as it
can be.
The 2rst example of an absolutely normal number was given by Sierpinski in 1916

[5], twenty years before the concept of computability was formalized. Sierpinski de-
termines such a number using a construction of in2nite sets of intervals and using
the minimum of an uncountable set. Thus, it is a priori unclear whether his number
is computable or not. In this note we give a recursive reformulation of Sierpinski’s
construction which produces a computable absolutely normal number. We actually give
an (ridiculously exponential) algorithm to compute this number.
The present work can be related to that of Turing [7], where he attempts to show

how absolutely normal numbers may be constructed. However, the strategy he used
is di;erent from Sierpinski’s and it is unclear whether the theorems announced in his
paper actually hold.
Another example of an absolutely normal but not computable number is Chaitin’s

random number 
, the halting probability of a universal machine [3]. Based on his
theory of program size Chaitin formalizes the notion of lack of structure and un-
predictability in the fractional expansion of a real number, obtaining a de2nition of
randomness stronger than statistical properties of randomness. Although the de2nition
of 
 is known there is no algorithm to exhibit its fractional digits. That is, 
 is not
computable.
The fundamental constants, like �,

√
2 and e, are computable and it is widely con-

jectured [1, 6] that they are absolutely normal. However, none of these has even been
proved to be normal to base 10, much less to all bases. The same has been conjectured
of the irrational algebraic numbers [1]. In general, we lack an algorithm that decides
on absolute normality.
Let us recall that a real number is computable if there is a recursive function

that calculates each of its fractional digits. Namely, there exists a total recursive
f :N →N such that for every n, f(n) is the nth fractional digit of the number in
some base.
We will use Lebesgue’s de2nition of measure. The measure of the interval I =(a; b),

with a¡b, is denoted by �(I)= b−a, and the measure of a set of intervals J , denoted
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by �(J ) is the measure of
⋃

J . We will use several properties of Lebesgue’s measure,
e.g., countable additivity and subadditivity.
After presenting Sierpinski’s original construction we introduce our algorithmic ver-

sion of his construction. Then, we discuss Sierpinski’s number and we consider other
variants de2ning absolutely normal numbers.

2. Sierpinski’s result of 1916

Sierpinski [5] achieves an elementary proof of an important proposition proved by
Borel that states that almost all real numbers are absolutely normal. At the same time
he gives way to e;ectively determine one such number. He de2nes �(�) as a set of
certain open intervals with rational end points. Although the set �(�) contains countably
many intervals, they do not cover the whole of the (0; 1) segment. Sierpinski proves
that every real number in (0; 1) that is external to �(�) is absolutely normal.

�(�) is de2ned as the union of in2nitely many sets of intervals �q;m; n;p. The param-
eter � is a number in (0; 1] used to bound the measure of �(�).

�(�) =
∞⋃
q=2

∞⋃
m=1

∞⋃
n=nm;q(�)

q−1⋃
p=0

�q;m; n;p;

where q ranges over all possible bases, n ranges over the lengths of fractional ex-
pansions, p ranges between 0 and q − 1, m allows for arbitrarily small di;erences in
the rate of appearance of the digit p in the fractional expansions, and �q;m; n;p is the
set of all open intervals of the form (b1=q + b2=q2 + · · · + bn=qn − 1=qn; b1=q + b2=q2

+ · · ·+bn=qn+2=qn) such that |cp(b1; b2; : : : ; bn)=n−1=q|¿1=m, where 06bi6q−1 for
16i6n and cp(b1; b2; : : : ; bn) represents the number of times that the digit p appears
amongst b1; b2; : : : ; bn.
The idea is that �q;m; n;p contains all numbers that are not normal to base q. If a

number is normal in base q we expect that the rate of appearance of the digit p in
a pre2x of length n to be as close as possible to 1=q. Each interval in �q;m; n;p that
contains all numbers written in base q start with 0:b1b2 : : : bn and the digit p appears in
0:b1b2 : : : bn at a rate di;erent from 1=q. Let us observe that the right end of the intervals
in �q;m; n;p add 2=qn: added only 1=qn would leave the number 0:b1b2 : : : bn1111 : : :
outside the open interval. Each interval in �q;m; n;p has measure 3=qn and for 2xed q,
m, n, �q;m; n;p is a 2nite set.
From Sierpinski’s proof follows that nm;q(�) must be large enough as to imply

