
ELSEVIER Theoretical Computer Science 18 1 (I 997) 75-90 

Theoretical 
Computer Science 

Paging more than one page’ 

Esteban Feuerstein” b, * 

aLkpariamento de Computacih, Fact&ad de Ciencias Exactas y Naturales, 

Universidad de Buenos Aires, Argentina 

bInstituto de Ciencias, Universidad de General Sarmiento, Argentina 

Abstract 

In this paper we extend the Paging Problem to the case in which each request specifies a 
set of pages that must be present in fast memory to serve it. The interest on this extension is 
motivated by many applications in which the execution of each task may require the presence 
of more than one page in fast memory. We introduce three different cost models that can be 
applied in this framework, namely the Full, Uniform and Constant cost models, and study lower 
and upper bounds for each one of them, using competitive analysis techniques. 

1. Introduction 

The Paging Problem arose as a theoretical model for a concrete problem present in 

the implementation of operating systems offering virtual memory [S]. It is the problem 

of managing a memory consisting in two levels, one of which with limited capacity 

and fast access (the cache) and the other one with slow access time but potentially 

unlimited capacity. Memory is divided in pages of fixed size, of which the cache may 

contain at most k. An operation consists in the request for a certain page, if that page 

is present in the cache the cost to serve the request is 0, otherwise it is necessary to 

bring it to the cache with cost 1. In this case we say that a page fault has occurred. As 

future requests are not known, we are interested in replacing policies that minimize the 

total cost required to serve a sequence of requests, i.e. that minimize the total number 

of page faults. All useful strategies are based on a notion of “locality” present in the 

sequence of requests that reflects the fact that normally programs tend to request pages 

from a subset of all possible pages (the “working set”) and not completely uniformly. 
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The working set may vary along time, and a good heuristic is supposed to “learn” the 

present set, so as to be able to have a small number of faults. This type of problem 

belongs to a wide family of problems, called on-line problems, that arise in many 

different areas of computer science. Roughly speaking, algorithms for on-line problems 

try to learn from the past how the future will be. A whole research area has been 

developed in recent years devoted to the study of on-line problems and algorithms. 

The most widely accepted way of measuring the efficiency of on-line strategies is 

called competitive analysis. Among the wide literature about the subject we may cite 

as examples [7, 11, 151. 

The enormous amount of theoretical and practical studies done on efficient pag- 

ing strategies gave as a result that all operating systems provide hierarchical memory 

mechanisms devoted to smooth the effect on the performance of programs of slow 

access to some memory devices. This fact has encouraged research on efficient block- 

ing techniques for data structures that are stored in secondary memory. This research 

has led to proposals of how to block or pack data in secondary memory pages so 

as to minimize the quantity of accesses to secondary memory done on solving some 

problem. Examples of this can be found in [l-3, 131. All the previously cited works 

share the philosophy of blocking and/or replicating data in such a way that when the 

data will be requested some accesses to secondary memory will be avoided. In some 

cases an improvement is obtained using the fact that the exact order in which data 

will be accessed is known a priori (as in off-line applications like, for example, matrix 

multiplication), in other cases [6] that order is not completely known, but instead it is 

known that the requests for data will follow a specified pattern. 

In this paper we apply the philosophy of Paging to the case in which to serve a 

request we need to bring into a fast memory of size k not a single page but a set of 

pages. At first sight this problem may seem a particular case of Paging, viewing each 

request for a set as a sequence of individual requests for the pages belonging to it. 

However, the cardinalities of the sets involved in each query are not fixed, and hence 

the advantage that could be obtained considering requests for more than one page as a 

look-ahead (like in [4]) cannot be considered as granted. Moreover, the more complex 

structure of the requests gives an extra degree of freedom concerning the cost that may 

be charged when a request cannot be satisfied with the contents of the cache. 

1.1. Motivations 

In many applications the execution of each task may require the presence of more 

than one page in fast memory to be executed. The following examples motivate the 

interest on studying our extension of the Paging Problem. 

1. Given a graph stored in secondary memory a system must repeatedly answer queries 

asking for a path between pairs of nodes. The graph may be stored in such a way 

that a path of length 1 could be split among as much as 1 pages of secondary 

memory, and to perform some action on it all those pages need to be cached into 

fast memory. This problem has been studied in [8]. 
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2. The transitive closure of a graph is stored in secondary memory as a set of pairs 

(node, label of its connected component). Each query specifies a set of nodes and 

the answer to a query is “yes” if all the nodes are in the same connected component, 

“no” otherwise. 

