
Enforcing Structural Invariants using Dynamic
Frames

Diego Garbervetsky, Daniel Goŕın, and Ariel Neisen

Departamento de Computación, FCEyN, Universidad de Buenos Aires
{diegog,dgorin,aneisen}@dc.uba.ar

Abstract. The theory of dynamic frames is a promising approach to
handle the so-called framing problem, that is, giving a precise character-
izations of the locations in the heap that a procedure may modify.
In this paper, we show that the machinery used for dynamic frames may
be exploited even further. In particular, we use it to check that implemen-
tations of abstract data types maintain certain structural invariants that
are very hard to express with usual means, including being acyclic (like
non-circular linked lists and trees) and having a unique path between
nodes (like in a tree).
The idea is that regions in this formalism over-approximate the set of
reachable objects. We can then maintain this structural invariants by
including special preconditions in assignments, of the kind that can be
verified by state-of-the-art SMT-based tools. To test this approach we
modified the verifier for the Dafny programming language in a suitable
way and were able to enforce these invariants in non-trivial examples.

1 Introduction

A typical procedure specification describes the effects of the procedure over its
arguments. However, in a context involving pointers, this information is not
enough to enable the verification (neither manual nor automatic) of conformance
of an implementation to its specification –at least not in a modular way [9].

What is missing in typical specifications is a precise characterization of the
locations in the program heap that can be safely assumed to be left untouched
by an operation. The problem of formally describing such locations is known as
the frame problem. The theory of dynamic frames [5] is, perhaps, one of the most
promising proposals on how to address this problem in a practical way. Recent
implementations have shown that verification of programs containing dynamic
frame specifications is feasible using state-of-the-art tools [7,4,8,14].

To use dynamic frames basically means to equip each value o in the heap
with a specification variable or ghost field (i.e., a field that can be used in the
program specification but not in the program text) that represents the collection
of heap locations that must be affected in order to make the observable value of
o change.1 This attribute is usually called representation region. Intuitively, if o1

1 More precisely, a value can be equipped with more than one such attributes, which
allows for more precise specifications, but for the general case, one is enough.

2 Garbervetsky, Goŕın, Neisen

and o2 have disjoint representation regions, one can guarantee that modifying
o1 will not inadvertently alter o2 too.

Now, this article is not about framing the scope of the effects of a procedure
call. Instead, our starting point is the simple observation that, in practice, the
representation region of o roughly corresponds to the set of locations that are
reachable from o by chasing pointers. This means that in a setting with dynamic
frames the developer is required to provide, for the sake of framing, information
about the heap that might be extremely useful for the verification of heap-related
properties such as reachability, shape-analysis, etc. We are therefore interested in
the question of how this information can be effectively exploited for such tasks.

In this paper we give a first step in that direction: we use the machinery
of dynamic frames to verify that (the graph induced by the points-to relation
of) the internal representation of an abstract data type satisfies certain struc-
tural properties, such as acyclicity or tree-shapedness. This kind of structural
properties constitute the invariant of countless data-structures and at the same
time they tend to be tricky to maintain properly, leading to very subtle bugs.
In addition, these are properties that cannot even be expressed using a formula
of plain first-order logic and, therefore, are not very amenable to the automated
techniques employed in contract-based verification.

The paper is structured as follows. In §2 we briefly introduce the dynamic
frames methodology and define a simple language with region inference that
serves as a basis for the developments in later sections. In §3, for instance, we
show how to extend it with a class qualifier for acyclity and in §4 with another one
for tree-shapedness. In §5 we focus on improving the precision of the techniques
and in §6 we present some preliminary results using a prototype implementation.
We conclude in §7 and §8 discussing related work and future directions.

2 Dynamic frames

We begin by fixing notations and terminology. We assume an infinite set Ref of
references (or locations) and a set Val of values, which we assume indexed tuples
of references (we shall call them records or objects). We also assume an infinite
set Var of program variables. As usual, all these sets are mutually disjoint.

A store (or heap) is a finite and injective mapping σh from Ref to Val ,2

while an environment is a finite mapping σe from Var to Ref . A state is then
a pair σ = 〈σh, σe〉 and we will typically write both σ(ι) and σ(v) for ι ∈ Ref
and v ∈ Var meaning σh(ι) and σh(σe(v)) respectively. That is, σ(x) denotes
the value of x, where x can be either a program variable or a reference. In the
same vein, for f a field of an indexed tuple, we will write σ(ι.f) and σ(v.f) for
σ(σ(ι).f) and σ(σ(v).f). We refer to the domain of σh as the references used in
σ. Finally, we say that an object oi reaches an object oj in a state σ if either
i = j or for some field f , σ(oi.f) reaches oj in σ (if the state σ is clear from
context, we say simply “oi reaches oj”).

2 In very concrete terms, σh maps memory locations to objects and the injectiveness
condition witnessess the fact that different locations refer to different objects.

