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Abstract. This paper is devoted to the following result: let R be a real closed field 
and let S be a semialgebraic subset of R n defined by a boolean combination of 
polynomial inequalities. Let D be the sum of the degrees of the polynomials involved. 
Then it is possible to find algorithmically a description of the semialgebraically 
connected components of S in sequential time D ~~ and parallel time (n log D) ~ 
This implies that the problem of finding the connected components of a semialgebraic 
set can be solved in P-SPACE. 

1. Introduction 

1.1. The Statement 

We denote by R a real closed field, by A a subring of R, and by S a semialgebraic 
(over A) subset of R ". Let X1 . . . . .  X ,  be indeterminates over R. We suppose that 
S is given by a boolean combina t ion  of polynomial  inequalities involving poly- 
nomials F 1 . . . . .  F s of A[X1 . . . . .  Xn]. We consider F~ . . . . .  F~ as the s tandard input  

* This work was partially supported by POSSO BRA 6846. 
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of all algorithms we design in what follows. The length of this input is determined 
by the parameters n, D .'= ~ _<j<~ deg F j, and, in the case of A := Z, by the maximal 
binary length tr of the coefficients of F~ . . . . .  F~. We think of the polynomials 
F1 . . . . .  F~ as represented in dense form by their coefficient vectors, Thus the size 
of our input is O(sD") if we are working in an algebraic complexity model and 
O(saD") if we are working in the bit-model and if A:= 7/. 

The notion of algorithm which we use is that of a uniform family of arithmetical 
networks over A parametrized by D and n (see [G1] for definitions). By sequential 
and parallel complexity of the algorithm (or sequential and parallel time) we refer 
to the size and the depth of the arithmetic networks representing the algorithm. 
We call an algorithm admissible (or single exponential) if its sequential execution 
time is D ~~ and its parallel execution time is (n log D) ~ 

In case A:= 7/ all our (admissible) algorithms can be simulated by uniform 
families of boolean networks of size D"~ ~ and depth (n log Da) ~ Therefore 
they can be executed in deterministic Turing machine time D"~ ~ and Turing 
machine space (n log Da) ~ 

Since these simulation arguments are absolutely straightforward we restrict 
ourselves to the (algebraic) complexity model of arithmetical networks over A. 

The central result of this paper is the following: 

Main Theorem. It is possible to compute by a uniform family of arithmetical 
networks of size D "~ and depth (n log D) ~162 (i.e., in admissible time) a description 
of each semialgebraically connected component of S. This description is given by a 
set of D ~ quantifier-free formulas, each defining a semialgebraically connected 
component of S. The number and the degree of the polynomials (of A[X 1 . . . . .  X,]) 
involved in these formulas is of order D "~ 

1.2. Comments 

Our main result follows the line of various papers devoted to the complexity of 
algorithms in real algebraic geometry (and topology) in single exponential time 
[GV1], [GV2], [G2], [Call ,  [Ca2], [R1]-[R3], [GHR+], [GR], [HRS1]- 
[HRS5]. 

A similar algorithmic result with a sequential complexity bound which is doubly 
exponential in n was already known (see, for example, [Col or [SSJ). The doubly 
exponential behavior of the complexity in these papers is due to the use of iterated 
projections in the process of the so-called cylindric algebraic decomposition on 
which they are based. 

The first result with single exponential complexity bounds concerning the 
topology of semialgebraic sets may be found in [Ca2], where the essential 
geometric idea, which we also use, consists of constructing continuous curves on 
the semialgebraic set S directly instead of doing this by means of iterated 
projections. There are nevertheless significant differences between Canny's results 
and ours. Namely, we have no restrictive hypothesis (such as general position) on 
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the semialgebraic set. We do not need a Whitney stratified input nor do we make 
use of the theory of stratifications. 

This paper is a direct continuation of the articles [HRS3] and [HRS4], which 
treat the problem of single exponential path and roadmap finding in semialgebraic 
sets. (See also [GV2] and [GR] for analogous results concerning this question 
and [GHR +] for an expository presentation of the methods used.) Our main 
theorem was announced in [HRS5] and the corresponding result for the sequential 
bit complexity model was obtained in [CGV]. 

We use an approach which is somewhat different from [GV2] and [CGV] 
which we developed independently (and simultaneously). We hope that our 
approach contributes a clarification of the complicated algorithmic structure of 
the subject. 

We use some notions and results from differential topology and the topology 
of semialgebraic sets. We also need some ideas from real algebraic geometry, the 
notion of semialgebraically connected components of semialgebraic sets over an 
arbitrary real closed field (see [BCR]) for example, or the use of infinitely small 
(or large) elements and Puiseux series (see [GVl] ,  [G2], and [HRS2]-[HRS4]). 
We employ the "efficient" quantifier-elimination method of [HRS2] (or of JR3]) 
in various situations such as the computation of the closure and the interior of a 
semialgebraic set and the computation of the image of a semialgebraic function. 

1.3. Definitions and Notations 

Let x := (xl . . . . .  x.) and y.'= (Yl . . . .  , y.) be two points of R". We write 

Ix - Yt := x/(xl - Y l )  2 + " "  +- ( x n  - y.)2 

for their euclidean distance. If r is a positive element of R we write 

B(x,r):= {yeR";  I x - Y l  < r} 

for the open ball of radius r centered at x. 
We think of the (real) affine space R" as being equipped with the euclidean 

topology and the semialgebraic subsets of R" with the induced one (which we call 
euclidean as well). 

For a given subset M c R" we write M for its closure in the euclidean topology, 
We denote by ~(A) the elementary language of ordered fields with constants 

from A. Terms of s are considered as polynomials with coefficients in A. (See 
Section 2.2 of [BCR].) 

The Tarski-Seidenberg Principle states that the sets definable by elementary 
(first-order) formulas from s are exactly the semialgebraic sets over A. 

For a formula ~ E 5r we write d(~) for the sum of the (total) degrees of the 
polynomials appearing as terms in �9 and call this quantity the degree of ~. 
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We say that a semialgebraic subset S of R" is explicitly given if a boolean 
combination of polynomial inequalities (or equivalently a quantifier-free formula 

of 5r defining S is given. In this case we use the (somewhat lax) notation 
d(S) instead of d(O). 

Let S c R" be an explicitly given semialgebraic set with D := d(S). We say that 
an algorithm which accepts the polynomials defining S is admissible if it runs in 
sequential time D "~ and in parallel time (n log D) ~ 

2. The Strategy of the Proof 

2.1. The Case o f  a Bounded Smooth Hypersurface 

Let us suppose from now on that S is a bounded and smooth semialgebraic 
hypersurface of R" defined as the zeros of a polynomial F e A[X~ . . . . .  X,]  which 
has the property that VF:=  (OF/OXO z + . . . +  (OF/OX,) 2 vanishes nowhere on S. 
(We call such a polynomial F a regular equation of the bounded hypersurface S). 
We denote by D ..= deg F the degree of F. 