3. A partially ordered set (0, C) of bounded dimension d is stored in secondary mem- 

ory, and queries are of the form x L y?. In this case it is known that elements of 

0 may be labeled by d labels Ii(x) .. . Id(x) in a way that for every pair x, y of 

elements of 0 it is verified that x & y if and only if for all i = 1. d, l,(x) < /i(y). 

In this application, a subset of elements of 0 together with their d labels may be 

maintained in the cache, each query x L y? requiring the presence of both x and y 

and their labels to be answered. 

4. Consider the managing of a data base that is stored in secondary memory. To per- 

form a join of two relations both involved relations must be present simultaneously 

in fast memory. 

In some of the applications described above, the answer to each query is given by 

a set of items, each of which may occupy less than one page. Our definition allows 

also to treat those cases, just by replacing the cache by a portion of main memory 

dedicated to store a subset of the information that is stored in secondary memory. 

Therefore, our algorithms could be useful to reduce the number of secondary memory 

accesses done to answer a sequence of requests about a data structure that is stored 

in secondary memory, just by maintaining a small subset of it in main memory. At 

least, they provide a framework to analyze the possible strategies to use in practice for 

reducing the number of secondary memory accesses in those cases. 

All our results may be also applied in a distributed framework where each processor 

holds a subset of pages of a virtual shared (read-only) memory. In this case, a processor 

may contain all the pages needed to process a particular task, but it is also possible 

that it will have to communicate with other processors to get the required pages. If 

we assume constant cost for each page transmitted through the network, maintaining 

an extra subset of the global memory in the private working memory will help to 

reduce the communication cost and improve the overall performance of the system, as 

in a distributed network communication plays the same bottle-neck role as secondary 

memory accesses in a centralized system. 

1.2. Summary qf results 

We extend the paging problem to the case in which each query specifies a set R 

of pages of secondary memory that must be in a cache of size k. If R is contained 

in the cache no cost is charged, otherwise R must be brought into the cache and a 

cost is charged. We define three different cost measures, namely the Full, Uniform 

and Constant cost models, that are different ways of charging costs to algorithms for 

this problem. For each cost model, we establish lower bounds for the competitiveness 

of deterministic and randomized on-line algorithms and study the competitive ratios 

achieved by our algorithms in each case, against different types of adversaries, namely 
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Table 1 

Summary of results - competitiveness of on-line algorithms 

Problem Lower bound Upper bound 

Full cost, deterministic 

Full cost, randomized, lazy 

Full cost, randomized, non-lazy 

Uniform cost, deterministic 

Uniform cost, randomized 

Constant cost, deterministic 

Constant cost, randomized, lazy 

Constant cost, randomized, non-lazy 
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Zuzy and non-lazy adversaries (the results for randomized algorithms refer to an oblivi- 

ous adversary [14]). An on-line algorithm is said to be optimal or strongly competitive 

if it achieves the lowest possible competitive ratio (and not an algorithm that serves the 

request sequence optimally). We show that our algorithms for each case are optimal or 

at most a constant factor away from optimal. Table 1 summarizes the results presented 

in this paper. 

All the deterministic upper bounds presented in this paper are tight. In the case of 

non-lazy adversaries and for all cost models, our deterministic algorithm obtains the 

best possible competitive ratios achievable even by randomized algorithms, but with- 

out using randomization. This implies that against non-lazy adversaries randomization 

provides no help at all, a situation that appeared very seldom in the literature about 

on-line algorithms. 

A particular case of this problem, in which each page represents the edges of a tree 

and requests are paths of the tree has been presented in [g]. In this paper we extend 

those results to the general case, and improve most of the lower bounds therein. 

2. Cost models and lazy algorithms 

In the traditional Paging problem a constant cost is charged to an algorithm each 

time it has a page fault. For our problem that may be a reasonable assumption only 

in some cases, while other cost models may be more suitable in different applications. 