Enforcing Structural Invariants using Dynamic Frames 3

The idea behind the dynamic frames theory is to use finite sets of references,
called regions, to frame a value. Intuitively, a region ρ frames a reference ι in
state σ if in any other state τ that coincides with σ in the value of the objects
denoted in ρ, σ(ι) and τ(ι) must coincide too. It is easy to see that if ρ frames
ι then it must be the case that ι ∈ ρ.3

Now, if we know that ρ frames ι, and we also have that region π is the set of
references touched by a procedure invocation and we can show that ρ and π are
disjoint (denoted ρ ‖ π), then we can assert that the invocation did not change
the value of ι (this is the Value Preservation Theorem in [5]).

The dynamic frames methodology can therefore be summed up as the re-
quirement to assign to each object in the store a region that frames it, called
its representation region. Representation regions can then appear in procedure
specifications, e.g., a precondition may require that two objects have disjoint
representation regions –which means they are not aliased; a postcondition may
indicate that an object’s representation region grew only by the addition of fresh
references (cf. swinging pivots [9]), which preserves disjointness of regions, etc.

2.1 Inferring regions automatically

In order to illustrate dynamic frames with an example and provide a basis for
the developments in the following sections, we introduce next a very small pro-
gramming language. Its syntax, shown in Fig. 1, is loosely based on Dafny’s [7].
We assume the language to be statically typed, but we will not give the formal
typing rules since this is standard.

Member ::= Field |Method
Field ::= var f : C

Method ::= method m(x1 : C1, . . . , xn : Cn) returns (y : C)
requires α(this, x1, . . . , xn, σ);
ensures β(this, x1, . . . , xn, y, σ, τ);
modifies ρ(this, x1, . . . , xn, σ);

{ Stmt }
Stmt ::= v := Expr | v := new C | vt.f := vs | vt := vs.m(v1, . . . , vn)

| if (Expr == null){Stmt} else {Stmt} | Stmt;Stmt
Ref ::= v | this | null
Expr ::= Ref | Ref.f

Fig. 1: Syntax of a language with support for dynamic frame annotations.

Similarly, we leave the language for method contracts unspecified and simply
take it to be a form of many-sorted first-order language. In an ensures clause,
the free variables σ and τ in β(this, x1, . . . , xn, y, σ, τ) both have sort state and
correspond to the states before and after the execution of the method, respec-
tively. In a requires clause, only the state variable σ may occur free. That said,
we will sometimes write specifications in a sugared form, as in Fig. 2, and leave
the unsugaring to the reader. Notice that in sugared ensure clauses, variable x
corresponds to the term τe(x), while old(x) denotes σe(x).

3 We are excluding the degenerate case where there is only one possible value for ι.

4 Garbervetsky, Goŕın, Neisen

method returnCopy(x,y) returns (z)
modifies x; // {σe(x)}
requires x 6= null ∧ y 6= null; // σe(x) 6= null ∧ σe(y) 6= null
ensures x.f = old(y).f ∧ z = old(x); // τ(x.f) = σ(y.f) ∧ τ(z) = σ(x)

Fig. 2: A typical procedure specification and the unsugared version (commented).

The modifies clause is an expression of sort set of references, where only a
state variable σ occurs free. An example of such an expression would be:

{σe(this)} ∪ reg(σ(x.f)) (1)

which we will normally write in its sugared form {this}∪reg(x.f). Notice that reg
is used to denote the representation region of an object, which every object has.
The representation region is an attribute of an object, therefore o1 = o2 implies
reg(o1) = reg(o2). It is not a field accessible from the program text, though; in
fact two objects may have reg(o1) 6= reg(o2) while o1.f = o2.f for every field
f. We use notation o1 ≈ o2 for this form of structural equality that takes into
account only the value of these fields (of course, o1 = o2 implies o1 ≈ o2). As
we will see next, it is possible to have an execution from σ to τ such that for
some reference ι, σh(ι) ≈ τh(ι) (i.e., ι is not “touched”) while σh(ι) 6= τh(ι)
(e.g., reg(σh(ι)) 6= reg(τh(ι)) because some reference reachable from ι in σ was
modified in τ). For conciseness, we may write regσ(x) for reg(σ(x)).

We will impose some sanity conditions on valid states. For instance, to sim-
plify definitions, we want to assume that the null reference ø denotes a special
null object with an empty representation region. More importantly, the repre-
sentation region of an object o must include the set of objects reachable from o.
We can express these conditions as a state invariant Is(σ) using the following:

imσe ⊆ dmσh ∧ ø ∈ dmσh ∧ regσ(ø) = ∅ ∧ ∀f · σ(ø.f) = ø (2)

∀ι ∈ dmσh · (ι 6= ø⇒ ι ∈ regσ(ι) ∧ ∀f · regσ(ι.f) ⊆ regσ(ι) ⊆ dmσh) (3)

Fig. 3 presents the interesting cases of the semantics of this language, in
an axiomatic form. To minimize boilerplate we will consistently use the con-
structions PreP(α1(σ), . . . , αn(σ)) and PstP

Q(β1(σ, τ), . . . , βm(σ, τ)), where the
αi and βi are the relevant parts of the pre and post-conditions. They correspond,
respectively to ∀σ · (P(σ)⇒ (Is(σ) ∧ α1(σ) ∧ · · · ∧ αn(σ))) and ∀σ, τ · ((P(σ) ∧
β1(σ, τ) ∧ · · · ∧ βm(σ, τ))⇒ Q(σ, τ)).