Our  first goal is the construction of families of semialgebraic curves which 
describe in a certain manner the semialgebraicalty connected components of S. 
For this purpose we introduce the following notion o fa  roadmap (see also [Ca2]): 

Definition 2.1. Let W c R" be a semialgebraic set. We call a semialgebraic set 
c W a roadmap for W if dim 9~ < 1 and if the intersection of any semialgebraic- 

ally connected component of W with 9~ is nonempty and semialgebraically 
connected. (Here dim ~ denotes the dimension of the semialgebraic set ~.  See 
Section 2.8 of [BCR-I). 

In [HRS3] and [HRS4] we designed an admissible algorithm for the construc- 
tion of a suitable roadmap in an arbitrary semialgebraic set W. This algorithm 
also furnishes an admissible procedure to join any semialgebraically definable 
point of W (i.e., any point of W with algebraic coordinates over A) with the 
roadmap by means of a semialgebraically connected curve in W. We show in 
Sections 3 and 4 that this join procedure can be realized in a uniform way in the 
hypersurface S. Thus we obtain an admissible algorithm which allows us to connect 
any point of S (not only the semialgebraically definable ones) with a given roadmap 
of S (see Lemma 11 below). 

Let 1 < i <  n. We write hi: S--*R for the semialgebraic projection (or co- 
ordinate) function induced by the variable X i on S. For  any point x. '= (xl + 1, . . . ,  x,) 
of R " - i  let Sx:= {(z~ . . . . .  z , ) e S ;  z~+~ = xi+ 1 . . . . .  z, = x,} be the fiber of x in S 
and let n!x): S x --* R be the restriction of ni to Sx. The fiber Sx is a semialgebraic, 
closed, and bounded subset of R" defined by the equation Fx = 0, where F~ := 
F(X I . . . . .  X ~, x~ + 1 . . . . .  x,) is a polynomial of R[X~ . . . . .  X J .  

We say that the fiber S~ is smooth if Fx is a regular equation of S~. 
Let us summarize the roadmap construction of [HRS3] (compare also 

[GHR+] )  for the input polynomial F: 
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The whole algorithm is based on two admissible procedures which both 
produce semialgebraically connected curves in S together with their endpoints: 

(a) The first one consists of constructing a finite semialgebraic partition of the 
X~-axis and in determining, for each piece of this partition (represented as a 
closed interval), a finite number of continuous semialgebraic functions 
having the following properties: 

The graph of each of these functions is contained in S and thus defines 
a semialgebraically connected curve in S. 

The curves which are given by these continuous semialgebraic functions 
on a fixed interval meet every semialgebraically connected component 
of each n~-fiber along the interval (see Corollary 2 of [HRS3] or 
Theorem 2 of [GHR+-I. 

(b) The second procedure is an admissible version of the Curve Selection 
Lemma in real algebraic geometry [HRS3, Corollary 4]. It consists of 
constructing connected curves starting from any given point x := (x 1 . . . . .  xn) 
which lies, e.g., in the fiber Sx. of a critical value x~ of the function n,. These 
curves enter every semialgebraically connected component of the intersec- 
tion of a suitable open ball around x with the fibers Sxo+t and Sxo-t for 
sufficiently small t > 0. 

These curves are used in the roadmap construction to move fibers of critical 
values of zr, into fibers of noncritical (regular) values. 

By means of procedures (a) and (b), in [HRS3-1 we designed an admissible 
algorithm for a roadmap construction in S as follows (our algorithm is recursive 
in n and starts from the input polynomial F): 

(1) In admissible time an A-linear transformation of the variables X~ . . . . .  X n 
is constructed which induces on S an M-function n: S ~ R (following the 
terminology of [HRS3] we call a Nash function an M-function if it has only 
finitely many critical points). Let us assume without loss of generality that 
7t" ~ 7[ n . 

(2) Procedure (a) is applied to the Xn-axis in order to obtain a family of 
connected curves which intersect all semialgebraically connected compo- 
nents of all rrn-fibers (see Section 4, Step 2 of [HRS3]). 

(3) For each critical point of zrn and each point which arises by inter- 
secting any curve constructed in (2) with the fiber of a critical value of 
zrn, we produce by procedure (b) a set of connected curves starting from that 
point. 

(4) Subdividing the X,-axis, once more if necessary, into closed semi- 
algebraic intervals we assure that each curve constructed in (2) and (3) 
contains at most one point (which is an endpoint) lying in a fiber of a critical 
value of 7zn. 

Let ~ be the set of curves constructed in (2) and (3) and subject to the 
rearrangement (4) and let cr c S be the set of the endpoints of the curves contained 
in ~ .  
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(5) For  each x, ~ n.(c~) which is not a critical value of ft. (i.e., the fiber Sx, is 
smooth) we link all the points of Sx, c~ cg which lie in the same semialgebraic- 
ally connected component of Sx, by means of a connected semialgebraic 
curve produced by a recursive call of our algorithm for the input polynomial 
F(X~ . . . . .  X . _  ~, x,) which is a regular equation for the smooth bounded 
hypersurface S~. of the (n - 1)-dimensional real affine space R"-  1 x {x.}. 

In this paper Propositions 1 and 5 below are parametric versions of procedures 
(a) and (b). We construct in advance the semialgebraic curves which the above 
algorithm produces by its recursive calls of (2) and (3). The recursive argument of 
(4) is replaced by a limited number of applications of the effective quantifier- 
elimination algorithm for real closed fields [HRS2] (or JR3]) to certain prenex 
formulas which contain only one block of (existential) quantifiers. These formulas 
represent the result of the composition of at most n semialgebraic maps (see Lemma 
11 and Remark 12). 

Finally, the recursive application of (1), where we construct a suitable A-linear 
transformation of the variables in order to obtain coordinates which represent 
M-functions, is replaced in the next section by a uniform choice of M-projections 
which can be done in advance (see Remark 10). 

2.2. The General Case 

Using infinitesimal deformations and quantifier elimination for computing 
limits, it is now possible to compute in admissible time the connected com- 
ponents of any semialgebraic set from the connected components of a smooth 
bounded hypersurface, according to Sections 2 and 3 of [CGV] or Section 4 
of [HRS4]. 

3. Parametric Roadmaps 

We denote by Pi the canonical projection: Pi: R" "-' W defined by 

p i (x l , . . . ,  xn):= (X 1 . . . .  , xi) for (x~ . . . . .  x.) ~ R ". 

For a given set W c R" and a point x' e W, we write Vr := Pi- l(x') n W. 
In the next proposition we describe the fibers of a projection of a given 

semialgebraic set by means of a parametrized family of continuous semialgebraic 
curves of admissible complexity. 