Each cost model is characterized by when a cost is charged to an algorithm, as well 

as which amount will be charged. As we will see later, different cost models will 

give different results (lower and upper bounds on the competitive ratios of on-line 

algorithms). We consider the following cost models: 

1. Full cost model: When a requested set R is not present in cache, charge the 

algorithm IRl, the cardinality of R. 
2. Uniform cost model: Charge the algorithm the number of pages it brings into the 

cache. 
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3. Constant cost model: A unit cost is charged every time the algorithm changes 

its configuration, i.e. the contents of its cache. 

As we said before, for each particular application one cost model may be more 

appropriate than the others. In the first example of the previous section the absence of 

a path joining two nodes may imply that a search must be done for it in the whole 

graph, making it reasonable to charge a cost proportional to the length of the requested 

path, and hence to apply the full cost model. In the fourth example it is necessary to 

fetch just the missing relation or relations, and hence it is reasonable to apply the 

uniform cost model, while in every case the constant cost model can be applied if we 

just want to count the number of times the computation is interrupted to do secondary 

memory accesses. 

The uniform cost model is the one that resembles traditional Paging more. In fact we 

will see that lower and upper bounds in this model coincide with the values obtainable 

for that problem, while for the other two cost models things become different. 

At this point a discussion is needed regarding the power of the adversaries that 

we will use in each cost model. Consider the following two restrictions that can be 

imposed to an algorithm for this problem: 

1. Changes of configurations (that is, changes in the contents of the cache) are done 

only when a request produces a fault. 

2. In case of a fault the request can be served only by bringing into fast memory the 

minimum number of pages sufficient to answer the query. 

The second of the restrictions above coincides with requiring that the only pages 

that can be brought in the case of a fault are those belonging to the requested set. 

An adversary obeying these restrictions is called a Zazy adversary. The notion of 

laziness has been used in the literature on paging and the k-server problem: in [l l] 

it has been proved that every non-lazy adversary can be transformed in a lazy one 

without increasing the cost it incurs for serving any sequence of requests. Therefore, 

for those two problems, it be can assumed that adversaries are lazy without loss of 

generality. However, the use of lazy or non-lazy adversaries for paging of sets does 

impose a difference. We now illustrate this. 

Is it reasonable to force our adversaries to comply with the two restrictions above? 

We start by considering the first restriction. If the uniform or the constant cost models 

are considered, it can be easily seen that this constraint can be assumed to hold for 

every algorithm: by definition some cost is charged to an algorithm when it changes 

configuration, and hence there is no advantage in changing configuration between re- 

quests. In the full cost model the situation is different: as the cost is defined as a 

function of the faults and does not depend on the transitions between configurations, 

an adversary (being able to predict the following request) could move to a configura- 

tion that allows to serve the request before it is presented, and hence serve all requests 

with no cost. This is unnatural, and therefore we will always impose the first restriction 

to all algorithms. 

As for the second restriction, it rules out the possibility that the adversary, being 

aware of which requests will be presented later, brings the necessary pages during the 
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fault produced by a different request. In the uniform cost model an algorithm pays for 

each page that is brought, and therefore it is the same to allow this kind of behavior 

or not. In the other two cost models this is not true anymore: we will see that in 

some cases lazy adversaries are strictly less powerful than non-lazy ones. However, 

in some situations allowing non-lazy behavior to the adversary can be “too much”, 

and therefore we will study the competitive ratios achievable by on-line algorithms 

against adversaries obeying both restrictions (lazy adversaries) and obeying only the 

first restriction (non-lazy adversaries). 

Notice that we speak about imposing the restrictions only to adversaries. On-line 

algorithms will naturally obey both of them it is easy to see that otherwise their 

competitive ratios could only increase. 

3. The algorithms 

In [ 151 it has been shown that FIFO is optimal for the paging problem. In fact, 

if both the algorithm and the adversary have the same memory of size k then FIFO 

achieves a competitive ratio of k and this ratio is optimal since k is also a lower 

bound. Another k-competitive algorithm for paging called Flush-When-Full (FWF) has 

been presented in [lo]. FWF maintains a set of marked pages. Initially, the marked 

pages are exactly those that are present in the cache. After each request, the marks are 

updated, then one page is evicted to make place for the requested page if necessary. 

The randomized version of FWF is called the Marking algorithm, or simply M [9]. In 

the latter, the choice of which unmarked page to evict is done at random uniformly 

among the unmarked pages. It has been proved that M is 2&-competitive (where H, 
denotes the xth harmonic number) and that Hk is a lower bound on the competitive 

ratio that can be achieved against an oblivious adversary [9]. 