Unlike Dafny, the semantics dictate the way in which the representation
regions of the objects in the heap are updated. Consider, for example, rule new.
Firstly, it requires P to be strong enough to ensure the state invariant holds at
the pre-state σ. Next, it requires that Q must hold whenever P was satisfied by σ
and the post-state τ differs from σ only on the value of variable v (see definition
of B below), which corresponds to a fresh reference (i.e., not occurring in σ) and
refers to an object that is the only member of its representation region.

The store rule indicates that an assignment may modify the representation
region of the target vt: whatever might be reachable from vs (i.e., its represen-

Enforcing Structural Invariants using Dynamic Frames 5

tation region) is added to what may be reachable from vt. But this is not the
whole story: in the statement x. f :=y; y. f :=z, after the second assignment,
x’s representation region needs to be adjusted too. As we will see next, the state
modification operator B takes care of this also.

Let ν be a set of variables and let ρ be a set of locations; the predicate σ Bνρ τ
is then the conjunction of the following formulas:

Is(τ) ∧ dmσe ⊆ dm τe ∧ dmσh ⊆ dm τh (4)

∀v ∈ (dmσe \ ν) · σe(v) = τe(v) ∧ ∀ι ∈ (dmσh \ ρ) · σ(ι) ≈ τ(ι) (5)

∀ι ∈ dmσh · regτ (ι) = regσ(ι) ∪ regsτ (ρ ∩ regσ(ι)) (6)

where regsσ(ρ) =
⋃
κ∈ρ regσ(κ). Clearly (4) is just a basic state sanity condition;

(5) indicates that ν and ρ characterize the variables and locations that may have
changed; while (6) propagates updates in representation regions. Notice that for
ρ ‖ regσ(ι), (5) and (6) guarantee that σ(ι) = τ(ι). We write Bν and Bρ for Bν∅
and B∅ρ respectively.

new

|= PreP()

|= PstPQ(σ B{v} τ, τe(v) ∈ (dm τh \ dmσh), regτ (v) = {τe(v)})
{P} v := new C {Q}

read

|= PreP(σ(vs) 6= σ(ø))

|= PstPQ(σ B{vt} τ, τ(vt) = σ(vs.f))

{P} vt := vs.f {Q}

store

|= PreP(σ(vt) 6= σ(ø))
|= PstPQ(σB{σe(vt)} τ, τ(vt) ≈ σ(vt)[f 7→ σ(vs)], regτ (vt) = regσ(vt) ∪ regσ(vs))

{P} vt.f := vs {Q}

call

|= PreP(σ(vs) 6= σ(ø), α(vs, v1, . . . , vn, σ))

|= PstPQ(σ B{vt}ρ(vs,v1,...,vn,σ)
τ, β(vs, v0, . . . , vn, vt, σ, τ))

{P} vt := vs.m(v1, ..., vn) {Q}

Fig. 3: Semantic rules for the language of Fig. 1 (fragment).

In rule call, α, β and ρ correspond to the requires, ensures and modifies
clauses of method m, respectively. Therefore, the scope of the effects of the
method call is framed by ρ(vs, v1, . . . , vn, σ), since the post-state τ must satisfy

σ B{vt}ρ(vs,v1,...,vn,σ)
τ .

Given these semantic clauses, one can derive program acceptance rules in a
straightforward way: a class C is accepted if all its methods are accepted; and a
method declaration of the form

method m(x1 : C1, . . . , xn : Cn) returns (z: D)
requires α(this, x1, . . . , xn, σ);
ensures β(this, x1, . . . , xn, z, σ, τ);
modifies ρ(this, x1, . . . , xn, σ);
{ S }

6 Garbervetsky, Goŕın, Neisen

is accepted if, for {v1, . . . , vk} the local variables in S, we have:

{α(this, x1, . . . , xn, σ)}S{σ B{v1,...,vk}ρ(this,x1,...,xn,σ)
∧β(this, x1, . . . , xn, z, σ, τ)} (7)

Of course, in order to decide acceptance one needs to resort to some sort of
automated reasoner, like is done with the Dafny verifying-compiler. Verification
this way can be seen as a form of typing.

