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Abstract

The study of cohesive subgroups is an important aspect of social network analysis.
Cohesive subgroups are studied using different relaxations of the notion of clique in
a graph. For instance, given a graph and an integer k, the maximum edge subgraph
problem consists in finding a k-vertex subset such that the number of edges within
the subset is maximum. This work proposes a polyhedral approach for this NP-hard
problem. We study the polytope associated to an integer programming formulation
of the problem, present several families of facet-inducing valid inequalities, and
discuss the separation problem associated to these families.
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1 Introduction

Social network analysis (SNA) is an important tool to study the relationships
and flows between people, organizations, and other entities. Social networks
are encoded by graphs with vertices representing the entities, and edges rep-
resenting interdependencies between them. An important aspect in SNA is
the detection and analysis of cohesive subgroups, which are subsets of actors
among whom there are relatively strong, direct, intense, frequent, or posi-
tive ties [8]. Cohesive subgroups are studied using different relaxations of
the definition of clique. Quasi-cliques—subgraphs with a pre-specified mini-
mum edge density—are one of the most popular relaxations. The detection of
quasi-cliques is crucial in [7] for studying the network of bilateral investment
treaties. In this case, quasi-cliques are used both in the analysis of cohesive
subgroups and as an instrument to evaluate differences in the topology of
random graphs.

There are two main approaches to study quasi-cliques: (a) given a specified
edge density γ ∈ [0, 1], find the largest vertex set which is γ-dense and, (b)
given a size k, find the densest set of k vertices. The second approach is
known in the graph and optimization literature as the maximum edge subgraph
problem (MESP) or dense/densest/heaviest k-subgraph problem. Formally,
given a graph G = (V, E) and an integer k, the MESP consists in finding
a vertex subset A ⊆ V with |A| = k and such that |E(A)| is maximum,
where E(A) = {ij ∈ E : i ∈ A and j ∈ A}. The maximum clique problem
clearly reduces to the MESP, hence the latter is NP-hard [2]. Approximation
algorithms for the MESP have been presented in [1,4,5,6] while [3] introduces
several integer programming formulations for this problem. In this work, we
study the polytope associated to the formulation MIP1 of MESP introduced by
[3], introduce several families of facet-inducing valid inequalities, and discuss
the separation problem associated to these families.

2 Integer programming formulation

An instance of MESP is given by a graph G = (V, E), the cardinality k of
the subset X ⊆ V that we want to find, and the minimum density γ ∈ [0, 1].
We introduce a binary variable xi that represents whether i ∈ X for every
i ∈ V , and a binary variable zij that represents whether ij ∈ E(X) for every
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ij ∈ E. Note that since edges are undirected, zij and zji denote the same
variable. Using these variables, the maximum edge subgraph problem can be
formulated as follows:

max
∑

ij∈E zij

s.t.
∑

i∈V xi = k (1)

zij ≤ xi (2)∀ ij ∈ E

zij ≤ xj (3)∀ ij ∈ E

xi ∈ {0, 1} (4)∀ i ∈ V

zij ∈ {0, 1} (5)∀ ij ∈ E

Note that binary constraints (5) can be removed since variables zij must take
integer values in any optimal solution. We define P (G, k) ⊆ R|V |+|E| to be the
convex hull of vectors (x, z) satisfying constraints (1)-(5). (Proofs are deferred
to the full version of the paper because of lack of space.)

Theorem 2.1 dim(P (G, k)) = |V | + |E| − 1.

3 Valid inequalities

We let N(i) = {j ∈ V : ij ∈ E} be the neighborhood of a vertex i, for i ∈ V ,
and δ(i) = {ij : ij ∈ E} be the edges incident to i. For i ∈ V , we define

∑

j∈N(i)

zij ≤ (k − 1)xi (6)

to be the neighborhood inequality associated with the vertex i.

Theorem 3.1 The neighborhood inequality (6) is valid for P (G, k). If |N(i)| ≥
k and |V | ≥ k + 2, then (6) defines a facet of this polytope.

Note that the family of neighborhood inequalities is composed of just |V |
inequalities. Hence, these inequalities can be added to constraints (1)-(5) to
strengthen the formulation.

For i ∈ V and A ⊆ V \{i} with |A| = k − 2, we define

∑

j∈A

xj +
∑

j∈N(i)\A
zij ≤ (k − 2) + xi (7)

to be the extended neighborhood inequality associated with the vertex i and
the set A.
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Theorem 3.2 The extended neighborhood inequality (7) is valid for P (G, k).
Moreover, if |N(i)\A| ≥ 2 and |V | ≥ k + 2, then (7) is facet-inducing for
P (G, k).