The behavior of both FWF and M on a request for page p can be schematized 

as shown in Fig. 1. The two algorithms differ only in how the subroutine choose is 

implemented, that is, in the way in which the unmarked page to evict is chosen. FWF 

does it deterministically, following any predetermined order, while M does it randomly. 

Both algorithms work in phases, the first phase starting with the first request of the 

sequence and each new phase starting with the request that causes more than k pages 

to be marked (when the marks are deleted). 

Markp; 
If more that k pages are marked /* this starts a new phase */ 
then erase all the marks except that in p; 

If p is present in the cache 

then do nothing 

else choose a page p' among the unmarked pages of the cache; 

evict p’ and bring p. 

Fig. 1. Algorithms Flush-When-Full and Marking. 
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It is immediate to see that the lower bounds for the competitiveness of on-line 

strategies for the Paging problem hold also for our problem, independently of the cost 

model. However, we will derive higher lower bounds in some cases. As for the upper 

bounds, the algorithms that we propose for this problem are very simple. They are 

natural generalizations of FWF and M, which we call FWF-s and M-s, respectively 

(the ‘s’ stands for ‘set’), and their behavior on a request R is depicted in Fig. 2. Again, 

the difference between the algorithms is just the way in which the pages to evict are 

chosen. It is worthwhile to note that similar generalizations of FIFO and LRU achieve 

the same competitive ratios that we will prove for FWF-s. 

3.1. General techniques for proofs 

As their counterparts for paging, our algorithms work in phases. We use this concept 

in all our upper-bound proofs; therefore, it is useful to state this simple concept care- 

fully: the first phase of FWF-s or M-s starts with the first request of the sequence, and 

a new phase starts each time the cardinality of the union of the sets requested during 

the current phase exceeds k; the first request of the new phase is the one that causes 

the marks to be deleted. For example, if k = 5, the cache holds pages {a, b,c,d, e}, 
and the sequence of requests is q1 = {a, f}, q2 = {b, g}, q3 = {a, g}, q4 = {a, h, i}, then 

q4 is the first request of the second phase. 

The concept of phase is important because it allows to partition any input sequence 

into finite subsequences for which every algorithm must have at least one fault. In 

general, to prove an upper bound (like in Theorems 4.2, 4.6, 5.1, 5.4 and 6.1) we 

show that the cost of the algorithm during a phase does not exceed some value, while 

the cost of any adversary is at least some other value. 

In the case of lower bounds, they are proved by showing in each case how an 

input sequence can be constructed for every algorithm A in such a way that the ratio 

between the costs paid, respectively, by A and the adversary is at least some value. 

In general, these input sequences will be constructed by repeating an arbitrary number 

of times some pattern of requests for which the ratio between the costs satisfies the 

desired property. In some cases we name explicitly each occurrence of such pattern in 

Mark all the pages in R; 
If more that k pages are marked /* this starts a new phase */ 
then erase all the marks except those in R; 
If R is present in the cache 
then do nothing 

else if IR- CACHE/ =x /* there are x elements of R missing */ 
then choose x pages pl...p, among 

the unmarked pages of the cache; 

evict pl...p=; 

bring the pages in R-CACHE 

Fig. 2. Algorithms FWF-s and M-s. 
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the sequence as an epoch, and sometimes an epoch is formed by subepochs. The way 

in which these concepts are defined depends on the characteristics of the problem at 

hand (cost model, lazy or non-lazy adversary, etc.). 

The usual definition of competitiveness for randomized algorithms [ 141 states that 

on-line algorithm A is c-competitive if there exists a constant d such that for every 

finite sequence of requests 

E[CA - c * CADVI < d, (1) 

where CA is the random variable denoting the cost charged to algorithm A, and CAnv 

is the cost charged to the adversary. Generally, deterministic adversaries are considered, 

but we consider a randomized oblivious adversary (that is an adversary that generates 

a whole random sequence of queries before starting to serve it). Hence, CAnv is also 

a random variable, and therefore inequality (1) becomes 

E[CA] - c * E[CADV] < d. (2) 

This approach is similar in essence to the approach developed in [9] of constructing 

a nemesis sequence for the on-line algorithm based on the possibility that an oblivious 

adversary has of knowing, not the exact contents of the on-line algorithm’s cache but 

a probability distribution on it. 