It is not hard to prove that programs that are thus accepted behave well with
respect to the frame conditions of the modifies clauses. For this, one needs to
prove a stronger result, namely, that representation regions over-approximate
reachability (i.e., if o1 reaches o2 in σ then o2 ∈ reg(o1)), which follows from
the fact that this condition is preserved according to the semantics. Formal
definitions and proofs can be found in [12]

As a final remark, notice that according to our rules (including condition (6)),
representation regions are monotonic in the sense that no reference is ever re-
moved –even those that may be no longer reachable are kept. This is subopti-
mal: one may easily end up in a scenario with two objects o1 and o2 such that
reg(o1) 6‖ reg(o2) although no location reachable from one is reachable by the
other. In Kassios’s original formulation [5] this was not the case; but it required
higher-order logic and inductive reasoning, which is just too hard for state-of-
the-art automated reasoners. Our presentation can be seen as a compromise
between precision and automatic verifiability.

Example 1. Consider the declaration of a class List in Fig. 4. We are interested
only in the framing specification and will ignore the functional part.

class List {
method add(d : Data)

modifies reg(this);
ensures
(reg(old(this)) ∪ reg(d)) ⊆ reg(this);

ensures
fresh(reg(this)\(reg(old(this)) ∪ reg(d));

ensures ...

method concat(l : List)
requires reg(this)‖reg(l);
modifies reg(this);
ensures
reg(this) = reg(old(this)) ∪ reg(l);

ensures ...
}

Fig. 4: A simple List type interface

Method add modifies the list to append a new element and its modifies
clause states that the set of references reachable from this can be affected by
this method. Therefore, we need to specify the effect only for those locations.
The specification says that after executing add every reachable object remains
reachable and, in addition, d will be reachable too. It also says that it will not
introduce aliasing with other existing objects by declaring that any other object
reachable from this will be fresh4.

Similarly, method concat declares that after its execution this will also reach
the objects reachable from list l . The combination of the requires and modifies
clauses also guarantees that l will not be mutated.

4 A fresh object will most probably correspond to a newly allocated node that will
hold the data; but this is an implementation detail and nothing else need to be said
about it in the interface.

Enforcing Structural Invariants using Dynamic Frames 7

3 Verifiably acyclic data structures

In this section we will show how the language of §2.1 can be easily adapted
to support verifiably correct acyclic data structures. These are ubiquitous in
computer science, typically implemented using a node type with a recursive
reference. Fig. 5 shows two structures that can be built using this type of nodes.
The one on the right, though, does not correspond to what one expects from a
linked list since it contains a cycle. An incorrect implementation of a linked list
that allows such instances to be built may lead to bugs that are very hard to
track-down.

l1
next next

l2
next next

next

Fig. 5: Structures l1 and l2 are built with linked list nodes; l2 is not acyclic.

The fact that no node in a linked list should participate in a cycle can be seen
as part of the class invariant of the list type. One would be tempted to include this
requirement as part of the class invariant of the type and use standard techniques
to verify that it holds at the end of every procedure call [1,3]. Regrettably, no
first-order logic formula can express this condition (this is a straightforward
consequence of the compactness theorem, see, e.g., [12] for more details), which
makes this approach currently unfeasible.

The idea we will explore here is to treat this requirement as a strong form
of class invariant, which must hold at every point of the method execution. We
will see that exploiting representation regions makes it feasible to guarantee that
this condition is preserved.

3.1 A characterization of acyclicity

Suppose we implement the class List of Fig. 4 using a linked list and want to
enforce its acyclicity. We propose to extend the syntax of the language of §2.1
with a special class qualifier “acyclic” that allows us to write declarations as
the one in Fig. 6. The intended meaning is that any object of a class qualified
as acyclic satisfies a strong class invariant. The exact invariant deserves some
considerations, though. We shall say that oi occurs in a cycle in σ whenever for

acyclic class List{
var first : LLNode;
...

}
acyclic class LLNode {

var next : LLNode
var payload : T

}

l1
next next

payload payload payload

f
f

Fig. 6: Declaration of an acyclic linked list node.

some f, σ(oi.f) reaches oi in σ. The most intuitive definition would be, perhaps,

8 Garbervetsky, Goŕın, Neisen

to stipulate that an object o of a class tagged as acyclic satisfies the invariant
“o does not reach an object that occurs in a cycle”. This would be too strong
in practice. Consider for example an object n of class LLNode (Fig. 6); to fulfill
this invariant we might as well demand T to be qualified with acyclic too. But
this would impose a big restriction on the type of the payload. In other words,
a linked list node should not put demands on the internal representation of the
payload.

The invariant we will use, instead, is that if o is of a class qualified as acyclic
then “o cannot occur in a cycle made of objects of acyclic classes”. That is, o
may occur in a cycle as long as some object in the cycle is not tagged as acyclic.
To avoid confusion, we will term the cycles that this invariant forbids “invalid
cycles”. We believe this weaker notion of acyclicity constitutes a good compro-
mise in practice. For instance, observe that if one is given a while-loop where
every inductive variable is a reference to an object qualified as acyclic that is
not mutated during the cycle (as it would typically be the case in algorithms
traversing the internal representation of an abstract datatype implemented us-
ing an acyclic structure), then if every iteration of the loop can be shown to
terminate, the loop cannot hang.

