
ELSEVIER Theoretical Computer Science 18 1 (I 997) 75-90

Theoretical
Computer Science

Paging more than one page’

Esteban Feuerstein” b, *

aLkpariamento de Computacih, Fact&ad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires, Argentina

bInstituto de Ciencias, Universidad de General Sarmiento, Argentina

Abstract

In this paper we extend the Paging Problem to the case in which each request specifies a
set of pages that must be present in fast memory to serve it. The interest on this extension is
motivated by many applications in which the execution of each task may require the presence
of more than one page in fast memory. We introduce three different cost models that can be
applied in this framework, namely the Full, Uniform and Constant cost models, and study lower
and upper bounds for each one of them, using competitive analysis techniques.

1. Introduction

The Paging Problem arose as a theoretical model for a concrete problem present in

the implementation of operating systems offering virtual memory [S]. It is the problem

of managing a memory consisting in two levels, one of which with limited capacity

and fast access (the cache) and the other one with slow access time but potentially

unlimited capacity. Memory is divided in pages of fixed size, of which the cache may

contain at most k. An operation consists in the request for a certain page, if that page

is present in the cache the cost to serve the request is 0, otherwise it is necessary to

bring it to the cache with cost 1. In this case we say that a page fault has occurred. As

future requests are not known, we are interested in replacing policies that minimize the

total cost required to serve a sequence of requests, i.e. that minimize the total number

of page faults. All useful strategies are based on a notion of “locality” present in the

sequence of requests that reflects the fact that normally programs tend to request pages

from a subset of all possible pages (the “working set”) and not completely uniformly.

* Correspondence address: Depto. de Computacibn-FCEyN-UBA. Pabell& I, Ciudad Universitaria, 1414
Buenos Aires, Argentina. E-mail: efeuerst@dc.uba.ar.
’ This work was partially done while the author was at Dipartimento di Infonnatica e Sistemistica-Universiti
di Roma “La Sapienza”, partly supported by ESPRIT BRA Alcom II under contract No. 7141, and by
Italian Ministry of Scientific Research Project 40% “Algoribni, Modelli di Calcolo e Strutture Informative”.
Supported by EC project DYNDATA under program KIT and by UBA’s “Programaci6n para investlgadores
J6venes”, project “ Algoritmos efficientes para problemas on-line con aplicaciones”.

0304-3975/97/$17.00 @ 1997 -Elsevier Science B.V. All rights resewed
PII SO304-3975(96)00263-O

76 E. Feuersteinl Theoretical Computer Science 181 (1997) 75-90

The working set may vary along time, and a good heuristic is supposed to “learn” the

present set, so as to be able to have a small number of faults. This type of problem

belongs to a wide family of problems, called on-line problems, that arise in many

different areas of computer science. Roughly speaking, algorithms for on-line problems

try to learn from the past how the future will be. A whole research area has been

developed in recent years devoted to the study of on-line problems and algorithms.

The most widely accepted way of measuring the efficiency of on-line strategies is

called competitive analysis. Among the wide literature about the subject we may cite

as examples [7, 11, 151.

The enormous amount of theoretical and practical studies done on efficient pag-

ing strategies gave as a result that all operating systems provide hierarchical memory

mechanisms devoted to smooth the effect on the performance of programs of slow

access to some memory devices. This fact has encouraged research on efficient block-

ing techniques for data structures that are stored in secondary memory. This research

has led to proposals of how to block or pack data in secondary memory pages so

as to minimize the quantity of accesses to secondary memory done on solving some

problem. Examples of this can be found in [l-3, 131. All the previously cited works

share the philosophy of blocking and/or replicating data in such a way that when the

data will be requested some accesses to secondary memory will be avoided. In some

cases an improvement is obtained using the fact that the exact order in which data

will be accessed is known a priori (as in off-line applications like, for example, matrix

multiplication), in other cases [6] that order is not completely known, but instead it is

known that the requests for data will follow a specified pattern.

In this paper we apply the philosophy of Paging to the case in which to serve a

request we need to bring into a fast memory of size k not a single page but a set of

pages. At first sight this problem may seem a particular case of Paging, viewing each

request for a set as a sequence of individual requests for the pages belonging to it.

However, the cardinalities of the sets involved in each query are not fixed, and hence

the advantage that could be obtained considering requests for more than one page as a

look-ahead (like in [4]) cannot be considered as granted. Moreover, the more complex

structure of the requests gives an extra degree of freedom concerning the cost that may

be charged when a request cannot be satisfied with the contents of the cache.

1.1. Motivations

In many applications the execution of each task may require the presence of more

than one page in fast memory to be executed. The following examples motivate the

interest on studying our extension of the Paging Problem.

