EGG CAPSULES, EGGS AND EMBRYOS OF THE SOUTHWESTERN ATLANTIC GASTROPOD CORONIUM CORONATUM (GASTROPODA: MURICIDAE)

GUIDO PASTORINO1, PABLO E. PENCHASZADEH1,2 AND FABRIZIO SCARBINO3

1Museo Argentino de Ciencias Naturales, Av. Angel Gallardo 470 3° piso lab. 80, C1405DJR Buenos Aires, Argentina;
2Dep. Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina; and
3Museo Nacional de Historia Natural y Antropología, C. C. 399 – C. P. 11.000, Montevideo, Uruguay

(Received 18 March 2006; accepted 10 October 2006)

ABSTRACT

The egg capsules, eggs and embryos of the muricid gastropod Coronium coronatum are described for the first time. Capsules are sessile, bulliform, semi-circular, with a plug in the dorsal center. Sutures split the capsule into two asymmetrical halves. Recently laid capsules showed the presence of 3639 (n = 2) uncleaved nurse eggs with a diameter of 180–210 μm (mean = 197.4 ± 8.9). The number of early embryos was 9–11. The size of the embryos was 320 x 320 to 820–880 μm. Nine pre-hatching embryos of 3.94 mm (n = 8, SD = 0.32) were found inside the older capsule. SEM illustrations of embryos and radulae are provided. Comparison of shell and radulae of embryos with the protoconch and radulae of adults of C. coronatum revealed that the capsule belongs to this species.

INTRODUCTION

The Muricidae are diverse components of southwestern Atlantic neogastropod faunas, particularly the genus Trophon which includes at least 15 species with others still undescribed (Pastorino, 2005). Additionally, there are some endemic muri-}

RESULTS

The egg capsules are bulliform, hemispherical, circular in outline, transparent and 10 mm in maximum diameter (n = 3). The uppermost component of the hemisphere has a circular plug of approximately 2.2 mm diameter, which was closed when collected (Fig. 1A). Sutures can be seen from the sides of the plug to the base, with an angle of approximately 110° between them (Fig. 1D). Sutures divide the capsule into two unequal halves. The entire capsule is surrounded by a translucent rim 1 mm wide, that extends beyond the base. Both base and upper surface of the capsule are transparent allowing a clear view of the embryos. Concentric fibres are faintly visible around the plug down to the base.

Three capsules of the genus Coronium in different development stages were collected during the cruise 2005/4 on 14 November 2005, 35°46’58”–53°34’1W to 33°48’58”–53°34’W, 69–75 m. Additionally, two half-grown specimens of Coronium coronatum were collected at cruise 2005/04, on 06, 11 November 2005, from 33°38’–53°08’6W to 35°39’6S–53°09’6W, 104–105 m.

MATERIAL AND METHODS

Three capsules of the genus Coronium in different development stages were found attached to living or dead shells of the bivalve Pteria hirundo (Linnaeus, 1758). Only one of them had embryos near hatching. It was collected by the Uruguayan ship R/V Aldebaran, Cruise 2005/1 at 35°56’3”–53°51’4”W to 35°55’4”–53°49’4”W at 64 m depth on 20 July 2005 and fixed onboard with 5% buffered formalin. Two other capsules of the same size but at an earlier development stage were collected by the same ship, Cruise 2005/4 on 14 November 2005, 35°46’58”–53°34’1W to 33°48’58”–53°34’W, 69–75 m. Additionally, two half-grown specimens of Coronium coronatum were collected at Cruise 2005/04, on 06, 11 November 2005, from 33°38’–53°08’6W to 35°39’6S–53°09’6W, 104–105 m.

Adult specimens of C. coronatum from the Invertebrate Zoology Department collection of the Museo Argentino de Ciencias Naturales, Buenos Aires (MACN-In) were dissected and radulae prepared for observation and SEM photography as in Pastorino (2005).