3.2 Preserving the acyclicity invariant

We want to guarantee that an acyclic object remains acyclic after the execution
of any statement (that is, assuming the pre-condition of the statement holds).
What we will exploit is the fact that reg(o) over-approximates the set of objects
that o may reach.

The first thing to observe is that only assignments and method invocations
can introduce cycles; and among assignments, only store instructions vt.f = vs
do. Notice, furthermore that if vt or vs is of a non-acyclic type, then no invalid
cycle can be formed (recall that an invalid cycle involves acyclic objects).

Fig. 7 shows an example of a store instruction that introduces a cycle. The
important thing to observe is that this can happen if and only if o2 reaches o1.
This motivates rule storea shown in Fig. 8, which replaces rule store when
both the target and source of the store are references to acyclic classes. The only
difference with rule store is the additional pre-condition σe(vt) 6∈ regσ(vs).

o2o1

f

f

f

o2o1

f

f

f

f

Fig. 7: Execution of o1.f = o.2 introduces an invalid cycle.

Interestingly, the introduction of the storea rule is the only modification
we need to do to the semantics. To see this, consider a method invocation
vt = vs.m(v1, . . . , vn). According to rule call, it must be the case that the pre-
condition of method m, α(vs, v1, . . . , vn, σ), holds before the invocation. But this
precondition must have been strong enough to verify that the body of method
m introduces no invalid cycles (cf. (7) on p.6).

Enforcing Structural Invariants using Dynamic Frames 9

storea

|= PreP(σ(vt) 6= σ(ø), σe(vt) 6∈ regσ(vs))
|= PstPQ(σB{σe(vt)} τ, τ(vt) ≈ σ(vt)[f 7→ σ(vs)], regτ (vt) = regσ(vt) ∪ regσ(vs))

{P} vt.f := vs {Q}

Fig. 8: storea rule applies whenever vt and vs are references of acyclic classes.

4 Trees and similar data structures

Acyclicity is not the only common invariant that is impossible to express using
classical logic. In this section we will discuss that of being a tree, which requires
not only having no cycles but also having a unique path to every reachable node.
We will show that by incorporating a second region to objects, we can handle
an additional class qualifier “tree”, whose precise meaning we will give below.

Before going into the details, it is worth observing that the dynamic frames
methodology does not preclude the inclusion of more than one region per object.
We will be exploiting this possibility also on the following sections.

For succinctness, we will say that an object o is a tree if it is an instance of
a class tagged as tree. We will also assume that the tree qualifier implies the
acyclic qualifier.

Just like in the previous section, we will consider a notion of “being a tree”
that constitutes a compromise between what can be expressed and what can be
enforced. Therefore, we want the following invariant for a tree o: i) o satisfies the
invariant for acyclic objects (see §3), ii) if o reaches an object o′ that is a tree,
then there is only one path between o and o′ where every object in the path is
also a tree.

Again, in order to see how this invariant can be preserved, we need to look
only at store instructions vt.f := vs, where both vt and vs are trees. One can then
see that there are essentially two ways in which the invariant can get broken.
The first one, illustrated in Fig. 9 corresponds to the case when both vt and vs
can reach a common (tree) object o: there is already a unique path from each to
o, but executing the store would introduce an additional path from the target
to o. This can be avoided by adding the following additional precondition:

regσ(vt) ‖ regσ(vs) (8)

This clause implies the condition σe(vt) 6∈ regσ(vs) required to enforce acyclicity.

o2
o3

o1g1 g2

f

o2
o3

o1g1

g2 f

f

Fig. 9: Execution of o1.f = o.2 introduces an extra path from o1 to o3.

It is not hard to verify that if vt and vs satisfy (8) then the tree invariant must
hold on every node reachable from either vt or vs. But what can we say about
the invariant at tree nodes that reach either vt or vs? This question leads us to

10 Garbervetsky, Goŕın, Neisen

o1
o2 o3

g1 g2 o1
o2 o3

g1 g2

f

Fig. 10: Execution of o2.f = o.3 introduces an extra path from o1 to o3.

the second case, illustrated in Fig. 10. If vt and vs share a common ancestor,
then the store will necessarily break the invariant of this ancestor.