1. Given a graph stored in secondary memory a system must repeatedly answer queries

asking for a path between pairs of nodes. The graph may be stored in such a way

that a path of length 1 could be split among as much as 1 pages of secondary

memory, and to perform some action on it all those pages need to be cached into

fast memory. This problem has been studied in [8].

E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90 71

2. The transitive closure of a graph is stored in secondary memory as a set of pairs

(node, label of its connected component). Each query specifies a set of nodes and

the answer to a query is “yes” if all the nodes are in the same connected component,

“no” otherwise.

3. A partially ordered set (0, C) of bounded dimension d is stored in secondary mem-

ory, and queries are of the form x L y?. In this case it is known that elements of

0 may be labeled by d labels Ii(x) .. . Id(x) in a way that for every pair x, y of

elements of 0 it is verified that x & y if and only if for all i = 1. d, l,(x) < /i(y).

In this application, a subset of elements of 0 together with their d labels may be

maintained in the cache, each query x L y? requiring the presence of both x and y

and their labels to be answered.

4. Consider the managing of a data base that is stored in secondary memory. To per-

form a join of two relations both involved relations must be present simultaneously

in fast memory.

In some of the applications described above, the answer to each query is given by

a set of items, each of which may occupy less than one page. Our definition allows

also to treat those cases, just by replacing the cache by a portion of main memory

dedicated to store a subset of the information that is stored in secondary memory.

Therefore, our algorithms could be useful to reduce the number of secondary memory

accesses done to answer a sequence of requests about a data structure that is stored

in secondary memory, just by maintaining a small subset of it in main memory. At

least, they provide a framework to analyze the possible strategies to use in practice for

reducing the number of secondary memory accesses in those cases.

All our results may be also applied in a distributed framework where each processor

holds a subset of pages of a virtual shared (read-only) memory. In this case, a processor

may contain all the pages needed to process a particular task, but it is also possible

that it will have to communicate with other processors to get the required pages. If

we assume constant cost for each page transmitted through the network, maintaining

an extra subset of the global memory in the private working memory will help to

reduce the communication cost and improve the overall performance of the system, as

in a distributed network communication plays the same bottle-neck role as secondary

memory accesses in a centralized system.

1.2. Summary qf results

We extend the paging problem to the case in which each query specifies a set R

of pages of secondary memory that must be in a cache of size k. If R is contained

in the cache no cost is charged, otherwise R must be brought into the cache and a

cost is charged. We define three different cost measures, namely the Full, Uniform

and Constant cost models, that are different ways of charging costs to algorithms for

this problem. For each cost model, we establish lower bounds for the competitiveness

of deterministic and randomized on-line algorithms and study the competitive ratios

achieved by our algorithms in each case, against different types of adversaries, namely

78 E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90

Table 1

Summary of results - competitiveness of on-line algorithms

Problem Lower bound Upper bound

Full cost, deterministic

Full cost, randomized, lazy

Full cost, randomized, non-lazy

Uniform cost, deterministic

Uniform cost, randomized

Constant cost, deterministic

Constant cost, randomized, lazy

Constant cost, randomized, non-lazy

&k

$ in(k)
kz+k

kZ

Hk
k

&

2&k
&k

k2

2Hk
k

k
k

Zuzy and non-lazy adversaries (the results for randomized algorithms refer to an oblivi-

ous adversary [14]). An on-line algorithm is said to be optimal or strongly competitive

if it achieves the lowest possible competitive ratio (and not an algorithm that serves the

request sequence optimally). We show that our algorithms for each case are optimal or

at most a constant factor away from optimal. Table 1 summarizes the results presented

in this paper.

All the deterministic upper bounds presented in this paper are tight. In the case of

non-lazy adversaries and for all cost models, our deterministic algorithm obtains the

best possible competitive ratios achievable even by randomized algorithms, but with-

out using randomization. This implies that against non-lazy adversaries randomization

provides no help at all, a situation that appeared very seldom in the literature about

on-line algorithms.

A particular case of this problem, in which each page represents the edges of a tree

and requests are paths of the tree has been presented in [g]. In this paper we extend

those results to the general case, and improve most of the lower bounds therein.

2. Cost models and lazy algorithms

In the traditional Paging problem a constant cost is charged to an algorithm each

time it has a page fault. For our problem that may be a reasonable assumption only

in some cases, while other cost models may be more suitable in different applications.

Each cost model is characterized by when a cost is charged to an algorithm, as well

as which amount will be charged. As we will see later, different cost models will

give different results (lower and upper bounds on the competitive ratios of on-line

algorithms). We consider the following cost models:

1. Full cost model: When a requested set R is not present in cache, charge the

algorithm IRl, the cardinality of R.
2. Uniform cost model: Charge the algorithm the number of pages it brings into the

cache.