�(�(�))¡�; nm;q(�)= �24m6q2=��+ 2 suLces. In order to bound the measure of �(�),
Sierpinski works with the sum of the measures of each interval of �q;m; n;p:

s(�) =
∞∑
q=2

∞∑
m=1

∞∑
n=nm; q(�)

q−1∑
p=0

∑
I∈�q; m; n; p

�(I)

and he proves that �(�(�))6s(�)¡� for every �∈ (0; 1].
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Sierpinski de2nes E(�) as the set of all real numbers in (0; 1) external to every
interval of �(�) and he proves that for every �∈ (0; 1], every real in E(�) is absolutely
normal. Since �(E(�)) is greater than or equal to (1 − �), for every � in (0; 1], every
real in (0; 1) is absolutely normal with probability 1.
Although the measure of �(�) is less than �, no segment (c; d) with c¡d can be

completely included in E(�). If this happened there would be in2nitely many rationals
belonging to E(�), contradicting absolute normality. Thus, E(�) is a set of in2nitely
many isolated irrational points. Sierpinski de2nes �= min(E(1)), and in this way he
gives an e;ective determination of an absolutely normal number.

3. An algorithm to construct an absolutely normal number

Our work is based on one essential observation: we can give a recursive enumeration
of Sierpinski’s set �(�), and we can bound the measure of error in each step. To
simplify notation, we will 2x a rational �∈ (0; 12 ] (in fact, � can be any computable real
in (0; 12 ]) and we rename �=�(�); s= s(�); nm;q= nm;q(�). We de2ne the computable
sequence (�k):

�k =
k+1⋃
q=2

k⋃
m=1

k·nm; q⋃
n=nm; q

q−1⋃
p=0

�q;m; n;p:

We also de2ne the bounds to the measure of each term in the sequence:

sk =
k+1∑
q=2

k∑
m=1

k·nm;q∑
n=nm;q

q−1∑
p=0

∑
I∈�q;m;n;p

�(I):

It is clear that limk→∞ sk = s and limk→∞ �k =�. Since sk is the sum of the measures
of all intervals belonging to �k , we have �(�k)6sk and similarly we have �(�)6s.
Besides, for every natural k, sk6s. Let us observe that for every pair of natural numbers
k and l such that k6l, we have �k ⊆�l, and for any k, �k ⊆�. Finally, we de2ne
the error of approximating s by sk , rk = s − sk : We can give a bound on rk , a result
that makes our construction computable.

Theorem 1. For every natural number k; rk¡5�=2k.

Proof. Let us de2ne Sqmn=
∑q−1

p=0

∑
I∈�q; m; n; p

�(I). By splitting the sums in the de2-
nition of s,

s=
k+1∑
q=2

k∑
m=1

k·nm; q∑
n=nm; q

Sqmn +
k+1∑
q=2

k∑
m=1

∞∑
n=k·nm; q+1

Sqmn +
k+1∑
q=2

∞∑
m=k+1

∞∑
n=nm; q

Sqmn

+
∞∑

q=k+2

∞∑
m=1

∞∑
n=nm; q

Sqmn: (1)
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But the 2rst term of (1) is sk , so the rest is rk .

rk =
k+1∑
q=2

k∑
m=1

∞∑
n=k·nm; q+1

Sqmn +
k+1∑
q=2

∞∑
m=k+1

∞∑
n=nm; q

Sqmn +
∞∑

q=k+2

∞∑
m=1

∞∑
n=nm; q

Sqmn: (2)

We will bound each of the three terms that appear in this equation. From Sierpinski’s
proof we know that Sqmn¡12m4=n2. The third term of Eq. (2) can be bounded by

∞∑
q=k+2

∞∑
m=1

∞∑
n=nm; q

Sqmn ¡ 12
∞∑

q=k+2

∞∑
m=1


m4

∞∑
n=nm; q

1
n2


 : (3)

Let us now 2nd a bound for
∑∞

n=nm; q
1=n2. For any i¿1, it holds that

∑∞
n=i+1 1=n

2¡1=i,
and by the de2nition of nm;q we have, nm;q − 1= �24m6q2=�� + 1¿24m6q2=�. Then,∑∞

n=nm; q
1=n2¡�=24m6q2.