Proposition 1. Let W c R" be an explicitly given bounded, closed semialgebraic 
set. Given a f i xed  index i, 1 <_ i < n, it is possible to construct in admissible time a 
semialgebraic subdivision (alll)l s l ~ s  o f  pi(W), a semialgebraic subdivision (J~l)l ~t<_N 
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of Pi+ x(W), and a family (rhj)l <_l<_N, 1 <j<NI of continuous semialgebraic functions 
qtj: J t  ~ R " - i -  ~ such that the following conditions are satisfied: 

(i) For any pair of  indices (l,j), the 9raph of rltt,~ ~ is contained in W. 
(ii) For any index I and any point z ~ ql~, the fiber (J~t)z is a closed subinterval of  

the line (R I- ~)z. 
(iii) For any point x' 6 Pi+ ~(W) and for any semialoebraically connected compo- 

nent of  Wx,, a pair of  indices (l,j) exist such that r/(~,j)(x') belongs to this 
component. 

Proof. The fact that W is closed and bounded implies that pi(W) and Pi+ t(W) 
are closed and bounded too. 

Applying Theorem 7 of [HRS2] (compare also Theorem 1 of [HRS3]) to the 
semialgebraic projection induced by Pi+l we find in admissible time a semialge- 
braic partition (Tm)l _<,._<M of Pi+l(W) and a family (r _<,._<M,I _<~u~ of con- 
tinuous semialgebraic functions r s~: T,. ~ R"- i- t with the following properties: 

�9 For any pair of indices (m, s), the graph of r is contained in W. 
�9 For any point x '~ Pi+ I(W) and any semialgebraically connected component 

of Wx,, a pair of indices (m, s) exists such that r belongs to this 
component. 

Furthermore, we may assume without loss of generality that the sets Tm are 
defined by an admissible family of polynomials which is stable under derivation 
with respect to the variable Xi+ 1. 

Since the semialgebraic sets W and Pi+ t(W) are closed and bounded the sets 
~r,. have the same property and they form a covering of pi+ I(W). Moreover, we 
may extend the maps ~,,,~) in admissible time to continuous semialgebraic 
functions ~,~.~): T,.--, R "-~- ~ by means of the quantifier-elimination procedures 
of [HRS2] or [R3]. 

We subdivide in admissible time the family (T,,)a _<m_<M into a suitable partition 
(~-~)1 _<l_<N of pi+ I(W). The continuous semialgebraic functions rhz.j): T t ~ R "- i- 1 
are obtained by restricting the functions r Therefore conditions (i) and (iii) of 
the proposition are automatically satisfied. 

Since the sets Tm are bounded and defined by a family of polynomials which 
is stable under derivations with respect to the variable X~+~ we conclude by 
Thom's Lemma [BCR, Proposition 2.5.4] that, for any z ~ W, the fiber (~r,.)~ is a 
bounded and closed subinterval of the line (W + l)z. 

For an arbitrary index m let us consider the semialgebraic subset T.~ of ~r 
defined by the formula: 

(x,  . . . . .  x , + , ) e  L .  "~ ( rE)(30 (e > 0 - ( ( - ~  < t < e) 

A (x 1 . . . . .  xi,  xi+ 1 -~- t )~  Tm A (X 1 . . . . .  Xi+I)~ Tm)). 

We observe that T., is the set of extrema of all the intervals (T,.)z where z ~ R i. 
It is possible to compute T., explicitly in admissible time by means of the 

quantifier-elimination procedures of [HRS2] or JR3]. 
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Let ~: R I+1 ~ R i be the projection which forgets the (i + 1)th coordinate. 
Since the semialgebraic sets Tr" are closed and bounded,  n(Tr")= 7z(~r") is 

immediately verified. 
Applying Theorem 7 of [HRS2]  to the semialgebraic map  Tr" ~ R ~ induced by 

the projection ~ we obtain in admissible time for each m a semialgebraic parti t ion 
(~ff~r".r))l _<r"_<~t. I _<r_<M. of r~(~r") and, for each pair of indices (m, r), two continuous 

- -  - t -  . semialgebraic functions atr".r), Cqr",r)" q/tr".rl--*R (representing opposite interval 
ends) satisfying the conditions: 

+ �9 For  any index r, the graph of ~(r",r) and ~{r".r) is contained in T., and the 
inequality ~(m, r)(Z) < Cq+r".r)(Z) holds for any z e q/tr".,). 

�9 For  any point  z e R ~ and for any semialgebraically connected component  of 
(~r")z there exists an index r such that (z, a(r",r)(Z)) and (z, ~t+r".r)(Z)) belong to 
that component .  

For  given m the semialgebraic sets qTtr".,) form a parti t ion of n(~r") = ~(2rm). The 
sets Tr" cover the image p~+l(W) and we have p~ = zop~+l.  Therefore the sets 
qTtr".r), 1 < m < M, 1 < r < Mr,, cover the semialgebraic set pi(W). 

For  the sake of notational  simplicity let us rename the semialgebraic sets ~fftr",r) 
and the functions ~t-r".r), + ' - a~r".,), q/~r".r) "-* R as o//, and ~f-, ~+, where 1 < l < N. 
Without  loss of generality we may assume that the family (q/,)l _<t_<~ forms a 
semialgebraic parti t ion of  p~(W). 

Finally, let us consider, for 1 < l < N, the semialgebraic sets defined by the 
formulas 

: =  {(xl  . . . . .  xi+ 1) e R ~+ ~; (x~ . . . . .  x~) e ~ ' , ,  ~,-(x~ . . . . .  x~) 

<_ x,+, <_ ~,+(x,  . . . . .  x,)}. ( , )  

Our  construct ion guarantees that, for ~ = qTt,.,,), the set ~ is contained in Tr" 
and that the union of all sets ~ covers p~+ I(W) (in fact they form a parti t ion of 
Pi + l(W)) �9 

Moreover,  the sets ~ satisfy condit ion (ii) of Proposi t ion 1 above. 
The continuous semialgebraic functions rht,j~: ~ - - * R  " - i -1  are obtained by 

embedding ~ in a suitable semialgebraic set T,. and restricting the functions 
~m.s): Tr"-'* R "-~-1 to ~']. Therefore conditions (i) and (iii) of the proposi t ion are 
also satisfied. [ ]  

With the same notat ions and assumptions as before, we make the following 
remarks: 

Remark 2. Our  construction of the semialgebraic sets and functions 9"]~, q/z, ~tt +, 
~q- implies that, for any z e q/t, the following equality holds: 

{z} x [~t-(z),  ~,+(z)] = ( ~ ) , .  