Correspondence: G. Pastorino; e-mail: pastorin@mail.retina.ar

doi:10.1093/mollus/eyl029

Downloaded from http://mollus.oxfordjournals.org/ at Sistem de Bibliotecas y de Información Universidad de Buenos Aires on May 22, 2015
Figure 1. *Coronium coronatum* (Penna-Neme & Leme, 1978). **A.** Two recently laid attached egg capsules with nurse eggs and embryos. **B.** Post-gastrula pre-veliger stage embryo and a nurse egg (right). **C.** Egg capsule prior to hatching, basal view. **D.** Same egg capsule apical view, with plug and sutures. Scale bar for **A, C and D** = 5 mm. **E–G.** Views of one pre-hatched embryonic shell. Scale bar = 1 mm. Abbreviations: f, foot; oe, oesophagus; v, incipient velum; vc, vacuole cells; vm, nutritive visceral mass.
Figure 2. Coronium coronatum (Penna-Neme & Leme, 1978). A, B. MACN-In 24188 Scale bar = 1 cm. C. Two views of the operculum of the same specimen. Scale bar = 0.5 cm. D, E. Two views of the protoconch of the specimen in A, B Scale bar = 500 µm. F. Two views of one embryo, SEM. Scale bar = 1 mm. G. External view of operculum of the embryo of Fig. E. Scale bar = 1 mm. H, I. Two views of the radula of the specimen of Fig. 1 A, B. Scale bar = 30 µm. J, K. Two views of the radula of one embryo. Scale bar = 10 µm.
Radulae of the embryos match those of the adults (Fig. 2H–K). The rachidian teeth are wide, with a thick central cusp, inclined more posteriorly than the lateral cusps. Lateral cusps are smaller with a wide base. There is a sharp denticle on the inner side of the lateral cusps and irregular and very weak external side denticles are present in the area between the lateral cusp and the marginal cusps. The base of the rachidian tooth is curved and inserts under the base of the succeeding tooth. The marginal area of the rachidian has a conspicuous single cusp. The lateral teeth have single, long, curved cusps and a wide, attached, basal plate. The operculum is oval, extremely thin and transparent with a terminal nucleus. The external surface is covered by concentric, irregular, weak growth lines, while the inner surface bears some faint scars in the attachment area (Fig. 2G).

DISCUSSION

Coronium coronatum was originally described under the genus _Columbarium_ of the Columbariinae, a subfamily of Turbinellidae (Penna-Neme & Leme, 1978), because of the similarity of shell shape. In 1996, Simone described the new genus _Coronium_ to include this species with two others under the family Muricidae. He illustrated a sketch of the radula and opened the discussion about the subfamilial affinity of these species suggesting that they belong in the Trophoninae. The unusual shape of the protoconch of _Coronium_ allows undoubted placement of the egg capsules and embryos here described in this genus (Fig. 2D, E). Also, the radula of the embryos is quite similar to that of the adults of _C. coronatum_, leaving no doubt about the specific assignation.

The embryonic radulae share similarities with those of the adults of the northeastern Atlantic _Ocenebra erinacea_ (Linnaeus, 1738) (as it can be seen on Kool, 1993: Figs 41–43). The position of the central cusp relative to the laterals is very similar. However, in adult _C. coronatum_ this similarity is almost lost. The attachment of the lateral tooth is quite wide in the embryonic radula but very thin in the adult _Coronium_ and also in _O. erinacea_. By contrast, the marginal cusp of the rachidian tooth is always bifid in _O. erinacea_, a remarkable feature that is always absent in the southwestern Atlantic Trophoninae, including the embryos studied here.

In his review of muricid egg capsules, D’Asaro (1991) distinguished three main capsule shapes: ampulliform, vasiform and bulliform. Most Muricidae species have ampulliform or vasiform capsules. Among nine species of Trophoninae listed by D’Asaro, seven have bulliform capsules. This type of capsule occurs widely in several neogastropod taxa and in most cases there is no way to determine which species produced the capsule.