Applying this last result to (3) we have

∞∑
q=k+2

∞∑
m=1

∞∑
n=nm; q

Sqmn ¡
�
2


 ∞∑

q=k+2

1
q2


( ∞∑

m=1

1
m2

)
¡

�
k + 1

¡
�
k
: (4)

Similarly, the second term of Eq. (2) can be bounded by

k+1∑
q=2

∞∑
m=k+1

∞∑
n=nm; q

Sqmn ¡
�
2


 ∞∑

q=2

1
q2


( ∞∑

m=k+1

1
m2

)
¡

�
2k

: (5)

Finally, the 2rst term of Eq. (2) can be bounded by

k+1∑
q=2

k∑
m=1

∞∑
n=k·nm;q+1

Sqmn ¡ 12
∞∑
q=2

∞∑
m=1


m4

∞∑
n=k·nm;q+1

1
n2


¡

�
k
: (6)

Replacing in (2) the bounds found in (4)–(6) we conclude rk¡�=k + �=2k + �=k
=5�=2k.

We now give an overview of our construction of the binary number  =0:b1 b2 b3 : : : .
To determine the 2rst digit of  we divide the [0; 1] interval in two halves, c10 = [0;

1
2 ]

and c11 = [
1
2 ; 1], each of measure

1
2 . Thinking in base 2, in c10 there are only numbers

whose 2rst fractional digit is 0 while in c11 there are only numbers whose 2rst fractional
digit is 1. By Sierpinski’s result we know that neither � nor any of the �k cover the
whole segment [0; 1]. Of course, all points external to � must either be in c10 or in c11.
The idea now is to determine a subset of �, �p1 , big enough (i.e. suLciently similar
to �) as to ensure that, whenever �p1 does not cover completely a given interval, then
� does not either. We can guarantee this because we have an upper bound on the error
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of approximating � at every step. We pick the interval c10 or c11, the least covered by
�p1 . If we select c10 then there will be real numbers external to every interval of �
whose 2rst digit in the binary expansion is 0; therefore, we de2ne b1 = 0. Similarly, if
we select c11 we de2ne b1 = 1.
To de2ne the rest of the digits we proceed recursively. We will divide cn−1bn−1

in two
halves de2ning the intervals cn

0 and cn
1 , each of measure 1=2

n. At least one of the
two will not be completely covered by �. The nth digit of  will be determined by
comparing the measure of a suitable set �pn restricted to the intervals cn

0 and cn
1 , where

the index pn is obtained computably from n. If we select cn
0 , then we will de2ne bn to

be 0, otherwise bn will be 1. Since these measures are computable we have obtained
an algorithm to de2ne a real number  , digit by digit, such that  is external to every
interval of �. By Sierpinski’s result  is absolutely normal.
Before proceeding we shall prove some results. The following proposition gives us

a bound on the measure of the sets that have not been enumerated in the step k.

Proposition 2. For every k; �(�− �k)6rk :

Proof. Since �k is included in �, the measure of �− �k is less than or equal to the
sum of the measures of those intervals in � but not in �k . Hence

�(�− �k)6
∞∑
q=2

∞∑
m=1

∞∑
n=nm; q

q−1∑
p=0

∑
I ∈ �q; m; n; p

I =∈ �k

�(I)

6 s−
∞∑
q=2

∞∑
m=1

∞∑
n=nm;q

q−1∑
p=0

∑
I ∈ �q;m;n;p

I ∈ �k

�(I):

But

∞∑
q=2

∞∑
m=1

∞∑
n=nm;q

q−1∑
p=0

∑
I ∈ �q;m;n;p

I ∈ �k

�(I)¿
k+1∑
q=2

k∑
m=1

k·nm;q∑
n=nm;q

q−1∑
p=0

∑
I ∈ �q;m;n;p

I ∈ �k

�(I)

=
k+1∑
q=2

k∑
m=1

k·nm;q∑
n=nm;q

q−1∑
p=0

∑
I∈�q;m;n;p

�(I) = sk :

Hence, �(�− �k)6s− sk = rk :

We are also able to bound the measure of the di;erence between two sets enumerated
in di;erent steps.

Proposition 3. For any natural numbers k and l such that k6l; �(�l −�k)6rk − rl:



V. Becher, S. Figueira / Theoretical Computer Science 270 (2002) 947–958 953

Proof.