E. Feuersteini Theoretical Computer Science 181 (1997) 75-90 79

3. Constant cost model: A unit cost is charged every time the algorithm changes

its configuration, i.e. the contents of its cache.

As we said before, for each particular application one cost model may be more

appropriate than the others. In the first example of the previous section the absence of

a path joining two nodes may imply that a search must be done for it in the whole

graph, making it reasonable to charge a cost proportional to the length of the requested

path, and hence to apply the full cost model. In the fourth example it is necessary to

fetch just the missing relation or relations, and hence it is reasonable to apply the

uniform cost model, while in every case the constant cost model can be applied if we

just want to count the number of times the computation is interrupted to do secondary

memory accesses.

The uniform cost model is the one that resembles traditional Paging more. In fact we

will see that lower and upper bounds in this model coincide with the values obtainable

for that problem, while for the other two cost models things become different.

At this point a discussion is needed regarding the power of the adversaries that

we will use in each cost model. Consider the following two restrictions that can be

imposed to an algorithm for this problem:

1. Changes of configurations (that is, changes in the contents of the cache) are done

only when a request produces a fault.

2. In case of a fault the request can be served only by bringing into fast memory the

minimum number of pages sufficient to answer the query.

The second of the restrictions above coincides with requiring that the only pages

that can be brought in the case of a fault are those belonging to the requested set.

An adversary obeying these restrictions is called a Zazy adversary. The notion of

laziness has been used in the literature on paging and the k-server problem: in [l l]

it has been proved that every non-lazy adversary can be transformed in a lazy one

without increasing the cost it incurs for serving any sequence of requests. Therefore,

for those two problems, it be can assumed that adversaries are lazy without loss of

generality. However, the use of lazy or non-lazy adversaries for paging of sets does

impose a difference. We now illustrate this.

Is it reasonable to force our adversaries to comply with the two restrictions above?

We start by considering the first restriction. If the uniform or the constant cost models

are considered, it can be easily seen that this constraint can be assumed to hold for

every algorithm: by definition some cost is charged to an algorithm when it changes

configuration, and hence there is no advantage in changing configuration between re-

quests. In the full cost model the situation is different: as the cost is defined as a

function of the faults and does not depend on the transitions between configurations,

an adversary (being able to predict the following request) could move to a configura-

tion that allows to serve the request before it is presented, and hence serve all requests

with no cost. This is unnatural, and therefore we will always impose the first restriction

to all algorithms.

As for the second restriction, it rules out the possibility that the adversary, being

aware of which requests will be presented later, brings the necessary pages during the

80 E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90

fault produced by a different request. In the uniform cost model an algorithm pays for

each page that is brought, and therefore it is the same to allow this kind of behavior

or not. In the other two cost models this is not true anymore: we will see that in

some cases lazy adversaries are strictly less powerful than non-lazy ones. However,

in some situations allowing non-lazy behavior to the adversary can be “too much”,

and therefore we will study the competitive ratios achievable by on-line algorithms

against adversaries obeying both restrictions (lazy adversaries) and obeying only the

first restriction (non-lazy adversaries).

Notice that we speak about imposing the restrictions only to adversaries. On-line

algorithms will naturally obey both of them it is easy to see that otherwise their

competitive ratios could only increase.

3. The algorithms

In [151 it has been shown that FIFO is optimal for the paging problem. In fact,

if both the algorithm and the adversary have the same memory of size k then FIFO

achieves a competitive ratio of k and this ratio is optimal since k is also a lower

bound. Another k-competitive algorithm for paging called Flush-When-Full (FWF) has

been presented in [lo]. FWF maintains a set of marked pages. Initially, the marked

pages are exactly those that are present in the cache. After each request, the marks are

updated, then one page is evicted to make place for the requested page if necessary.

The randomized version of FWF is called the Marking algorithm, or simply M [9]. In

the latter, the choice of which unmarked page to evict is done at random uniformly

among the unmarked pages. It has been proved that M is 2&-competitive (where H,
denotes the xth harmonic number) and that Hk is a lower bound on the competitive

ratio that can be achieved against an oblivious adversary [9].

The behavior of both FWF and M on a request for page p can be schematized

as shown in Fig. 1. The two algorithms differ only in how the subroutine choose is

implemented, that is, in the way in which the unmarked page to evict is chosen. FWF

does it deterministically, following any predetermined order, while M does it randomly.

Both algorithms work in phases, the first phase starting with the first request of the

sequence and each new phase starting with the request that causes more than k pages

to be marked (when the marks are deleted).

Markp;
If more that k pages are marked /* this starts a new phase */
then erase all the marks except that in p;

If p is present in the cache

then do nothing

else choose a page p' among the unmarked pages of the cache;

evict p’ and bring p.