Of course, it is not possible to express this condition using a first-order for-
mula and the reg predicate. But using analogous ideas and techniques, one can
associate to each object o an additional region ger(o) that over-approximates
the set of references that reach o and specify its evolution in semantic rules and
method contracts. Using this, we can express the missing pre-condition for the
store (when vt and vs are trees) as:

gerσ(vt) ‖ gerσ(vs) (9)

To make everything fit well, we add to invariant Is(σ) (cf. p.4) the requirements:

gerσ(ø) = ∅ (10)

∀ι ∈ dmσh · ι 6= ø⇒ ι ∈ gerσ(ι) ∧ ∀f · gerσ(ι) ⊆ gerσ(ι.f) ⊆ dmσh (11)

Similarly, the Bνρ predicate must be extended with the following clause:

∀ι ∈ dmσh · gerτ (ι) = gerσ(ι) ∪ gersτ (ρ ∩ gerσ(ι)) (12)

where gersσ(ρ) =
⋃
κ∈ρ gerσ(κ). Fig. 11 finally shows the formal semantics of

the store rule for trees. It states that ger(vt) remains unchanged but, of course,
ger(vs) is expanded. The latter implies that vs is modified by the operation and
therefore it must be included in the argument of the B predicate and the fact
that every other field remains unchanged must be explicitly stated.

The rules in Fig. 3 and 8 need to be modified to accommodate predicate
ger but this is straightforward so we leave the details for the reader. It is not
difficult to see that, in the resulting system, ger(o) represents the set of objects
that reach o and that every object of a class tagged as tree verifies its invariant.

storet

|= PreP(σ(vt) 6= σ(ø), regσ(vt) ‖ regσ(vs), gerσ(vt) ‖ gerσ(vs))

|= PstPQ

σB{σe(vt),σe(vs)} τ, τ(vs) ≈ σ(vs), τ(vt) ≈ σ(vt)[f 7→ σ(vs)],
regτ (vt) = regσ(vt) ∪ regσ(vs), gerτ (vt) = gerσ(vt)
gerτ (vs) = gerσ(vs) ∪ gerσ(vt), regτ (vs) = regσ(vs)

{P} vt.f := vs {Q}

Fig. 11: storet rule applies whenever vt and vs are references to trees.

5 Improving precision

We have shown thus far that representation regions, used in principle for framing,
can be also used to enforce complex structural invariants (e.g., acyclicity, etc.). In

Enforcing Structural Invariants using Dynamic Frames 11

this section we will see examples of code that would be rejected by our proposed
rules, although the invariants are clearly preserved.

Let us start considering the example in Fig. 12, where LLNode is the acyclic
class defined in Fig. 6 and T is not tagged as acyclic. Call σ the state be-
fore b.next:=a; then regσ(a) = {σe(a), σe(c), σe(b)} which means that the pre-
condition of the storea rule does not hold. That is, it is detected that executing
this instruction may lead to an invalid cycle involving a and b and the code is
therefore rejected. But as Fig. 12 shows graphically, this would be indeed a valid
cycle, since it passes through c that is not an instance of an acyclic class.

method rejected1() returns a {
a := new LLNode;
b := new LLNode;
c := new T;
a.payload := c;
c. f := b;
b.next := a;
}

a c b
payload f

next

Fig. 12: Rejected code snippet and the shape of a after b.next :=a.

The technique is imprecise in this case, and the imprecision comes from the
fact that reg(o) contains the location of every reachable object, and not just of
those that are reachable using only acyclic objects.

In §4 we already explored the possibility of incorporating additional regions in
the context of handling the tree qualifier; we can take a similar approach here to
improve the precision of the methodology. We propose, therefore, adding to each
o a region rega(o) that contains every acyclic object reachable from o passing
only through acyclic objects. Again, this requires adding additional clauses to
the state invariant Is(σ) and the B predicate and extending the semantic rules.
This changes are straightforward and were already mentioned in more detail
in §4, so we will skip the details. The important part is replacing reg by rega in
the pre-condition of rule storea.

Of course, the same approach can be used to improve the precision on code
handling trees: we can add regions regt and ger t that only hold references to
tree objects based on reachability via paths that contain only trees.

Let us assume this was indeed done and consider now the scenario in Fig. 13,
where BTNode is a class qualified as tree. The code in question “moves to
the root” a node in a binary tree and it is not hard to see that the resulting
structure would satisfy the required invariant. The problem is that before the
method execution we have r . left ∈ regt(r) and, therefore, regt(s) 6‖ regt(r) holds
after executing s :=t . left . Since regions are monotonic (cf. §2), this is also true
before executing s . right :=t and therefore, the requirements of storet are not
satisfied and this program is rejected.

More precisely, the problem originates after the execution of instruction
t . left :=null: s is no longer reachable from t although this is not reflected
in regt(t) nor in ger t(s). But since s and t are trees, there is only one path
from s to any tree reachable from t; hence, if σ and τ are the pre and post-
states of this instruction, it is safe to assume regtτ (t) = regtσ(t) \ regtσ(s) and

12 Garbervetsky, Goŕın, Neisen

method rejected2(BTNode r)
returns s
requires t. left 6= null;
modifies reg(r);
{

s := t. left ;
t . left := null;
s . left := t;
}

t

s

a3

a1 a2

left right

left right

s

a2

t

a3

left right

right

Fig. 13: Rejected code snippet, it is due to the monotonic nature of regions.

ger tτ (s) = ger tσ(s) \ ger tσ(t) (although it is not necessarily the case, for instance,
that regτ (t) = regσ(t) \ regσ(s)). Hence, we can improve rule storet even fur-
ther, by including in PstP