It is interesting to observe that inequalities (6) and (7) can be generalized
into a single family. To this end, for i ∈ V and A ⊆ V \{i} with |A| ≤ k − 2,
we define ∑

j∈A

xj +
∑

j∈N(i)\A
zij ≤ |A| + (k − |A| − 1)xi (8)

to be the generalized neighborhood inequality associated with the vertex i and
the set A.

Theorem 3.3 The generalized neighborhood inequality (8) is valid for P (G, k).
Moreover, if |N(i)\A| ≥ k − |A| and |V | ≥ k + 2, then (8) is facet-inducing
for P (G, k).

Theorem 3.4 The generalized neighborhood inequality can be separated in
O(n2 · log(n)) time

Let A ⊆ V be a vertex subset and let B ⊆ E(V \A) be a nonempty
maximal matching of E(V \ A). In this setting, we define

∑

i∈A

xi +
∑

ij∈B

zij ≤ |A| + k − 1

2
(9)

to be the matching inequality associated with the set A and the matching B.
Let V (B) ⊆ V be the set of endpoints from the edges of B.

Theorem 3.5 The matching inequality (9) is valid for P (G, k) if |A| < k and
|A|+ k is odd. In addition, if |B| > (k − |A| − 1)/2, then (9) is facet-defining
as long as |A| ≤ k + 3 or |V | ≥ k + 3.

Theorem 3.6 The matching inequalities can be separated in O(|V |3) time if
k is odd, and can be separated in O(|V |4) time if k is even.

Let A ⊆ V be a vertex subset such that |V \A| = k − 1 and let T ⊆ E(A)
be an acyclic edge subset. We define

1 +
∑

ij∈T

zij ≤
∑

i∈A

xi (10)

to be the forest inequality associated with the vertex set A and the edge set
T .
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Theorem 3.7 The forest inequality (10) is valid for P (G, k). In addition, if
for every ij ∈ E(A)\T there exists a path in T from i to j of length at most
k − 1, then (10) is facet-defining.

Theorem 3.8 The separation of forest inequalities is NP-hard.

For a subgraph H ⊆ G, denote by dH(i) the degree of the vertex i in the
subgraph H, that is, dH(i) = |δH(i)|. Let A ⊂ V be a vertex subset with
|A| < k, and let T = (VT , ET ) ⊆ G\A be a spanning tree on k − |A| + 1
vertices. We define

∑

i∈A

xi +
∑

ij∈ET

zij ≤ |A| +
∑

i∈VT

(dT (i) − 1)xi (11)

to be the tree inequality associated with the set A and the tree T . Notice that
if A = ∅, the inequality still holds.

Theorem 3.9 The tree inequality (11) is valid for P (G, k). Furthermore, if
|V | > 2k − 2 − �, where � is the number of leaves of T , then (11) induces a
facet of this polytope if and only if T is not a star.

Notice that if T is a star, then the tree inequality is dominated by (8).
A special case of (11) arises when T is a path and A = ∅. In this case, the
inequality (11) holds for every path of length at least k and is facet-defining
for all paths of length � such that k ≤ � ≤ 2k − 2.

Theorem 3.10 The separation of tree inequalities is NP-hard.

Let M ⊆ E be a matching such that 0 < |M | < (k − 1)/2 and let T =
(VT , ET ) ⊆ G be a tree on k−2|M |+1 vertices such that VT ⊆ V \V (M). We
define

∑

pr∈M

zpr +
∑

ij∈ET

zij ≤ |M | +
∑

i∈VT

(dT (i) − 1)xi (12)

to be the disjoint matching inequality associated with the tree T , and the edge
matching M .

Theorem 3.11 The disjoint matching inequality (12) is valid for P (G, k).
Furthermore, if |V | ≥ k + 2 and |V | > 2k− 2|M | − � where � is the number of
leaves of T , then (12) induces a facet of P (G, k).

Theorem 3.12 The separation of disjoint matching inequalities is NP-hard.
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4 Concluding remarks

In this work we have presented a polyhedral study of the maximum edge
subgraph problem, by introducing seven families of valid inequalities. These
results show that the associated polytope admits interesting facets arising from
simple combinatorial structures, and we conjecture that many of the families
introduced in this work can be generalized further. We have also analyzed
the complexity of the associated separation problems for these families and
identified some cases that are NP-hard. We plan to extend the polyhedral
study by testing the strength of the presented families of valid inequalities,
and by assessing their performance in a branch and cut environment.
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