Fig. 1. Algorithms Flush-When-Full and Marking.

E. Feuerstein / Theoretical Computer Science 181 (1997) 7S-90 81

It is immediate to see that the lower bounds for the competitiveness of on-line

strategies for the Paging problem hold also for our problem, independently of the cost

model. However, we will derive higher lower bounds in some cases. As for the upper

bounds, the algorithms that we propose for this problem are very simple. They are

natural generalizations of FWF and M, which we call FWF-s and M-s, respectively

(the ‘s’ stands for ‘set’), and their behavior on a request R is depicted in Fig. 2. Again,

the difference between the algorithms is just the way in which the pages to evict are

chosen. It is worthwhile to note that similar generalizations of FIFO and LRU achieve

the same competitive ratios that we will prove for FWF-s.

3.1. General techniques for proofs

As their counterparts for paging, our algorithms work in phases. We use this concept

in all our upper-bound proofs; therefore, it is useful to state this simple concept care-

fully: the first phase of FWF-s or M-s starts with the first request of the sequence, and

a new phase starts each time the cardinality of the union of the sets requested during

the current phase exceeds k; the first request of the new phase is the one that causes

the marks to be deleted. For example, if k = 5, the cache holds pages {a, b,c,d, e},
and the sequence of requests is q1 = {a, f}, q2 = {b, g}, q3 = {a, g}, q4 = {a, h, i}, then

q4 is the first request of the second phase.

The concept of phase is important because it allows to partition any input sequence

into finite subsequences for which every algorithm must have at least one fault. In

general, to prove an upper bound (like in Theorems 4.2, 4.6, 5.1, 5.4 and 6.1) we

show that the cost of the algorithm during a phase does not exceed some value, while

the cost of any adversary is at least some other value.

In the case of lower bounds, they are proved by showing in each case how an

input sequence can be constructed for every algorithm A in such a way that the ratio

between the costs paid, respectively, by A and the adversary is at least some value.

In general, these input sequences will be constructed by repeating an arbitrary number

of times some pattern of requests for which the ratio between the costs satisfies the

desired property. In some cases we name explicitly each occurrence of such pattern in

Mark all the pages in R;
If more that k pages are marked /* this starts a new phase */
then erase all the marks except those in R;
If R is present in the cache
then do nothing

else if IR- CACHE/ =x /* there are x elements of R missing */
then choose x pages pl...p, among

the unmarked pages of the cache;

evict pl...p=;

bring the pages in R-CACHE

Fig. 2. Algorithms FWF-s and M-s.

82 E. Feurrstein I Theoretical Computer Science 181 (1997) 75-90

the sequence as an epoch, and sometimes an epoch is formed by subepochs. The way

in which these concepts are defined depends on the characteristics of the problem at

hand (cost model, lazy or non-lazy adversary, etc.).

The usual definition of competitiveness for randomized algorithms [141 states that

on-line algorithm A is c-competitive if there exists a constant d such that for every

finite sequence of requests

E[CA - c * CADVI < d, (1)

where CA is the random variable denoting the cost charged to algorithm A, and CAnv

is the cost charged to the adversary. Generally, deterministic adversaries are considered,

but we consider a randomized oblivious adversary (that is an adversary that generates

a whole random sequence of queries before starting to serve it). Hence, CAnv is also

a random variable, and therefore inequality (1) becomes

E[CA] - c * E[CADV] < d. (2)

This approach is similar in essence to the approach developed in [9] of constructing

a nemesis sequence for the on-line algorithm based on the possibility that an oblivious

adversary has of knowing, not the exact contents of the on-line algorithm’s cache but

a probability distribution on it.

4. Full cost model

Theorem 4.1. No deterministic on-line algorithm is c-competitive under the full cost

model with c < i(k2 f k), even if lazy adversaries are considered.

Proof. Consider a set of pages U such that) UI > k + 1, and suppose the adversary

ADV and on-line algorithm A start with the same initial configuration, consisting of

a set P of pages, IPI = k. The first request is for a one-page set {pt}, pt $! P, so

both A and ADV have a fault. Making some abuse of notation, we denote as A and

ADV the contents of the caches of A and ADV respectively, and hence we initially

have A =ADV= P. Whatever A does to serve that request, next request will be for

set {PI, pz}, where p2 E P U {pl}, p2 $A (that is, p2 is the page evicted by A). In

general, the ith request, i=l,...,k will be to set {pr,...,pi}, where PiEPU{pl},

pi 4 A (in other words, pi is the page just evicted by A). A will fault on each request,

with a cost equal to Et, i = i(k2 + k), while ADV can serve the first request moving

to configuration {PI,. . . ,pk} (pages ~2,. . . , pk were originally in ADV’s cache, and

therefore the behavior of ADV is lazy), serving all the requests with cost 1. After

the kth request both algorithms are in the same configuration, so the same pattern of

requests can be repeated. This leads to an arbitrarily long sequence in which the cost

of A is at least $(k* + k) times the cost of the adversary. 0

Next theorem shows that FWF-s is optimal for this problem.