�(�l − �k)6
l+1∑
q=2

l∑
m=1

l·nm; q∑
n=nm; q

q−1∑
p=0

∑
I∈�q; m; n; p

I =∈�k

�(I)= sl −
l+1∑
q=2

l∑
m=1

l·nm; q∑
n=nm; q

q−1∑
p=0

∑
I∈�q; m; n; p

I∈�k

�(I)

and as

k6l;
l+1∑
q=2

l∑
m=1

l·nm; q∑
n=nm; q

q−1∑
p=0

∑
I∈�q; m; n; p

I∈�k

�(I)¿
k+1∑
q=2

k∑
m=1

k·nm; q∑
n=nm; q

q−1∑
p=0

∑
I∈�q; m; n; p

�(I)= sk :

Thus, �(�l − �k)6sl − sk =(s− sk)− (s− sl)= rk − rl:

Let J be a set of intervals and let c be an interval. We will denote with J ∩ c the
restriction of J to c, J ∩ c= {x∈R: x∈ c∧ (∃j∈ J : x∈ j)}:

Lemma 4. For any interval c and any natural number k; �(�∩ c)6�(�k ∩ c) + rk :

Proof. Since �k ⊆�, for any natural k we have that �∩ c⊆ (�k ∩ c)∪ (�−�k). Tak-
ing measure we obtain �(�∩ c)6�(�k ∩ c) + �(� − �k). By Proposition 2 we have
�(�∩ c)6�(�k ∩ c) + rk .

Lemma 5. For any interval c any natural numbers k and l such that k6l; �(�l ∩ c)6
�(�k ∩ c) + rk − rl.

Proof. Obvious, from Proposition 3 and �l ∩ c⊆ (�k ∩ c)∪ (�l − �k).

Lemma 6. �(�k) is computable for any k; and �(�k ∩ c) is computable for any k and
for any interval c=(a; b) where a and b are rationals.

Proof. �k is a 2nite set of known intervals with rationals end points. An algorithm
for the measure of �k and for the measure of �k ∩ c can be easily given.

3.1. Determination of the 4rst digit

We will compute b1. We divide the interval [0; 1] in two halves c10=[0;
1
2 ] and

c11=[
1
2 ; 1]. We will have to determine a suitable index p1. It is clear that

�(�p1 ∩ c10) + �(�p1 ∩ c11) = �(�p1 )6 sp1 :

Adding rp1 + rp1 on each side of this inequality and using the de2nition of rp1 gives

(�(�p1 ∩ c10) + rp1 ) + (�(�p1 ∩ c11) + rp1 )6 sp1 + rp1 + rp1 = s+ rp1 ¡ �+ rp1 :
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It is impossible that both terms �(�p1 ∩ c10) + rp1 and �(�p1 ∩ c11) + rp1 be greater or
equal to (�+ rp1 )=2. If they were, we would have

�+ rp1 =
�+ rp1
2

+
�+ rp1
2

6 (�(�p1 ∩ c10) + rp1 ) + (�(�p1 ∩ c11) + rp1 )

¡�+ rp1

a contradiction. Thus, the following proposition is true(
�(�p1 ∩ c10)¡

�+ rp1
2

− rp1

)
∨
(
�(�p1 ∩ c11)¡

�+ rp1
2

− rp1

)
:

Now we determine the value of p1. It has to be large enough so that the error rp1
is suLciently small to guarantee that even if all the remaining intervals that have
not yet been enumerated in step p1 fall in c1b1 , the whole c1b1 will not be completely
covered by �. We need �(�p1 ∩ c1b1 )+rp1¡

1
2 . We know that the measure �(�p1 ∩ c1b1 )+

rp1¡(�+ rp1 )=2. Theorem 1 states that rp1¡5�=2p1. So, for p1 = 5 we obtain rp1¡�=2.
Then, �(�p1 ∩ c1b1 ) + rp1¡(� + rp1 )=2= �=2 + �=4¡�61=2. Using Lemma 4 we obtain
�(�∩ c1b1 )¡

1
2 = �(c1b1 ). This means that the union of all the intervals belonging to �

will never cover the whole interval c1b1 , whose measure is
1
2 . Thus, there exist real

numbers belonging to no interval of � that fall in the interval c1b1 . These have their
2rst digit equal to b1. We de2ne

b1 =
{
0 if �(�p1 ∩ c10)6 �(�p1 ∩ c11);
1 otherwise:

3.2. Determination of the nth digit, for n¿1

Let us assume that we have already computed b1; b2; : : : ; bn−1 and that at each step
m; 16m¡n,