Q the following clauses:

regtτ (vt) = (regtσ(vt) \ regtσ(vt.f)) ∪ regtσ(vs) (13)

ger tτ (σe(vt.f))) = ger tσ(vt.f) \ ger tσ(vt) (14)

Of course, we need also add to the definition of Bνρ clauses:

∀ι ∈ dmσh · regtτ (ι) = (regtσ(ι) \ regstσ(ρ ∩ regtσ(ι)) ∪ regstτ (ρ ∩ regtσ(ι)) (15)

∀ι ∈ dmσh · ger tτ (ι) = (ger tσ(ι) \ gerstσ(ρ ∩ ger tσ(ι)) ∪ gerstτ (ρ ∩ ger tσ(ι)) (16)

where regstσ(ρ) =
⋃
κ∈ρ regtσ(κ) and gerstσ(ρ) =

⋃
κ∈ρ ger tσ(κ).

Using these new rules, it is not hard to see that the example in Fig. 13 is
not rejected. Now, we must insist that the soundness of these rules depends on
the fact that there is at most one path (passing only through tree nodes) that
connects any two tree nodes. To illustrate this point, assume a class ANode is
tagged as acyclic and consider Fig. 14. If after instruction a. f1 :=null, b is
removed from rega(a), then the precondition of the last instruction will hold,
which would permit the introduction of a cycle.

In a way, the problem in this case is that the set of reachable regions does not
give us enough information to decide if we no longer reach an object. It might be
interesting to consider, as future work, the possibility of turning rega(o) into a
multiset of locations, i.e., a total function from Ref to N. The intended semantics
for rega(o) would be that it counts the total number of paths going only through
acyclic nodes between o and any location ι and the tricky part would be to
actually maintain this invariant.

method invalid() {
a := new ANode;
b := new ANode;
a.f1 := b;
b.f2 := b;
a.f1 := null;
b.f1 := a;
}

a b
f1

f2

f1

Fig. 14: If ANode is tagged acyclic this method should be rejected.

Enforcing Structural Invariants using Dynamic Frames 13

6 Evaluation

We developed a prototype implementation5 based on Dafny’s language tool
chain. Dafny is an experimental language that explores the use of dynamic
frames in object-based sequential programs by enabling the use of ghost fields in
contracts and statements [7]. We extended the language with automatic region
inference and support for acyclic class qualification. Details can be found in [12].

We then implemented various basic abstract data types using acyclic struc-
tures. Stack, Sequence and Queue use a linked list (the last two keep refer-
ences to both head and tail), Dictionary uses a non-balanced binary search
tree (BST). We evaluated the cost of enforcing acyclicity in terms of the number
of atoms in region-related annotations, both in specifications (S.Ann) and inside
method bodies such as loop invariants (B.Ann), and the verification time (in
seconds). The following table summarizes the results obtained. 6

Module LOC #classes #methods S.Ann B.Ann Verif. Time

Sequence 136 2 4 6 2 2.7s
Stack 48 2 4 5 0 2.3s
Queue 75 2 4 7 1 2.4s
Dictionary 140 2 5 11 4 4.0s

For most cases we were able to automatically check that a method preserves
acyclicity. We could not do it, for instance, in the remove method of Dictionary
because of monotonicity of the regions. A variation of the standard deletion
algorithm for BSTs in which values are swapped instead of nodes should be
more amenable to verification. It is worth observing that we did not use manual
update of ghost fields in method bodies, only loop invariants were provided.

As a second experiment, we tried to assess if the inferred regions together
with the acyclic qualifier could be used to significantly reduce the overall number
of annotations on idiomatic Dafny programs. For this, we took some examples
from the Dafny distribution (a linked list, an unbounded stack, a queue, and BST
based dictionary) and tried to simplify them by tagging the relevant classes as
acyclic, removing the ghost field used for the representation region (together
with their manual updates) and pruning the contracts and invariants accordingly.

We were able to remove about 25%-30% of the annotations in contracts (plus
the manual updates of ghost fields that were also removed). The only method we
failed to verify was list reversal, which relies on temporarily breaking acyclicity.

It is worth noticing that our implementation cannot currently handle some
constructs available in the latest version of the Dafny language; in particular,
universal quantification restricted to objects of a given type. Once this is cor-
rected, we might be able to reduce even further the number of annotations in
some examples (most notably, in linked lists, which require a ghost field which
represents the spine of the list, that is, the set of nodes that form the list).

5 Tool and experiments available at http://lafhis.dc.uba.ar/dynframes.
6 Times measured on a 3GHz Intel R© CoreTM2 Duo based desktop with 4GB of

RAM, running Microsoft Windows Vista (32 bits), under regular load.

http://lafhis.dc.uba.ar/dynframes

14 Garbervetsky, Goŕın, Neisen

7 Related work

Dafny is a programming language with a verifying compiler and support for
dynamic frames. It is possible to verify the correctness of Dafny programs (that
is, without our extensions) that contain class invariants that entail acyclicity
or tree-shapedness. It is therefore important to discuss the differences with our
approach.