E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90 83

Theorem 4.2. FWF-s is i(k2 + k)-competitive under the full cost model.

Proof. It is obvious that the adversary’s cost is at least 1 for each phase. We will

bound the cost of FWF-s during a phase using the following potential function:

s2 +s
@=----,

2

where s is the cardinality of the union of all the sets that were requested so far in

the phase. @ = 0 before the first request of the phase (or, in other words, after the last

request of the previous phase), and @ 6 i(k* + k) after the last request of the phase.

Consider the first request of the phase, namely RI, that is served by FWF-s with

a cost of IR11. As lRl[2 1, IRl/ d i(IR11’ + IRlI)= a@; that is, the cost of the first

request of a phase is not more than the variation in the potential.

Let us now consider the other requests of the phase for which FWF-s pays a positive

cost: if FWF-s brings i new pages as a result of a fault on request R, we have that

s2+s 2is+i2+ia2is+2i=is+i.s+i

2 2 2
, .

But s+i> IRI, because R is included in the union of all the sets requested in the phase

and the i pages that are brought. Then the increment in the potential is at least the

cost of the operation.

The total cost of a phase is at most the difference between the final and the

initial potential, and hence the total cost charged to FWF-s is upper-bounded by

;(k2 +k). 0

To prove a lower bound for randomized algorithms, we first need the following

lemma:

Lemma 4.3. After suj‘iciently many requests for subsets of a set Q, IQ1 dk, every
competitive on-line algorithm must have Q in its own cache with probability one.

Proof. If algorithm A never has all the pages of Q in its own cache with probability

one, then there will always be a request for a subset of Q for which A’s expected cost

is positive. As an adversary could serve all these requests for free, A would not be

competitive. 0

Theorem 4.4. No randomized on-line strategy is c-competitive with c < ik Ink against
a lazy oblivious adversary under the full cost model, for su$ticiently large k.

Proof. Consider the same initial configuration of both the cache of ADV and A, con-

sisting on a set P of pages, IP(= k. P may be partitioned in two subsets X and Y of

cardinalities 1 and k - 1, respectively, Y = yi . . . yk_t (1 will be determined later).

Consider a random sequence of queries made of an arbitrarily large number of

epochs, each epoch done in this way: the adversary asks for set { p}, p 4 P, and evicts

84 E. Feuerstein 1 Theoretical Computer Science I81 (1997) 75-90

the page ,Vj, for some jE{l,...,k - I} uniformly chosen at random. Then the epoch

continues with k - I - 1 subepochs, where each subepoch consists of

l zero or more Type 1 requests, that are requests for sets X U {yi}, i # j already

requested in the epoch, followed by

l a Type 2 request, that is a request for a set X U {yil}, i’ fj not yet requested in

the epoch.

Type 1 requests will be repeated till A has (with probability one) the pages needed

to answer all the requests so far in the epoch. This can be done by Lemma 4.3, and

all these requests cost nothing to the adversary. After the epoch page p is “renamed”

yj so as to have again the initial configuration.

The expected cost charged to the adversary in each epoch is 1 (in fact 1 is the

exact cost). The expected cost for A during the epoch is at least 1 plus (1+ 1) times

the expected number of faults of the epoch. If A ever evicts a page x EX during the

epoch, it will surely fault for the following request. Hence, without loss of generality

we may suppose that the pages in X will never be evicted by the on-line algorithm,

as the expected number of faults in this case is not greater than the number of faults

it would have otherwise. Therefore, 1 slots of the cache will be always occupied by

the pages in X, and then the expected number of faults on the epoch depends on the

probability that the pages yj are present in the other part of the cache, of size k - 1.
The expected number of faults for this sequence is one less than the expected number

of faults for an epoch of the Paging problem with cache of size k - 1. It has been

proved [9] that this number is greater than H _ _ k 1 ,. Hence, we have that the expected

cost for the epoch is greater than 1 + (I + l)(Hk_l_l - 1).

Turning to inequality (2), it is obvious that c, the competitiveness coefficient, must

necessarily be greater or equal than the maximum possible value of the previous

expression for any algorithm to satisfy the inequality.

That maximum value is asymptotically O(kln(k)). For values of k around some

hundreds, it achieves a value strictly greater than $k In(k). In any case, letting I = ik

it is greater than 1 + $k(ln(ik) - 1). 0

In the following we will prove that M-s is nearly optimal under the Full cost model.