4. Full cost model 

Theorem 4.1. No deterministic on-line algorithm is c-competitive under the full cost 

model with c < i(k2 f k), even if lazy adversaries are considered. 

Proof. Consider a set of pages U such that ) UI > k + 1, and suppose the adversary 

ADV and on-line algorithm A start with the same initial configuration, consisting of 

a set P of pages, IPI = k. The first request is for a one-page set {pt}, pt $! P, so 

both A and ADV have a fault. Making some abuse of notation, we denote as A and 

ADV the contents of the caches of A and ADV respectively, and hence we initially 

have A =ADV= P. Whatever A does to serve that request, next request will be for 

set {PI, pz}, where p2 E P U {pl}, p2 $A (that is, p2 is the page evicted by A). In 

general, the ith request, i=l,...,k will be to set {pr,...,pi}, where PiEPU{pl}, 

pi 4 A (in other words, pi is the page just evicted by A). A will fault on each request, 

with a cost equal to Et, i = i(k2 + k), while ADV can serve the first request moving 

to configuration {PI,. . . ,pk} (pages ~2,. . . , pk were originally in ADV’s cache, and 

therefore the behavior of ADV is lazy), serving all the requests with cost 1. After 

the kth request both algorithms are in the same configuration, so the same pattern of 

requests can be repeated. This leads to an arbitrarily long sequence in which the cost 

of A is at least $(k* + k) times the cost of the adversary. 0 

Next theorem shows that FWF-s is optimal for this problem. 
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Theorem 4.2. FWF-s is i(k2 + k)-competitive under the full cost model. 

Proof. It is obvious that the adversary’s cost is at least 1 for each phase. We will 

bound the cost of FWF-s during a phase using the following potential function: 

s2 +s 
@=----, 

2 

where s is the cardinality of the union of all the sets that were requested so far in 

the phase. @ = 0 before the first request of the phase (or, in other words, after the last 

request of the previous phase), and @ 6 i(k* + k) after the last request of the phase. 

Consider the first request of the phase, namely RI, that is served by FWF-s with 

a cost of IR11. As lRl[ 2 1, IRl/ d i(IR11’ + IRlI)= a@; that is, the cost of the first 

request of a phase is not more than the variation in the potential. 

Let us now consider the other requests of the phase for which FWF-s pays a positive 

cost: if FWF-s brings i new pages as a result of a fault on request R, we have that 

s2+s 2is+i2+ia2is+2i=is+i.s+i 

2 2 2 
, . 

But s+i> IRI, because R is included in the union of all the sets requested in the phase 

and the i pages that are brought. Then the increment in the potential is at least the 

cost of the operation. 

The total cost of a phase is at most the difference between the final and the 

initial potential, and hence the total cost charged to FWF-s is upper-bounded by 

;(k2 +k). 0 

To prove a lower bound for randomized algorithms, we first need the following 

lemma: 

Lemma 4.3. After suj‘iciently many requests for subsets of a set Q, IQ1 dk, every 
competitive on-line algorithm must have Q in its own cache with probability one. 

Proof. If algorithm A never has all the pages of Q in its own cache with probability 

one, then there will always be a request for a subset of Q for which A’s expected cost 

is positive. As an adversary could serve all these requests for free, A would not be 

competitive. 0 

Theorem 4.4. No randomized on-line strategy is c-competitive with c < ik Ink against 
a lazy oblivious adversary under the full cost model, for su$ticiently large k. 

Proof. Consider the same initial configuration of both the cache of ADV and A, con- 

sisting on a set P of pages, IP( = k. P may be partitioned in two subsets X and Y of 

cardinalities 1 and k - 1, respectively, Y = yi . . . yk_t (1 will be determined later). 

Consider a random sequence of queries made of an arbitrarily large number of 

epochs, each epoch done in this way: the adversary asks for set { p}, p 4 P, and evicts 
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the page ,Vj, for some jE{l,...,k - I} uniformly chosen at random. Then the epoch 

continues with k - I - 1 subepochs, where each subepoch consists of 

l zero or more Type 1 requests, that are requests for sets X U {yi}, i # j already 

requested in the epoch, followed by 

l a Type 2 request, that is a request for a set X U {yil}, i’ fj not yet requested in 

the epoch. 