This is an immediate consequence of formula (.) in the proof  of Proposi t ion 1. 
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Remark 3. Our algorithms operate on formulas of the first-order language 
~(A)  with the aim of manipulating geometrical objects. In this sense the algorithm 
underlying Proposition 1 transforms in admissible time the input formula defining 
the semialgebraic set W into a family of quantifier-free formulas ~o(~ j) ~ ~(A) in 
i + n variables X l . . . . .  Xi ,  Y1 . . . . .  Y. satisfying ~.a.J) d(cP(l,j)) = D"~ ' 

The main property of these formulas ~p(~,j) consists of the following: for each 
z ~. ~ ,  the formula cpa,j)(z, Y~ . . . . .  Y.) describes a semialgebraic curve contained in 
the fiber W~. The parametric form of this curve is the semialgebraic continuous 
function q,,j) of the proposition and cp(l,j) describes the graph of t/a,j). 

In a similar way the algorithm computes in admissible time quantifier-free 
formulas O(l+j), O(7,j) of ~(A)  satisfying ~(ld)(d(O(+,j))+ d(| D"~ These 
formulas describe the endpoints of the parametric curves q(t,j). 

Remark 4. We observe that Proposition 1 is a generalization of Theorem 7 of 
[HRS2]. In fact for the case of a closed and bounded semialgebraic set this theorem 
follows from Proposition 1 putting i = 0. 

The next proposition represents a parametric version of the admissible curve 
selection lemma of Section 4 of [HRS3]. 

Proposition 5. Let  W c R" be an explicitly given semialgebraic set. For f ixed  
0 < i < n, it is possible to construct in admissible time the following items: 

�9 A semialgebraic subdivision (~/r 1 <_r~R of  W. 
�9 A family of  continuous semialgebraic functions f,: ~ - - *  R~ o. 

- + . . _ ~  l n - i  �9 Another family of  continuous semial#ebraic functions 9(,.j), g(,.i)" V, 
where 1 < j < R,  and V, is the semialgebraic set defined by 

v, : :  {(x, t) ~ ~ • R; 0 <_ t < f , ( x ) } .  

These semialgebraic sets and functions satisfy the following conditions: let 
x : =  (x I . . . . .  x.) be an arbitrary point o f  ~ and let t be an arbitrary element 
of  R such that (x, t) E 1,I, holds. Then: 

+ 
�9 (Xl . . . . .  xi, g(,.i)(x, t)) e W (resp. (Xl . . . . .  xi, gg.j)(x, t)) ~_ W). 

+ 
�9 g~,.j~(x, O) = g~,.j~(x, O) = (x i+ 1 . . . . .  x , ) .  

+ 
�9 Pi+ l(Xl . . . . .  xi, 9(,.j)(x, t)) = (xl . . . . .  xi, xi+ 1 + t) and 

p~+ ~(xl, . . . ,  x i ,  gg,  j~(x, t)) = (X l . . . . .  x~, x~+ , - t). 

�9 For each x ' : =  (x x . . . . .  xi+ 1 + t) (resp. x'. '= (xl . . . . .  xi+x - t)) and each semi- 
algebraically connected component o f  W~,, a couple of  indices (r,j) ex is tssuch 

+ that (x 1 . . . . .  xi, g(,,jl(X, t)) (resp. (xl . . . . .  X i ,  9~.i)(x, t))) belongs to this compo- 
nent. 
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+ (the functions O~.~) Proo f  We describe only the construct ion of the functions g~.j~ 
are obtained similarly). Let I ~  R z"-~+a be the semialgebraic set defined in the 
following way: 

(x  1 . . . . .  x . ,  Yi + 1 . . . . .  y . ,  t) e I ~  

Y i + l  : X~+I + t, 

.r (x 1 . . . . .  xn, x 1 . . . . .  xi,  yi+ 1 . . . . .  y n ) ~ W  • IV, 

0<_ ~ (x t - yt) 2 <_ 2t 2, t ~ O .  
i+ l < l < n  

Let p: R 2 n - i + 1  --* R n + l  be the canonical projection which forgets the last n - i 
coordinates  y~+~, . . . , y ,  and let q: R "+~ ---, R" be the one which forgets the last 
coordinate  t. Observe  that  W -  (q o p)(ff') holds. 

In the same way as in the proof  of Proposi t ion 1, we obtain a semialgebraic 
subdivision (~W~) 1 ~,_<R of W = (q o p)(ff') and a semialgebraic subdivision (Jog,)1 _<,_<R 
of p(W) such that,  for any x E W, the fiber (o~r is a subinterval  of the half-line 
t > 0 containing 0 and with a right endpoint  h,(x) > 0 which may  be infinite. We 
do not  repeat  the proof  of this fact which is the same as the corresponding 
arguments  in Proposi t ion 1. We remark  only that  a t tent ion has to be paid to our  
weaker  assumptions  on W, which is no longer assumed to be closed and bounded.  
(This makes  it necessary also to admit  the value ~ for h,.) 

We define f , (x) := �89 if h~(x) is finite, and fr(x) := 1 if h,(x) = + oo. 
The cont inuous semialgebraic maps  g~,,j~ are constructed in the same way 

as the functions r/~.j) in the p roof  of Proposi t ion  1. We do not repeat  the 
arguments .  [ ]  

With the same nota t ions  and assumptions  as in Propos i t ion  5, we have 

+ . _.~ R n - i  R e m a r k  6. Each of the semialgebraic cont inuous functions g(,,j). V~ in 
Proposi t ion 5 is given by a quantifier-free formula F(+ j) which belongs to Aa(A) 
and depends on the variables X~ . . . .  , X , ,  T, Y~+x . . . . .  Y~. The set of these formulas 
is obta ined in admissible t ime from the quantifier-free input formula defining W. 

+ 
The cont inuous  semialgebraic function #t,,j~ parametrizes,  for each x ~ "W,, a 

closed and semialgebraically connected curve in the fiber Wp,tx ~ passing through x. 
All these curves (which depend on the pa ramete r  x) are defined uniformly by 

+ 
a quantifier-free formula  Wtr,j~ e ~ ( A )  in the variables X1 . . . . .  X . ,  II1 . . . . .  Y. which 
we obtain in admissible t ime by eliminating the existential quantifier in the 
formula  

(3T) ((X1 . . . . .  X . ,  T, Yi+l, Y . ) e G r a p h  + . . . .  (g~r.j~) ^ XI  = I"1 ^ "'" ^ Xi = Yi). 

In the same way we obtain,  for each r , j ,  a quantifier-free formula Wt~,~ e ~"(A) in 
the variables X 1 . . . . .  X. ,  YI . . . .  ,11. which defines uniformly all the curves given 
by g~,jj. 

+ 
In a similar way we obtain  in admissible t ime quantifier-free formulas  f~,.j~ 

(resp. ~ . j~ )  of  &a(A) depending on the variables X1 . . . . .  X . ,  Y1 . . . . .  Y. such that, 
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for each point x (x 1, x.) of W, + . . . .  . . . . .  ~(,,~)(x, Y1 . . . . .  Y,) (resp. f~ff.i)(x, Y1, 1I,)) 
defines the endpoint  (x  1 . . . .  , x i ,  g~,~)(x, f ( x ) ) )  (resp. (x l  . . . . .  xi ,  gc;.j)(x, f (x)))) .  