We need some preliminary definitions.

During a phase, requests may involve three different kinds of pages:

l marked pages, that are pages already used during the current phase,

l clean pages, that are pages that where not used during the current phase nor in the

previous one, and

l stale pages, that are pages that where used in the previous phase but not during the

current phase.

In a similar way, we can divide the requests into four types:

l clean requests, that use clean and eventually marked pages,

l stale requests, that use stale and eventually marked pages,

l mixed requests, that use clean and stale pages, and eventually marked pages, and

a marked requests, that use only marked pages.

E. Feuerstein / Theoretical Computer Science 181 (1997) 75-90 85

Without loss of generality, we can suppose that there will not be requests of the last

kind, as by definition M-s would answer them with no cost. It is easy to see that each

phase starts with a clean or a mixed request, that is, with a request that involves at

least one clean page.

Lemma 4.5. The expected number of faults of M-s during a phase is maximized if
each query involves at most one clean or stale page.

Proof. Suppose a query q involves r > 1 stale or clean pages. We will prove the claim

of the lemma for r = 2, it can be easily extended for any other value by induction. Let

a and b denote the pages. The expected number of faults Fq for answering q is equal

to the probability that at least one of a and b is not present in the cache. Hence, we

can write Fq = P(E A 5) + P(a A b) + P(a A 8).
If the query q is divided into two queries q,,qb, each of them including, respectively,

a and b, the expected number F40,4b of faults for both queries is F90,46 = P(E A 5) +
P(Z A b) + P’(b) where P’ denotes the probability after request qa. We have that

P’(b) >P(a A 5) + P(E A b), and hence Fq0,46 > F4. 0

Theorem 4.6. M-s is 2kHk competitive against lazy adversaries under the full cost
model.

Proof. We will first bound the expected number of faults of M-s during a phase. By

Lemma 4.5 we can suppose that each request involves only one clean or stale page, and

eventually some marked pages. This proof is similar to the proof of the competitiveness

of the Marking algorithm in [9]. The expected number of faults of M-s during the phase

is smaller than the number of faults it would have if all the clean requests of the phase

were done before any stale request. In such a case M-s has one fault for each clean

request and an expectation of fault for each stale request equal to the probability that

the involved stale page is not present in the cache. This probability is c/s, where c is

the number of clean pages requested so far and s is the current number of stale pages.

Hence, the expected number of faults of M-s during the phase is less than

C C C (1 1 1
c+;+k_l+...+c+l =c 1+z+k_1+...+-

cfl 1

= c(1 + Hk - HC)<cHk.

As for the cost charged to the adversary, it can be proved in the same way as in [9]

that it is at least ic, half of the number of clean pages requested in the phase. In this

part of the proof the lazy behavior of the adversary is crucial, as otherwise we could

only prove that the cost incurred by the adversary during a phase is at least 1.

We have proved that the ratio between the expected number of faults of M-s and

the adversary is smaller or equal than 2Hk. In the full cost model, the maximum cost

charged to M-s for a fault is k, while the minimum cost for a fault of the adversary

is 1. Hence, if we consider the cost instead of the number of faults, we have that

86 E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90

the cost of M-s is less than 2kHk times the cost of the adversary, that is, M-s is

2k Hk-competitive. 0

The two previous theorems assert that M-s is at most a factor of 4 away from

optimality.

We will now see that randomization is of no use if non-lazy adversaries are allowed.

Theorem 4.7. No randomized on-line strategy is c-competitive under the full cost

model against an oblivious adversary with c < i(k* + k).

Proof. The proof is based on a sequence of requests similar to that of Theorem 4.1, i.e.

consisting in an arbitrary number of epochs, each epoch starting with both algorithms

in the same configuration and a request for a page pl not present in that configuration;

then to a set (~1, pi}, etc., pi is chosen so that it minimizes (among all the pages)

the probability of being present in A’s cache after the request for {PI,. . . , pi-l}. If the

number of pages is sufficiently big, that minimum probability can be as small as desired,

and hence the cost of A during the epoch is as close to $(k* + k) as desired. When it

faults on request {PI}, the adversary can bring all the set {PI,. . . , pk} together, with

acostof 1. 0

5. Uniform cost model

Theorem 5.1. FWF-s is k-competitive under the uniform cost model.

Proof. The total cost incurred by FWF-s during a phase is at most k, since each

page that is requested during the phase is kept in cache till the end of the phase. The

adversary has a cost of at least 1 per phase, and hence the thesis follows. 0

In the reminder of this section we will show that M-s achieves a competitiveness

factor of 2Hk under this cost model.