Type 1 requests will be repeated till A has (with probability one) the pages needed 

to answer all the requests so far in the epoch. This can be done by Lemma 4.3, and 

all these requests cost nothing to the adversary. After the epoch page p is “renamed” 

yj so as to have again the initial configuration. 

The expected cost charged to the adversary in each epoch is 1 (in fact 1 is the 

exact cost). The expected cost for A during the epoch is at least 1 plus (1+ 1) times 

the expected number of faults of the epoch. If A ever evicts a page x EX during the 

epoch, it will surely fault for the following request. Hence, without loss of generality 

we may suppose that the pages in X will never be evicted by the on-line algorithm, 

as the expected number of faults in this case is not greater than the number of faults 

it would have otherwise. Therefore, 1 slots of the cache will be always occupied by 

the pages in X, and then the expected number of faults on the epoch depends on the 

probability that the pages yj are present in the other part of the cache, of size k - 1. 
The expected number of faults for this sequence is one less than the expected number 

of faults for an epoch of the Paging problem with cache of size k - 1. It has been 

proved [9] that this number is greater than H _ _ k 1 ,. Hence, we have that the expected 

cost for the epoch is greater than 1 + (I + l)(Hk_l_l - 1). 

Turning to inequality (2), it is obvious that c, the competitiveness coefficient, must 

necessarily be greater or equal than the maximum possible value of the previous 

expression for any algorithm to satisfy the inequality. 

That maximum value is asymptotically O(kln(k)). For values of k around some 

hundreds, it achieves a value strictly greater than $k In(k). In any case, letting I = ik 

it is greater than 1 + $k(ln(ik) - 1). 0 

In the following we will prove that M-s is nearly optimal under the Full cost model. 

We need some preliminary definitions. 

During a phase, requests may involve three different kinds of pages: 

l marked pages, that are pages already used during the current phase, 

l clean pages, that are pages that where not used during the current phase nor in the 

previous one, and 

l stale pages, that are pages that where used in the previous phase but not during the 

current phase. 

In a similar way, we can divide the requests into four types: 

l clean requests, that use clean and eventually marked pages, 

l stale requests, that use stale and eventually marked pages, 

l mixed requests, that use clean and stale pages, and eventually marked pages, and 

a marked requests, that use only marked pages. 
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Without loss of generality, we can suppose that there will not be requests of the last 

kind, as by definition M-s would answer them with no cost. It is easy to see that each 

phase starts with a clean or a mixed request, that is, with a request that involves at 

least one clean page. 

Lemma 4.5. The expected number of faults of M-s during a phase is maximized if 
each query involves at most one clean or stale page. 

Proof. Suppose a query q involves r > 1 stale or clean pages. We will prove the claim 

of the lemma for r = 2, it can be easily extended for any other value by induction. Let 

a and b denote the pages. The expected number of faults Fq for answering q is equal 

to the probability that at least one of a and b is not present in the cache. Hence, we 

can write Fq = P(E A 5) + P(a A b) + P(a A 8). 
If the query q is divided into two queries q,,qb, each of them including, respectively, 

a and b, the expected number F40,4b of faults for both queries is F90,46 = P(E A 5) + 
P(Z A b) + P’(b) where P’ denotes the probability after request qa. We have that 

P’(b) >P(a A 5) + P(E A b), and hence Fq0,46 > F4. 0 

Theorem 4.6. M-s is 2kHk competitive against lazy adversaries under the full cost 
model. 

Proof. We will first bound the expected number of faults of M-s during a phase. By 

Lemma 4.5 we can suppose that each request involves only one clean or stale page, and 

eventually some marked pages. This proof is similar to the proof of the competitiveness 

of the Marking algorithm in [9]. The expected number of faults of M-s during the phase 

is smaller than the number of faults it would have if all the clean requests of the phase 

were done before any stale request. In such a case M-s has one fault for each clean 

request and an expectation of fault for each stale request equal to the probability that 

the involved stale page is not present in the cache. This probability is c/s, where c is 

the number of clean pages requested so far and s is the current number of stale pages. 

Hence, the expected number of faults of M-s during the phase is less than 

C C C ( 1 1 1 
c+;+k_l+...+c+l =c 1+z+k_1+...+- 

cfl 1 

= c(1 + Hk - HC)<cHk. 