Remark  7. In the case that  W is a smooth  and bounded hypersurface described 
by a regular polynomial  equat ion F = 0 (i.e., V F  vanishes nowhere in W), the 
functions f, ,  + g(,.j), g(,.j) of Proposi t ion 5 may be chosen such that  the following 
condit ion is satisfied: for each x := (x~ . . . . .  x,) ~ W such that  

F(xa . . . . .  x l ,  X i+  1 . . . . .  X , )  

is a regular polynomial  equation for the fiber Wp,(x) contained in R "-~, the points 
+ 

rq+ l (x  1 . . . . .  xi ,  g(~.j)(x, f ( x ) ) )  and rti+ 1(x I . . . . .  x i ,  g~,,j)(x, f ( x ) ) )  are not critical 
values of the projection m a p  ~+1:  Wp,(x)~ R. The proof  of this refinement is 
essentially the same as the proof  of  Proposi t ion 5. The only point to be modified 
is the following: in the definition of i f 'we have to add the semialgebraic condition: 

Wv,(x ) smooth  ~ Yi+l  is not a critical value for ni+llw;, , .  

Therefore in the case of a smooth  and bounded hypersurface W given by a 
regular polynomial  equat ion we are able to move points outside from critical fibers 
replacing x by (pi(x), gs f , (x)))  and (pi(x), g~,j)(x, fr(x))) (compare (3) of Section 
2.1). 

We now give a uniform construction of M-functions. It is well known that  after 
a generic linear change of coordinates,  each new coordinate  becomes a Morse-  and 
consequently an M-function. We realize this geometrical  idea by a recursive 
construct ion of generic coordinates which uses, at each step, new indeterminates 
for the coefficients of  the linear variable t ransformat ion involved and which works 
in a real closed extension of the field R. 

Let 6} i), i < i _< j _< n, be algebraically independent  elements over R, which we 
order  in the following way: 

�9 6}! ' ) < 6 }  i) i f f i ' > i o r i ' = i a n d j ' > j .  
�9 0 < 6~! ') < z for every positive element z e R(6~ 1J, 6t21) . . . . .  6} ~)) where the vari- 

ables 6(11) . . . . .  6} ~ are exactly all the variables greater than 6}! '). 

For  i, 1 < i < n, let R i be the real closure of the field R(6~ 1), j(21) . . . . .  6~,~)), A~ := 
A[6(11), 6(21) . . . .  , 6(.~ R' := R. ,  and A' := A.. 

We consider independent  linear forms Zi, 1 _< i _< n, defined as follows: 

"~") 1Xi+l  + "'" + 6~i)x. .  Z i : =  i~i)xi  + vi+ 

For  a semialgebraic set W c R" defined by a formula �9 of ~(A) ,  we denote 
by W' c R'" the interpretat ion of �9 in R'". 

We conclude this section by considering the case of a smooth  and bounded 
hypersurface. 
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Suppose as before that S is a bounded and smooth hypersurface of R" given 
by a regular equation F = 0, where F is a polynomial of A[X1 . . . . .  X,].  Thus the 
gradient vector VF vanishes nowhere on S. Let D :=  deg F. 

Lemma 8. A nonzero n-variate polynomial P with coefficients in A having the 
following property exists: for  any real closed extension field L of  R and for  any 
point (or 1 . . . . .  ct,) o f  L" \ {P  = 0}, the linear form ~ l X t  + . . . +  ~t.X. induces an 
M-projection on the hypersurface {x e L"; F(x) = 0}. 

Proof  (Sketch). Take the Gauss map of the hypersurface S into the n-sphere, 
square its coordinates and apply the semialgebraic version of Sard's theorem 
[BCR, Theorem 9.5.2] to this map. Then use the Transfer Principle [BCR, 
Proposition 5.2.3]. []  

Corollary 9. Fix 0 <i<_ n - 1 .  Let (tl . . . . .  ti) be a point o f  RI such that 
F(t 1 . . . . .  ti, Xi+ x . . . . .  X , )  = 0 is a regular equation for the fiber Sit ...... t,) contained 
in R '"-i. Observe that S~t ...... t,) is a smooth hypersurface. Then the linear form 
Zi+ 1 :~_. Vi+l"~(i+ 1)y-,,xi+ 1 _~_ t'i+2"~(i+ 1)y,~xi+2 _[_ . .. %. vn~(i+ 1)~(__n induces an M-projection on 

Sit ...... ,,). 

Proof  Let P be the polynomial of Lemma 8 corresponding to the hypersurface 
St, ...... t,) of the affine space R~ '-~. The coefficients of P are elements of R~. Thus we 
have r,t.s(i+~) ,~(i+i) r~(i+ r~(i+ - ~ i + 1  , ~+2 , . . . ,  v, 1)) :~ 0 since the elements v~+l"~(i+l),...,vn 1) are alge- 
braically independent over Ri. This implies that the linear form Z~+ ~ induces an 
M-projection on Si, ...... t,). []  

In the situation of Corollary 9 we write Zi+ 1 for the M-projection induced by 
the linear form Zi+ 1 on S', ...... t , ) .  

Remark 10. Corollary 9 implies that the linear form Z 1 induces an M-projection 
on S' which is denoted by Z~. 

The curves which occur when we apply the roadmap construction [HRS3, 
Section 4] to S' and to the M-projection Z 1 have endpoints with coordinates in 
R x because Z 1 is a linear form of R 1 IX 1 . . . . .  X,]. Therefore the Z : images  of these 
points also belong to R1. If t e R1 is a regular (i.e., not a critical) value of Z~, the 
semialgebraic set Z ~ ( t ) c ~  S' is a smooth variety and Z 2 is an M-projection 
of z ~ X ( t ) n  S' following Corollary 9. Iterating this argument we see that Z 1, 
Z 2 . . . . .  Z ,_  1 are M-projections on all the fibers which occur in the construction 
[HRS3] of a roadmap of S' passing through a given point x of S. This observation 
remains true when the point x belongs to S' n R]. 

We denote by tr the roadmap of S given by the construction in [HRS3]. This 
roadmap is defined by a quantifier-free formula Z of ~ (A)  which we obtain in 
admissible time from the input polynomial F which represents the hypersurface 
S. Observe that a '  is also a roadmap of S'. 
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The following lemma describes a parametrized construction of a roadmap 
passing through a given point. 