We will restrict ourselves to a particular kind of adversary. This adversary, before

every query R with [RI > 1 (from now on these kind of queries will be referred to as

big queries), requests all the pages that form R individually in any order. It is easy to

see that this is not a real restriction, as the cost charged to this adversary is exactly

the same that it would be charged to a general adversary, while the cost charged to

M-s is at least the same it would have to pay in the general sequence (because in

the uniform cost model an algorithm is charged exactly the number of missing pages,

and in this case it will be charged at least that number). Moreover, we shall consider

a lazy adversary (as we have already mentioned, for the uniform cost model this can

be done without loss of generality).

As in the previous section, pages may be divided in marked, clean or stale, and

requests in clean, stale, mixed and marked. We need two preliminary lemmas, the

proof of the first of them is trivial and is omitted.

E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90 87

Lemma 5.2. Each phase starts with a clean request.

Lemma 5.3. Every big query but the jirst one of the phase is served by M-s with no

cost.

Proof. By definition of M-s and the kind of adversary we are considering, all big

requests but the first one of the phase find all the pages involved in the query already

marked, and hence present. 0

Theorem 5.4. M-s is 2Hk competitive under the uniform cost model.

Proof. By Lemma 5.3 we can eliminate from the sequence of requests all big queries

except the first one of each phase, and hence the sequence of requests of a phase can

be seen in the following way:

where ci . . . Ci are requests for clean pages, set . . . SC, are requests for clean or stale

pages, and B is either empty or a big query involving pages cl,. . . , ci,scl,. . . ,scj and

eventually some other stale pages (denoted s’, s”,s”‘, . . .) requested in the final part of

the previous phase. Queries cz and SC are requests for one-page sets. Note that all other

big queries eventually present in the phase have been omitted, due to Lemma 5.3, as

well as requests for marked pages, that induce no cost to M-s.

Since a marked page is not evicted it follows that the cost charged to M-s for this

sequence is less that the cost it would be charged for the sequence

C] . ..C~SCI . ..SCjS’S”S”‘...CIIC....C~ISIS:...S:lC:...C~*S:...S~*

The rest of this proof is similar to the proof of the competitiveness of M-s for the

full cost model. The expected cost charged to M-s for this sequence is smaller than

the cost it would be charged if all the clean pages of the sequence where requested

before any request for a stale page. In such a sequence the expected cost charged to

M-s during each phase is less than

C
C+...+C =c 1,1+-

(

1 1
cfi+k-l CSl k k-l +“.+c+l 4

= c(1 + Hk - HC)<cHk.

As for the cost charged to the adversary, we can prove in the same way as in [9]

that it is at least ic, half of the number of clean pages requested in the phase.

This completes the proof of the 2Hk-competitiveness of M-s. 0

We recall that in [9] it has been proved that Hk is a lower bound for the competi-

tiveness of any algorithm for the Paging problem, and hence it is also a lower bound

for our problem under this cost model. Therefore, M-s is at most a factor of 2 away

from optimality.

88 E. Feuerstein I Theoretical Computer Science I81 (1997) 75-90

6. Constant cost model

Theorem 6.1. FWF-s is k-competitive under the constant cost model, even against
non-lazy adversaries.

Proof. Under this cost model the cost incurred by FWF-s corresponds to the number

of faults it has. The maximum number of faults FWF-s may have during a phase is k,
while the adversary faults at least once. 0

Theorem 6.2. No randomized on-line strategy is c-competitive against an oblivious
adversary with c < (Lk/eJ + 1) (e is the base of the natural logarithm) under the
constant cost model, even if lazy adversaries are considered.

Proof. Consider an initial configuration in which ADV and A have the same k pages

in their caches. Consider a random sequence of queries made of an arbitrarily large

number of epochs, each epoch done in this way: the first request of the epoch consists

of a set of size I (the value of 1 will be determined later) disjoint from the set of pages

present in both caches. To serve this request, the adversary evicts I pages randomly

chosen. The epoch continues with k - I subepochs, each subepoch done in the following

way: first, all the requests of the preceding subepochs of the epoch are repeated as in

the proof of Theorem 4.4, secondly, a request is done for a one-page set formed by

one of the k - I pages not evicted by the adversary. The cost paid by the adversary

during the epoch is 1, and after an epoch the configuration of the on-line algorithm will

coincide with that of the adversary. Hence, after the end of an epoch a new epoch can

start, and the proof of the theorem reduces to showing that the expected cost charged

to any on-line algorithm during an epoch is at least k/e + 1.

Every on-line algorithm will fault on the first request of the epoch, with a cost of 1.