As for the cost charged to the adversary, it can be proved in the same way as in [9] 

that it is at least ic, half of the number of clean pages requested in the phase. In this 

part of the proof the lazy behavior of the adversary is crucial, as otherwise we could 

only prove that the cost incurred by the adversary during a phase is at least 1. 

We have proved that the ratio between the expected number of faults of M-s and 

the adversary is smaller or equal than 2Hk. In the full cost model, the maximum cost 

charged to M-s for a fault is k, while the minimum cost for a fault of the adversary 

is 1. Hence, if we consider the cost instead of the number of faults, we have that 
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the cost of M-s is less than 2kHk times the cost of the adversary, that is, M-s is 

2k Hk-competitive. 0 

The two previous theorems assert that M-s is at most a factor of 4 away from 

optimality. 

We will now see that randomization is of no use if non-lazy adversaries are allowed. 

Theorem 4.7. No randomized on-line strategy is c-competitive under the full cost 

model against an oblivious adversary with c < i(k* + k). 

Proof. The proof is based on a sequence of requests similar to that of Theorem 4.1, i.e. 

consisting in an arbitrary number of epochs, each epoch starting with both algorithms 

in the same configuration and a request for a page pl not present in that configuration; 

then to a set (~1, pi}, etc., pi is chosen so that it minimizes (among all the pages) 

the probability of being present in A’s cache after the request for {PI,. . . , pi-l}. If the 

number of pages is sufficiently big, that minimum probability can be as small as desired, 

and hence the cost of A during the epoch is as close to $(k* + k) as desired. When it 

faults on request {PI}, the adversary can bring all the set {PI,. . . , pk} together, with 

acostof 1. 0 

5. Uniform cost model 

Theorem 5.1. FWF-s is k-competitive under the uniform cost model. 

Proof. The total cost incurred by FWF-s during a phase is at most k, since each 

page that is requested during the phase is kept in cache till the end of the phase. The 

adversary has a cost of at least 1 per phase, and hence the thesis follows. 0 

In the reminder of this section we will show that M-s achieves a competitiveness 

factor of 2Hk under this cost model. 

We will restrict ourselves to a particular kind of adversary. This adversary, before 

every query R with [RI > 1 (from now on these kind of queries will be referred to as 

big queries), requests all the pages that form R individually in any order. It is easy to 

see that this is not a real restriction, as the cost charged to this adversary is exactly 

the same that it would be charged to a general adversary, while the cost charged to 

M-s is at least the same it would have to pay in the general sequence (because in 

the uniform cost model an algorithm is charged exactly the number of missing pages, 

and in this case it will be charged at least that number). Moreover, we shall consider 

a lazy adversary (as we have already mentioned, for the uniform cost model this can 

be done without loss of generality). 

As in the previous section, pages may be divided in marked, clean or stale, and 

requests in clean, stale, mixed and marked. We need two preliminary lemmas, the 

proof of the first of them is trivial and is omitted. 
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Lemma 5.2. Each phase starts with a clean request. 

Lemma 5.3. Every big query but the jirst one of the phase is served by M-s with no 

cost. 

Proof. By definition of M-s and the kind of adversary we are considering, all big 

requests but the first one of the phase find all the pages involved in the query already 

marked, and hence present. 0 

Theorem 5.4. M-s is 2Hk competitive under the uniform cost model. 

Proof. By Lemma 5.3 we can eliminate from the sequence of requests all big queries 

except the first one of each phase, and hence the sequence of requests of a phase can 

be seen in the following way: 

where ci . . . Ci are requests for clean pages, set . . . SC, are requests for clean or stale 

pages, and B is either empty or a big query involving pages cl,. . . , ci,scl,. . . ,scj and 

eventually some other stale pages (denoted s’, s”,s”‘, . . .) requested in the final part of 

the previous phase. Queries cz and SC are requests for one-page sets. Note that all other 

big queries eventually present in the phase have been omitted, due to Lemma 5.3, as 

well as requests for marked pages, that induce no cost to M-s. 

Since a marked page is not evicted it follows that the cost charged to M-s for this 

sequence is less that the cost it would be charged for the sequence 

C] . ..C~SCI . ..SCjS’S”S”‘...CIIC....C~ISIS:...S:lC:...C~*S:...S~* . . . . 