Lemma 11. As before, let S be a bounded, smooth hypersurface o f R  n given by a 
regular equation F = 0 where F is a polynomial of  A[X~ . . . . .  X J  and let a be the 
roadmap of  S introduced above. Then it is possible to construct in admissible time 
from the input F a quantifier-free formula �9 in 2n variables X : =  (X1 . . . . .  X~), 
Y:= (Yl . . . . .  Yn) which belongs to Ze(A') and which verifies the following condition: 

for each x ~ S, the formula O(x, Y) describes a roadmap a'~ of  S' which contains the 
point x and the curve a' in such a way that a' also forms a roadmap of  a'x. The 
algorithm presents �9 in a disjunctive form as @ = ~/~ <_s<_N Os such that, for  each 
x' ~ S', the formula Os(x', Y) describes a point or a closed semialgebraically connected 
curve contained in S'. Moreover, we have d(O) = D ~~ 

Proof. Our procedure is a modified version of the roadmap construction of 
Section 4 of [HRS3], which applied to S' produces in admissible time three item 
classes of the following type: 

M-directions for S'. 
Continuous semialgebraic curves contained in S'. 
Base points obtained intersecting the curves above with suitable fibers of 

M-directions. 

We indicate only the modifications which the algorithm of [HRS3-] that 
produces these item classes undergoes in order to construct the output formula �9 
in the statement above. The first modification concerns the choice of M-directions. 
The new M-directions are projection maps induced on S' and fibers of S' by the 

~i) ~Xi+ + ... + 6~~ where 1 < i < n. According to linear forms Z~ := 6!~Xi + v~+ 1 - - 
Remark 10 we may suppose that the roadmap construction of [HRS3] uses only 
these linear transformations as M-directions. In this sense we may think that the 
selection of M-directions is done uniformly. 

Moreover, we choose the continuous semialgebraic curves of S' corresponding 
to the second item class above applying Propositions 1 and 5. Only the third item 
class requires a more careful analysis. We now suppose that the base points 
corresponding to this item class are already given by the algorithm of [HRS3] 
and we show that in fact this procedure is uniform. The rest of the proof is devoted 
to this question. 

The coefficients of the linear forms Z I , . . . ,  Zn describe a nonsingular linear 
transformation (over A') of the variables X1 . . . . .  X,. Thus we may replace the 
variables X~ . . . . .  Xn by Z~ . . . . .  Z~. This substitution transforms the polynomial 
F to another one which depends on the new variables Z~ . . . . .  Z,.  The coefficients 
of the new polynomial belong to the field of fractions of A'. Multiplying this 
polynomial by a suitable nonzero element of A' (in fact the determinant of an 
n x n matrix given by the coefficients of the forms Z~ . . . . .  Zn-i) we cancel 
denominators and thus obtain a polynomial G with coefficients in A'. 

Obviously this procedure is completely algorithmic, can be performed in 
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admissible time, and the new polynomial G satisfies deg G = deg F. Moreover, G 
is a regular equation of the smooth hypersurface S'. 

Applying Propositions 1 and 5 to the semialgebraic set S' given by the regular 
equation G = 0 we obtain in admissible time for each i, 0 < i < n - 1, quantifier- 
free formulas of degree D "~ of L,e(A'), any of which describes a parametrized family 
of semialgebraically connected curves lying in S'. The parameters on which these 
families depend range over suitable semialgebraic subsets of R 'i (compare Remarks 
3 and 6). We write th ~176 for the family of these formulas. L j IO< j~ M,  

The quantifier-free formulas W)0 of ZF(A') involve the 2n variables Z1 . . . . .  Z~, 
U~ . . . . .  U~. Let Z := (Z 1 . . . . .  Z~) and U := (U 1 . . . . .  U~). 

Analyzing the roadmap construction of [HRS3] we see that this algorithm 
constructs implicitly a family q~ (0 < i < n - 1, 0 < j < M~, 0 < h < H~) of contin- 
uous semialgebraic functions with domains contained in S' arLd values in R'. These 
functions describe the coordinates of the base points obtained by the procedure 
of [HRS3-1. 

Let us consider the foilowing expression E which depends on the two sets of 
variables Z. '= (Z 1 . . . . .  Z~) and U. '= (U1 . . . . .  U~): 

V w~)(q~)h(z) . . . . .  q(.~(z), u~ . . . . .  u.)  A U1 = q]~)h(Z) A "'" A U~ = ql~h)(Z) 
o_<i_<.- 1' ~ 
O<_j<_M, 
O<_h<_H, 

We denote the conjunctions appearing in the expression "~ above by E~. 
Observe that Remarks 3 and 6 guarantee that, for any point z of S', the formula 
E~(z,  U) defines a point of S' or a semialgebraically connected curve which is 
contained in S'. 

Let ~ be the regular n x n matrix defined by the coefficients of the linear forms 
Z1 . . . . .  Z .  and let 3 - 1  be its inverse. Transforming the variables Z~ . . . . .  Z ,  by 
3 - 1  we reobtain the variables X 1 . . . . .  X.. Analogously let the variables Y~ . . . . .  Y, 
be defined transforming U t . . . . .  U, by means of ~3-1. 

We denote by ~3(S) the subset of R'" obtained transforming the semialgebraic 
set S by means of the matrix ~ (observe that the set ~(S) is not semialgebraic). 

Let z be a point of 3(S). 
From the roadmap construction of I-HRS3] and Remarks 3, 7, and 10 we infer 

that the set 9~(z) c R'" defined by E(z, U) is a roadmap of S' which contains the 
point z. 

We now apply the algorithm of [HRS3] to the hypersurface S' in the following 
way: every time the algorithm requires an M-direction we choose one of the 
projection maps Zx . . . . .  Z n according to Remark 10. In this manner we obtain a 
roadmap tr I of S'. From the previous observations we deduce that a l  is contained 
in the curve 9t(z) for any point z of 3(S). Without loss of generality we may suppose 
that ~3(a) is also contained in 9~(z) for all z e ~3(S). 

Unfortunately the roadmap construction of [HRS3], as far as the variables 
Z~ . . . . .  Z n are concerned, does not present the expressions EJ~ as a quantifier-free 
formula of degree D n"'. 

Suppose for the moment  that this is the case, i.e., that the expression E~ is 
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represented by a quantifier-free formula of Y(A') which can be obtained in 
admissible time and which has degree D "~ Then we have N = D n~ such formulas 
which depend on the variables Z 1 . . . . .  Z,  and U1 . . . . .  U,. Transforming these 
variables by means of the matrix 3 -  ~ we obtain quantifier-free formulas Os in the 
variables X t . . . . .  Xn and Y1 . . . . .  Y. where 1 < s < N. 

Since for any z e S' the expressions E~(z, U) define points of S' or semialgebraic- 
ally connected curves contained in S', the same property is shared by the formula 
O~(x, Y) for any x ~ S' and any 1 < s < N. Under the hypothesis made before we 
are able to construct the formulas ~,  in admissible time and we have d(~)  = D "~ 
The formulas ~ and qb..= ~ / 1 _ < ~ < ~  therefore satisfy the requirements of the 
lemma if we are able to show that the expressions E~(Z, U) are represented by 
quantifier-free formulas of L~'(A') which can be obtained from the input polynomial 
F in admissible time. 