In Dafny, regions are explicitly declared as ghost fields of a class and the
programmer is responsible for maintaining them with explicit update instruc-
tions. These are, arguably, a form of annotation. With our extensions there are
also pre-defined regions handled by the tool. While this scheme is perhaps less
flexible, it demands no region update annotations in program text.

Acyclicity can be enforced by way of user-provided class invariants that rely
on the fact that certain ghost fields over-approximate reachability (even with-
out manually maintaining regions, a similar effect could be achieved with the
incomplete encoding of transitive closure in first-order logic given in [10]). These
invariants can be temporally violated and must be provably restored at a later
stage. This differs from our approach in two important ways. Firstly, it is the
user, but not the compiler, who is aware of these properties. Therefore this
knowledge cannot be transparently exploited by the compiler, for instance, for
better memory-management (e.g., switching to a reference counting scheme for
certain types) or loop-termination analysis. The second difference is that in our
approach the properties cannot be temporarily broken and later restored but
are preserved throughout the execution of the methods. This has the advantage
of being enforceable by relatively simple checks. The price to pay, in the case of
trees, is the introduction of a second region (cf. Fig. 10).

One can argue that class invariants expressing acyclicity constraints on com-
plex types such as abstract syntax trees with subformula sharing could easily
become unwiedly; on the other hand, they would be trivial to express with our
approach. However, a systematic comparison of the annotation burden, both
qualitative and quantitative, in Dafny with and without our extensions is needed.

Instead of using the representation regions of the dynamic frames method-
ology, one could instead enforce acyclicity using the representation containment
concept of Ownership Types (see, e.g. [2]). In fact, the object graph structure
obtained using this approach is typically a tree. However, since every object is
required to have at most one owner, it is very non-trivial (if at all possible, de-
pending the setting) to enforce a DAG, like it would be the case, for instance, in
a Queue implemented with pointers to the first and last nodes of a linked list.

The most common approach to this problem is via shape analysis techniques
(e.g., [13]). These are used to determine shape invariants for programs that
perform destructive updates on dynamically allocated storage. In [6] a method
is presented that automatically verifies acyclic linked lists, by carefully defining
axioms for modeling the standard list operations. In [11] the authors introduce a
type system which controls acyclicity by defining the concept of regions in which
cycles are only allowed inside a region and forcing a partial order within regions.

Enforcing Structural Invariants using Dynamic Frames 15

8 Conclusions

In this work we tried to demonstrate that one can take advantage of the ma-
chinery required for dynamic frames to enforce non-trivial structural invariants
in abstract data types. In particular, it is possible to guarantee acyclicity prac-
tically without performing changes to code. We developed similar techniques to
enforce tree-shapedness and, finally, we discussed the use of additional represen-
tation regions as means to reject fewer valid programs. We also reported on some
preliminary results using a prototypic implementation of some of these ideas.

We believe that besides providing correctness guarantees, these kind of struc-
tural invariants can be exploited by the compiler; examples include sound heuris-
tics for analyzing program termination, and enabling cheaper memory manage-
ment schemes (e.g., reference counting).

As future work, we would like to look at the interplay between the introduced
techniques and classical features of object-oriented languages such us inheritance
and dynamic binding. Moreover, while acyclic data structures are ubiquitous, so
are cyclic ones (e.g. doubly-linked lists, circular buffers, etc.). We believe that
common cyclicity patterns exist that can be enforced using similar techniques.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS’04, 2004.

2. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
SIGPLAN Notes, 1998.

3. K. Huizing and R. Kuiper. Verification of object oriented programs using class
invariants. In FASE ’00, 2000.

4. B. Jacobs, J. Smans, and F. Piessens. VeriFast: Imperative Programs as Proofs.
In VSTTE Workshop on Tools & Experiments, 2010.

5. I. T. Kassios. The dynamic frames theory. Formal Aspects of Computing, 2010.
6. S. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In POPL

’06, 2006.
7. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.

In LPAR’10, 2010.
8. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In

ESOP ’09, 2009.
9. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. In

TOPLAS ’02, 2002.
10. T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simu-

lating reachability using first-order logic with applications to verification of linked
data structures. In CADE’05, 2005.

11. Y. Lu and J. Potter. A type system for reachability and acyclicity. In ECOOP’05,
2005.

12. A. Neisen. Automatic verification of acyclic data structures using theorem provers.
Master’s thesis, Universidad de Buenos Aires, 2010.

13. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In TOPLAS ’02, 2002.

14. J. Smans, B. Jacobs, and F. Piessens. VeriCool: An automatic verifier for a con-
current object-oriented language. In FMOODS ’08, 2008.

	Enforcing Structural Invariants using Dynamic Frames