The morphology of the egg capsules described here is somewhat similar to those of _Boreotrophon clathratus_ (Linné, 1767) according to Thorson’s (1940) illustration and description (as _Trophon_ in the original). They have the same bulliform, lenticular, general shape of the capsule, albeit slightly smaller _Boreotrophon_ ~6–7 mm vs _Coronium_ 9.9 mm diameter). Lebour (1936) briefly described the capsules of _Trophonopsis muriacatus_ (Montagu, 1803) which also slightly resemble the one described here, but once again the size is clearly smaller (2.5 mm). Also, the author never mentioned or illustrated anything resembling the sutures that are usually present in all the other known species of Trophoninae. _Xymenopsis muriiformis_, a common Patagonian muricid, has capsules of similar size to those of _B. clathratus_, but the plug is situated in a shallow depression and sutures are visible (Pastorino & Harasewych, 2000).

The egg capsules of _Trophon geyersianus_ (Pallas, 1774) are erect, discoidal in shape with one side flat and the other convex and with a peduncle. Melvill & Standen (1898: 100) and Strebel (1904: 173) produced the first accurate identification of egg capsules of the genus _Trophon_ from the southwestern Atlantic. Others were later described and illustrated by Zaixso (1973), Penchasadzeh (1976) and D’Asaro (1991). The differences in morphology between the capsules of _T. geyersianus_ and _C. coronatum_ supports a clear generic distinction, as was suggested by Thorson (1946: 226) for the North Atlantic Trophoninae species. However, despite the different morphology of the egg capsules, the presence of nurse eggs as supplementary food for intracapsular development of embryos seems to be a common feature of all the muricid species from the southwestern Atlantic (Penchasadzeh, 1976). These facts, together with the adult radula (Fig. 2H, I) which is quite similar in general shape to that of the type species of the genus _Trophon_, i.e. _T. geyersianus_ and other species of the same genus (Pastorino, 2005), leave no doubt about the inclusion of _Coronium_ in the subfamily Trophoninae.

The southernmost species of _Coronium_, i.e. _C. coronatum_ (Penna-Leme & Leme, 1978), was recorded very close to the locality where the capsules were collected (Fig. 2A, B). The first mention of this species was made unwittingly by Carcelles (1947) who illustrated one specimen from several housed in the Museo Argentino de Ciencias Naturales (MACN-In 24188) (Fig. 2A–C, H–I). At that time the author confused these specimens with _Trophon anastomoides_ Watson, 1882, a comparable species living at approximately the same latitude (or further south) and depth. These four specimens were collected alive by the ship _ARA Bahía Blanca_, at 184 m, from 35°42’S to 52°52’W. Simone (1996) recorded it in Uruguayan waters from off the Río de la Plata (36°30’S–53°45’S) at 230–340 m depth. Other specimens cited by the same author and studied in different institutions allow us to circumscribe the geographic range of _C. coronatum_ to Uruguayan and Brazilian waters, from the state of Río de Janeiro (Brazil) to the northerm margin of the Río de la Plata, at depths of 64–320 m.

ACKNOWLEDGEMENTS

We are grateful to L. Paesch, E. Delfino, S. Sauco and all the rest of the crew of the R/V _Aldebaran_ 2005-01 cruise, as well as to W. Norbis (DINARA, Montevideo), who provided the opportunity to collect the samples. A. Averbuj gave technical assistance. J. Taylor and M. Griffin made valuable corrections to the English version. This contribution was supported in part by the projects PICT 14419 and PICT 10975 from the National Agency for Scientific and Technical Promotion, Argentina. We acknowledge funding by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina, to which GP and PP belong as members of the Carrera del Investigador Científico y Técnico.

REFERENCES

EGG CAPSULES AND EMBRYOS OF *CORONIUM CORONATUM*