From the construction in [HRS3] it is easy to see that the number H~ of base 
points in the ith step of the algorithm and the number M~ of formulas q~t) are of 
order D "~ (recall that H~ and M~ are quantities which were introduced in the 
expression E above). 

We finish the proof representing each expression E~ by a quantifier-free formula 
of degree D ""'' which can be obtained in admissible time. 

For this purpose, we apply the quantifier-elimination algorithm of [HRS2] or 
[R3] to the purely existential prenex formulas A~ which we introduce below. 
These formulas have degree D "~ and contain not more than 3n 2 + 2n variables. 

For the moment  let i, j, and h be fixed. 
From Remarks 3 and 6 we obtain quantifier-free formulas | ~) and f21 ~) in not 

more than 2n variables which describe the endpoints of the parametrized family 
of curves given by the formula qJt0 - - j  �9 

The following prenex formulas describe all possible intersections of the para- 
metrized families of curves defined by the formulas O~i), where 0 < j < Mi, with 
fibers which contain an endpoint of one of these curves. The following two 
formulas correspond to qJ~-~): 

(3v,+, . . .3v . )  (,,'}'-*'(z, u)  ^ o F ' ( z ,  . . . . .  z , ,  u , ,  . . . ,  u, ,  v,+,, . . . ,  v.)) 

and 

(3v,+1 ""3Vn) (V~'- '(Z, V) ^ t a F ' ( Z ,  t q  . . . . .  C,, V,+, . . . . .  V.)). 

All these prenex formulas (with 0 < j < M~) contain only one block of existential 
quantifiers and applying the quantifier-elimination algorithm of I-HRS2] or JR3] 
to them we obtain in admissible time a family of equivalent quantifier-free formulas 
(Ft)))ojsL, of degree D ""~ which depend on the variables ZI  . . . . .  Z , ,  U1 . . . . .  U,. 

We introduce new variables T~ s), where 0 < s < i - 1 and 1 < t < n, W~, ~'1, where 
l < < _ s ' < i - 1  and l < t ' < n ,  and V~ pJ, where l < p < i - 1  and p < r < n .  
Observe that the number of these variables does not exceed 3n 2. 



136 J. Heintz, M.-F. Roy, and P. Solern6 

We now define, for each triple of indices i, j, h, a purely existential prenex 
formula A~ih ) which has degree D "~ and can be constructed in admissible time. 
This formula describes a parametrized family of continuous semialgebraic curves 
which connects base points lying in the same semialgebraically connected compo- 
nent of S'. The formula A~ is given in the way we indicate below. 

Let [3] be the existential quantifier block 

(s) (s') (p) (q T, )(3 W,, )(3 V, ), 

w h e r e 0 _ < s < i - l , 1  <_t < n ,  1 < s '  < i - l , l  < t '  <_n, 1 < p < i - l , p < r  < n .  
Furthermore, let I-k] be the following quantifier-free formula: 

r . ~ T  (~ f~l~)(W.), T (l)) f~lo~ T (~ A :, t 1 , V(l), W(1)) A 

~-~(2)[ W(2) T(2)) A ":2r(2)tT(0)~tl , T (1), V (2), W (2)) A l~ ~ , 

A "'" A F ( i - l ) t T  ( ~  ~ 1 , ' ' ' ,  ai-lT(i-2), v ( i -  1), W ( i -  1)) A ~~l i -1) (W ( i - l ) , , _  T(i-1)). 

(The formulas r(k) contained in [-k] describe the coordinates of the base points x 4 
which our modified version of the algorithm of [HRS3] constructs recursively, 
and the formulas fl~) move these base points into noncritical fibers with respect 
to the projection maps Zk.) 

Finally, let A~ih ) be the formula given in the following syntactical way: 

[3] (0 . . .  T ! i -1 )  T ( I - 1 )  T ( i -1 )  U )  (u'll)( T ), , - ,  , - i + 1  . . . . . .  n , 

^ e l  = Ttl ~ A "'" A Ui = T~ i-1) A ['k]). 

The quantifier-free formulas representing the expressions E~ are now obtained 
by applying the quantifier-elimination procedure of [HRS2] or JR3] to the purely 
existential prenex formulas A~. It is evident that all formulas occurring in our 
construction are of degree D ""', that there are only D "~'' many of them, and 
that they can be produced in admissible time. This finishes the proof of this 
lemma. [] 

Remark 12. A key point in the proof of the previous technical lemma is the 
simple observation that the composition of several semialgebraic functions can be 
described by an elementary prenex formula which is purely existential and contains 
therefore just one single block of quantifiers. This block can be eliminated in 
admissible time by means of the algorithms of [HRS2] or JR3]. 

4. Description of the Connected Components in Admissible Time 

In this section we finish the proof of our main theorem: the description of the 
semialgebraically connected components of an explicitly given semialgebraic set 
in admissible time. 



Connected Components of a Semialgebraic Set in Single Exponential Time 137 

Proof of  the Main Theorem. According to Section 4 of [HRS4] (or Sections 2 
and 3 of [CGV]) it suffices to consider the case of a smooth and bounded 
hypersurface S of R" given by a regular equation F = 0 where F is a polynomial 
of A[XI  . . . . .  X J  of degree D. 

From Lemma 11 we deduce that it is possible to construct in admissible time 
a quantifier-free formula ~ of ~(A' )  of degree D "~ which has the form of a 
disjunction ~/I_<~N ~ and in which each ~s describes a parametrized family of 
continuous semialgebraic curves contained in S'. 

The formula �9 depends on the variables X : =  (X 1 . . . . .  X,) and Y..= (Y1 . . . . .  Y.) 
and, for each point x e S, the expression O(x, Y) defines a roadmap of S' which 
passes through x. 

For each couple s, t, where 1 _< s < t < N, let ~s, be the quantifier-free formula 
of Sa(A') which we obtain by applying the quantifier-elimination procedure of 
[HRS2] or [R3] to the formula 

(3 I11..' B I1.) (Os(X, I11 . . . . .  II.) ̂  Or(X, I"1 . . . . .  1i,)). 

Let ~ be the set of all polynomials of A'i-Xt . . . . .  X J  which occur as terms in the 
formulas O~,. Obviously the set ~ can be constructed in admissible time and 
satisfies the estimate ~ t ~  deg F = ~s,, d(O~,) = D "~ 

A (nonempty) semialgebraic subset of R'" defined by a consistent sign condition 
on the elements of ~ is called an ~-cell .  According to l-G2] (see also [HRS1] 
and [HRS2]) the number of ~-cel ls  is of order D "~'~ and we can find the consistent 
sign conditions defining them in admissible time. 