�(�pm ∩ cmbm) + rpm ¡
1
2m


�+

m∑
j=1

2j−1 · rpj




and we have chosen pm=5× 22m−2. We have to prove that this condition holds for
m= n and pn=5× 22n−2, and that we can computably determine bn. We split the
interval cn−1bn−1

in two halves of measure 1=2n, cn
0 = [0:b1b2 : : : bn−1; 0:b1b2 : : : bn−11] and

cn
1 = [0:b1b2 : : : bn−11; 0:b1b2 : : : bn−1111111 : : :]. As they cover the interval cn−1bn−1

, we
have

�(�pn ∩ cn0) + �(�pn ∩ cn1) = �(�pn ∩ cn−1bn−1
):

Since pn¿pn−1 and using Lemma 5 we obtain

�(�pn ∩ cn0) + �(�pn ∩ cn1)6�(�pn−1 ∩ cn−1bn−1
) + rpn−1 − rpn :
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Adding rpn + rpn to both sides of this inequality we obtain

(�(�pn ∩ cn0) + rpn) + (�(�pn ∩ cn1) + rpn)6�(�pn−1 ∩ cn−1pn−1
) + rpn−1 + rpn

and by the previous equation

(�(�pn ∩ cn0) + rpn) + (�(�pn ∩ cn1) + rpn)¡
1
2n−1


�+

n∑
j=1

2j−1 · rpj


 :

Hence, one of the two terms, �(�pn ∩ cn
0) + rpn or �(�pn ∩ cn

1) + rpn , must be less than

1
2n (�+

n∑
j=1

2j−1 · rpj):

This means that the following proposition is true:(
�(�pn ∩ cn0)¡

�+
∑n

j=1 2
j−1 · rpj

2n
− rpn

)

∨
(
�(�pn ∩ cn1)¡

�+
∑n

j=1 2
j−1 · rpj

2n
− rpn

)
:

We de2ne bn as the 2rst index i such that the interval cn
i is less covered by �pn ,

bn =
{
0 if �(�pn ∩ cn0)6�(�pn ∩ cn1);
1 otherwise:

By Theorem 1 we have

n∑
j=1

2j−1 · rpj ¡ � ·
n∑

j=1

2j−1

22j−1
= � ·

n∑
j=1

2−j ¡ �:

From the last inequality and from the de2nition of bn we obtain

�(�pn ∩ cnbn) + rpn ¡
1
2n


�+

n∑
j=1

2j−1 · rpj


¡

2�
2n
6
1
2n

and using Lemma 4 we deduce �(�∩ cn
bn)¡ 1=2n= �(cn

bn). Hence, the set � does not
cover the interval cn

bn . There must be real numbers in the interval c
n
bn that belong to

no interval of �.

Theorem 7. The number  is computable and absolutely normal.

Proof. In our construction we need only to compute the measure of the sets (�pn ∩ cn
bn).

Then, by Lemma 6,  is computable.
Let us prove that  is external to every interval of �. Suppose not. Then, there

must be an open interval I ∈� such that  ∈ I . Consider the intervals c1b1 ; c
2
b2 ; c

2
b3 ; : : :
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By our construction,  belongs to every cn
bn . Let us call c the 2rst interval c

n
bn of the

sequence such that cn
bn ⊂ I . Such an interval exists because the measure of cn

bn goes to
0 as n increases. But then the interval c is covered by �. This contradicts that in our
construction at each step n we choose an interval cn

bn not fully covered by �. Thus,  
belongs to no interval of �, so by Sierpinski’s result,  is absolutely normal.

Finally, it follows from Theorem 1 that the bound s on �(�) is also computable.

Corollary 8. The real number s is computable.

Proof. Let us de2ne the sequence of rationals in base 2, an= s5�·2n−1 . By Theorem 1
we have |s−an|= s− s5�·2n−1 = r5�·2n−1 ¡ 2−n. Then, it is possible to approximate s by
a computable sequence of rationals an such that the 2rst n digits of an coincide with
the 2rst n digits of s. Therefore, s is computable.