The rest of this proof is similar to the proof of the competitiveness of M-s for the 

full cost model. The expected cost charged to M-s for this sequence is smaller than 

the cost it would be charged if all the clean pages of the sequence where requested 

before any request for a stale page. In such a sequence the expected cost charged to 

M-s during each phase is less than 

C 
C+...+C =c 1,1+- 

( 

1 1 
cfi+k-l CSl k k-l +“.+c+l 4 

= c(1 + Hk - HC)<cHk. 

As for the cost charged to the adversary, we can prove in the same way as in [9] 

that it is at least ic, half of the number of clean pages requested in the phase. 

This completes the proof of the 2Hk-competitiveness of M-s. 0 

We recall that in [9] it has been proved that Hk is a lower bound for the competi- 

tiveness of any algorithm for the Paging problem, and hence it is also a lower bound 

for our problem under this cost model. Therefore, M-s is at most a factor of 2 away 

from optimality. 
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6. Constant cost model 

Theorem 6.1. FWF-s is k-competitive under the constant cost model, even against 
non-lazy adversaries. 

Proof. Under this cost model the cost incurred by FWF-s corresponds to the number 

of faults it has. The maximum number of faults FWF-s may have during a phase is k, 
while the adversary faults at least once. 0 

Theorem 6.2. No randomized on-line strategy is c-competitive against an oblivious 
adversary with c < ( Lk/eJ + 1) ( e is the base of the natural logarithm) under the 
constant cost model, even if lazy adversaries are considered. 

Proof. Consider an initial configuration in which ADV and A have the same k pages 

in their caches. Consider a random sequence of queries made of an arbitrarily large 

number of epochs, each epoch done in this way: the first request of the epoch consists 

of a set of size I (the value of 1 will be determined later) disjoint from the set of pages 

present in both caches. To serve this request, the adversary evicts I pages randomly 

chosen. The epoch continues with k - I subepochs, each subepoch done in the following 

way: first, all the requests of the preceding subepochs of the epoch are repeated as in 

the proof of Theorem 4.4, secondly, a request is done for a one-page set formed by 

one of the k - I pages not evicted by the adversary. The cost paid by the adversary 

during the epoch is 1, and after an epoch the configuration of the on-line algorithm will 

coincide with that of the adversary. Hence, after the end of an epoch a new epoch can 

start, and the proof of the theorem reduces to showing that the expected cost charged 

to any on-line algorithm during an epoch is at least k/e + 1. 

Every on-line algorithm will fault on the first request of the epoch, with a cost of 1. 

As for the second part of the sequence, the expected cost depends on the probability 

that, for each of the k - 1 subepochs, the requested page is present at the moment 

it is requested for the first time in the epoch. The expected cost for this part of the 

sequence will hence be greater than 

I I+:.,-...+& 1 

k k-l 
=lfZ ;+&+...+I 

( z+1 > 

The maximum value for this expression is for 1= k/e, when it assumes the value 

1 + k/e. This completes the proof of the theorem. 0 

= 1 + 1(& - H,). 

If we allow non-lazy adversaries, we can prove the following result: 

Theorem 6.3. No randomized on-line strategy is c-competitive against a non-lazy 
oblivious adversary with c < k under the constant cost model. 
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Proof. Starting with the same initial configuration, each of the first k requests may be 
to the page that minimizes the probability of being present in the on-line algorithm’s 
cache. If the universe is sufficiently big, such probability can be as close to 0 as desired, 
and hence the cost incurred by the on-line algorithm is as close to k as desired. On the 
other hand, the adversary may bring that set of pages when it faults on the first request. 
Repeating this pattern an arbitrary number of times we get a sequence in which the 
ratio between the costs is k. q 

The previous theorems tell us that for this problem the use of randomization provides 
no help against non-lazy adversaries, while against lazy adversaries it may only allow 
to improve the performance of on-line algorithms at most by a factor of e. We can 
only show that M-s is k-competitive under this cost model: with the same arguments 
as in the proofs of competitiveness of M-s for the other cost models, we can show that 
the expected cost for a phase in which 1 clean pages are requested is not more than 
1+ I(& - HI). For this cost model we can only assume that the adversary’s cost for 
the phase is at least 1, and hence the worst-case ratio among the costs is when I = k. 

In that case we have that the competitiveness of M-s is k, and hence at most a factor 
of e away from optimality. Note however that a competitive ratio of k is achieved also 
by the deterministic algorithm FWF-s. 
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