We consider all possible nonempty intersections V~ . . . . .  VM of ~-ceI ls  with the 
hypersurface S'. Thus we have S' = U1 <_k<M Vk and M = D "~ Observe that each 
formula ~ ,  has a constant truth value on each set V k since the polynomials 
appearing as terms in ~ ,  belong to ~- and therefore have a constant sign on V k. 

Let k with 1 < k < M be fixed. We consider the binary relation ~k on the set 
{1, 2 . . . . .  M} defined as follows: 

for s, t e { 1 , 2  . . . . .  M} let S ~ k t  hold if and only if 

the formula ~ t  is true on Vk. 

The relation ~k is symmetric but not necessarily reflexive. Let Jr" k be its domain 
which is contained in {1, 2 . . . . .  M}. Then the transitive closure of the relation ~k 
induces an equivalence relation on the set ~r 

Let A t . . . . .  A, be the partition of J/'k which corresponds to this equivalence 
relation. Computing the transitive closure of the relation ~k by the algorithm of 
[M, Theorem V.5.3], we obtain in admissible time the partition sets Aa . . . . .  A,. 

For any index p, with 1 < p < r, let A~ k) be the following quantifier-free formula 
of ~e(A'): 

V tb,(X, r). 
$~Ap 

Obviously the formulas A~ k) have degree D "~' and can be constructed in 
admissible time. 
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Claim. For any point x ~ Vk c~ S the formula A(pk)(x, Y) defines a semialgebraically 
connected component of  the roadmap tr'~ introduced in Lemma 11. 

Proof  o f  the Claim. Let x e S n V k be given and suppose that the set A n can be 
written as A~--{Sl . . . . .  sr such that Sj~kSj+I holds for 1 < j _ < E - 1 .  We 
consider the set zp := {y e R'"; A(pk)(x, y) is true}. We show that Zp is a semialgebraic- 
ally connected curve contained in S'. 

From the fact that A(pk)(x, Y) is identical with the formula ~/~ _<j_<t (l)~,(x, Y), that 
the point x belongs to Vk, and that sl "~kS2 ~k  . . . .  kSg-i ~RSr holds, we infer 
that there exists, for each 1 < j < f - 1, an element yj of S' which verifies the 
expression (l),j(x, hi) ^ ~,+,(x, y/). Hence, by Lemma 11, for each 1 < j  < d - 1, the 
formula O,~(x, Y) ^ (I),,+,(x, Y) defines a semialgebraically connected curve con- 
tained in S'. This implies that zp itself is a semialgebraically connected curve 
contained in S'. 

Now consider 1 < p', p < r with Zp n zp, r ~ .  Let y be an element of % n zp,. 
There exist indices s e Ap and t e Ap, such that (1)~(x, y) ^ (I),(x, y) holds, whence 
s "~k t and finally p = p'. Therefore the semialgebraically connected curves Zp are 
mutually disjoint. 

Since the point x belongs to Vk the formula (l)(x, Y) is equivalent to 

V x, Y) 
l_<p<r 

and thus we obtain 

U 
l~p<_r 

This finishes the proof of the claim. [] 

Note that, in virtue of the claim above, the number r of formulas A~ k) coincides 
with the number of semialgebraically connected components of S and S' which is 
of order D n~ 

Let tr' be the roadmap of S' which we have already considered in Lemma 11. 
In view of Proposition 2 of [HRS4], we may suppose that a' is given as a 
disjunction of quantifier-free formulas Za . . . . .  Z, of ~(A')  of degree D "~ which 
describe the semialgebraically connected components of a'. 

Recall from Lemma 11 that, for each x in S, the roadmap a'x of S' contains the 
curve a'. 

Let 1 < p < r .  For  any 1 < k < M ,  and 1 < p ' < r ,  and any point x ofS,  the 
formula 

(3 YI"'" 3 Y.) . . . . .  Yn) ^ Y1 . . . . .  ^ x)) 

says that x is a point of V k which belongs to the pth semialgebraically connected 
component of S', i.e., which belongs to the semialgebraically connected component 



Connected Components of a Semialgebraic Set in Single Exponential Time 139 

that contains the curve defined by Ep. Therefore the formula 

( F = O )  A (3Yl ' - '~y . )  V (~'p(Y, . . . . .  I1.) A A(pk)(X, Y, . . . . .  Y.) A A(pk)(x, X)), 
1 < _ k ~ M  
l<_p'<_r 

when restricted to points of R", defines the pth semialgebraically connected 
component  of S. 

We now apply the quantifier-elimination procedure of [HRS2]  or [R3] to all 
these formulas  where 1 < p < r. In this way we obtain, in admissible time, r 
quantifier-free formulas l-I~ . . . . .  H~ of 5~ ') which involve the variables X I . . . . .  X ,  
and which, restricted to points of R", describe the semialgebraically connected 
components  of S. 

Unfor tunate ly  the constants contained in these formulas belong to 

A'  = A [6~  'I, 6~21), . . . ,  6~, " -  1), 6{nn)l 

and not  to the base ring A. To  remedy this situation we now apply a method 
which we have already used in [HRS2].  

Let c~ be the set of elements of A'[X1 . . . . .  X , ]  which occur as terms in the 
formulas FI I . . . . .  FI,. The set f# can be constructed in admissible time, it is of 
cardinality D "~ and its elements are polynomials  of degree D "~ in the in- 
determinates 6(11), 6(21) . . . . .  6~ n- ~), 6(~ ), Xl  . . . . .  X .  over the ring A. 

Let G be an element offa. We consider G as a polynomial  in 6(11~, 6~2 ~ . . . . .  ~.-11, 
6(." ) with coefficients in A [ X  1 . . . . .  X.] .  

Since 6(11), 6~21~ . . . . .  6(~ - ~), 6(.") are positive infinitesimals with respect to the real 
closed field R, any sign condit ion of the type G(x) > O, G(x) < 0, or G(x) = 0 for 
a point  x of R" can be expressed by a quantifier-free formula of ~ (A)  which 
involves only the coefficients of the polynomial  G which lie in A[Xt  . . . . .  X.] .  The 
quantifier-free formulas of ~a(A) which are produced in this way when G runs 
through the set fq can be obtained in admissible time and their number  and degrees 
are of order  D ~~ 

Using these formulas which belong to Y(A) we may replace each atomic 
expression in I-11 . . . . .  1-I~ by a quantifier-free formula that contains only constants  
from A. Rewriting the formulas H~ , . . . ,  I1, in this way we obtain, in admissible 
time r, quantifier-free formulas of L~'(A) which have degree D "~ and which are 
equivalent to 1-11 . . . . .  1-I~ when restricted to points of R". In other words these 
formulas define the semialgebraically connected components  of the hypersurface 
S. This finishes the proof  of the main theorem. [ ]  
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