3.3. About Sierpinski’s � number

We 2nish this section with some observations about the absolutely normal number
de2ned by Sierpinski, � the 2rst real number external to �(1), that is, �= min(E(1)).
As we see, Sierpinski de2nes � 2xing �=1. Since our construction requires �∈ (0; 12 ],
we do not obtain the number �. Under a slight modi2cation of our construction we
can allow � to be any computable number in the interval (0; 1), by de2ning pn= �5 ·
22n−2�=1− ��+ 1:
Now we can speak of the family of numbers that are de2nable using Sierpinski’s

notion for di;erent values of �. Fix � to be any computable real in (0; 1) and let
�= min(E(�)). Then � is de2nable in our construction, in binary notation, in the
following way:

bn =

{
0 if �(�pn ∩ cn0)¡

1
2n (�+

∑n

j=1
2j−1 · rpj)− rpn ;

1 otherwise:

For each n, � either falls in cn
0 or in cn

1 ; therefore, we get a determination of each digit
of its binary expansion. If we could prove that

1
2n (�+

n∑
j=1

2j−1 · rpj)− rpn

is irrational and computable, then we could assert that � is computable. Without this
assumption we can assert a weaker property: � is computably enumerable.
A real number is computably enumerable if there is a computable non decreasing

sequence of rationals which converges to that number. Every computable number is
computably enumerable, but the converse is not true. It is possible that a real number
r be approximated from below by a computable non decreasing sequence of rationals
but that there is no function which e;ectively gives each of the fractional digits of r.
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This happens when it is not possible to bound the error of approximating the number
by any computable sequence of rationals.
Let us sketch the proof that � is computably enumerable, for any computable real

�∈ (0; 1]. Since �(�) is a recursively enumerable set of intervals, we can scan them one
by one. At each step we single out the 2rst rational in [0; 1] which is external to all
the intervals scanned up to the moment. This procedure is computable and determines
a non decreasing sequence of rationals which converges to �. This proves that � is
computably enumerable. However, because of the shape of the intervals in �(�), it
does not seem easy to bound the error of this method of approximating �.

4. Other computable absolutely normal numbers

The construction we gave de2nes  , a computable absolutely normal number in base
2. We can adapt the construction to de2ne numbers in any other bases: To compute
a number in a base q¿2, at each step we should divide the interval selected in the
previous step in q parts. In the nth step we determine the nth digit de2ning the intervals
cn
0 ; c

n
1 ; : : : ; c

n
q−1 (of measure 1=q

n), where

cn
i = [i=q

n
n−1∑
j=1

bj=qj; i + 1=qn +
n−1∑
j=1

bj=qj] for 06i6q− 1:

We will choose pn=5·(q−1)·22n−2 and following the same steps as in the construction
of a number in base 2, there must be an index i such that

�(�pn ∩ cni )¡
1
qn


�+ (q− 1)

n∑
j=1

2j−1 · rpj


− rpn :

As before, we de2ne bn as the 2rst index corresponding to the interval least covered
by �pn ,

bn = min
06i6q−1

{i: (∀j: 06j 6 q− 1: �(�pn ∩ cni )6 �(�pn ∩ cnj ))}:

In principle, for di;erent bases the numbers will be distinct (they will not be  expressed
in di;erent bases), while they will all be examples of computable absolutely normal
numbers.
The de2nition of absolute normality is asymptotic, that is, it states a property that

has to be true in the limit. Thus, given an absolutely normal number, we can alter it
by adding or removing a 2nite number of digits of its fractional expansion to obtain
an absolutely normal number. For example, we could 2x an arbitrary number of digits
of the fractional expansion and complete the rest with the digits of  . However, we
wonder whether it is possible to obtain an absolutely normal number by 2xing a priori
in2nitely many digits and 2lling in the free slots. Obviously with only 2nitely many
free slots we may not obtain an absolutely normal number (for example, 2x all the
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digits to be 0 except 2nitely many). Likewise we may not obtain an absolutely normal
number by 2xing in2nitely many digits and leaving free also in2nitely many slots:
if we 2x 0 in the even positions we will never obtain an absolutely normal number
because we will never 2nd the string “11” in the fractional expansion. The same thing
happens if we 2x the digits in the positions which are multiples of 3, 4, etc. It is clear
that the possibility to obtain an absolutely normal number depends on the values we
assign to the 2xed positions (if we set the even positions with the digits of the even
positions of  it would be trivial to complete the rest to obtain an absolutely normal
number). Finally, we wonder what happens if the digits we 2x are progressively far
apart, for example in the positions which are powers of 2 or in the positions which
are Fibonacci numbers.
Let us also note that absolute normality is invariant under permutation of digits.
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