As for the second part of the sequence, the expected cost depends on the probability

that, for each of the k - 1 subepochs, the requested page is present at the moment

it is requested for the first time in the epoch. The expected cost for this part of the

sequence will hence be greater than

I I+:.,-...+& 1

k k-l
=lfZ ;+&+...+I

(z+1 >

The maximum value for this expression is for 1= k/e, when it assumes the value

1 + k/e. This completes the proof of the theorem. 0

= 1 + 1(& - H,).

If we allow non-lazy adversaries, we can prove the following result:

Theorem 6.3. No randomized on-line strategy is c-competitive against a non-lazy
oblivious adversary with c < k under the constant cost model.

E. Feuerstein I Theoretical Computer Science 181 (1997) 75-90 89

Proof. Starting with the same initial configuration, each of the first k requests may be
to the page that minimizes the probability of being present in the on-line algorithm’s
cache. If the universe is sufficiently big, such probability can be as close to 0 as desired,
and hence the cost incurred by the on-line algorithm is as close to k as desired. On the
other hand, the adversary may bring that set of pages when it faults on the first request.
Repeating this pattern an arbitrary number of times we get a sequence in which the
ratio between the costs is k. q

The previous theorems tell us that for this problem the use of randomization provides
no help against non-lazy adversaries, while against lazy adversaries it may only allow
to improve the performance of on-line algorithms at most by a factor of e. We can
only show that M-s is k-competitive under this cost model: with the same arguments
as in the proofs of competitiveness of M-s for the other cost models, we can show that
the expected cost for a phase in which 1 clean pages are requested is not more than
1+ I(& - HI). For this cost model we can only assume that the adversary’s cost for
the phase is at least 1, and hence the worst-case ratio among the costs is when I = k.

In that case we have that the competitiveness of M-s is k, and hence at most a factor
of e away from optimality. Note however that a competitive ratio of k is achieved also
by the deterministic algorithm FWF-s.

Acknowledgements

Some of the ideas present in this work arose while studying a particular case with
Albert0 Marchetti-Spaccamela, to whom I am grateful. I would like to thank the two
anonymous referees for their useful suggestions on how to improve the preliminary
version of this work.

References

[I] A. Aggarwal, B. Alpem, A.K. Char&a and M. Snir, A model for hierarchical memory, in: Proc. 19th
Ann. ACM Symp. on Theory of Computing (1987) 305-314.

[2] A. Aggarwal and A.K. Chandra, Virtual memory algorithms, in: Proc. 20th Ann. ACM Symp. on
Theory of Computing (1988) 173-185.

[3] A. Aggarwal, A.K. Chandra and M. Snir, Hierarchical memory with block transfer, in: Proc. 28th Ann.
Symp. on Foundations of Computer Science (1987) 204-216.

[4] S. Albers, The influence of lookahead in competitive paging algorithms, in: Proc. 1st Ann. European
Symp. on Algorithms, Lecture Notes in Computer Science, Vol. 726 (Springer, Berlin, 1993) 1-12.

[5] L.A. Belady, A study of replacement algorithms for virtual storage computers, IBM System J. 5 (1966)

78-101.

[6] A. Borodin, S. Irani, P. Raghavan and B. Schieber, Competitive paging with locality of reference, in:

Proc. 23rd Ann. ACM Symp. on Theory of Computing (1991) 249-259.
[7] A. Borodin, N. Linial and M. Saks, An optimal online algorithm for metrical task systems, in: Proc.

19th Ann. ACM Symp. on Theory of Computing (1987) 373-382.
[8] E. Feuerstein and A. Marchetti-Spaccamela, Memory paging for connectivity and path problems in

graphs, in: Proc. 4th Ann. Symp. on Algorithms and Computation, Lecture Notes in Computer Science

Vol. 762 (Springer, Berlin, 1993) 416425.

90 E. Feuersteinl Theoretical Computer Science 181 (1997) 75-90

[9] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator and N.E. Young, Competitive paging

algorithms, J. Algorithms 12 (1991) 685-699.

[lo] A. Karlin, M. Manasse, L. Rudolph and D. Sleator, Competitive snoopy caching, Algorithmica 3 (1988)

79-l 19.

[l l] M.S. Manasse, L.A. McGeoch and D. Sleator, Competitive algorithms for server problems, J. Algorithms

11 (1990) 208-230.

[12] L.A. McGeoch and D. Sleator, A strongly competitive randomized paging algorithm, Algorithmica

6 (1989) 816-825.

[13] M. Nodine, M. Goodrich and J.S. Vitter, Blocking for external Graph Searching, Technical Report

CS-92-44, Brown University, 1992.

[14] P. Raghavan and M. Snir, Memory versus randomization in on-line algorithms, IBM Research Report

RC 15622, 1990.

[15] D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging algorithms, Comm. ACM

28 (1985) 202-208.

