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1. Introduction

In many real-life situations, resources need to be shared among users with conflicting requirements. Graph coloring and
its generalizations [6] are useful tools in modelling a wide variety of these problems [1,11].

Generally, resources must be assigned in such a way that a resource cannot be shared by two conflicting users and the
optimization goal is to minimize the number of resources needed to satisfy the demands. When all the requests of the users
are equal to 1, this is the well known coloring problem [5]. If a positive request greater than 1 is defined for each user, it
corresponds to the multicoloring problem [3].

However, the number of available resources may not be enough and it could become necessary to relax the requirements
and allow to share resources among conflicting users.

Consider a set V of n projects (papers) and a set R of referees. Each project v has to be evaluated by k, referees chosen
from R. Associated with each project visasetr, C R of possible referees. If a pair of projects u, v have participants (authors)
in common, it will be reasonable to restrict the referees’ assignment to the ones not having referees in common. But if the
number of available referees is not enough, we relax this constraint and allow to share at most ¢, referees. For organizational
or economical reasons, we want to manage the minimum number of referees for the evaluation process.

The problem can be modeled by a conflict graph G = (V, E), in which the vertices represent the projects, and an edge
between two vertices u, v means that the set of referees assigned to the endpoints must have intersection size less than or
equal to c,,. We refer to this problem as a multicoloring problem with overlaps.

More formally, let there be given an undirected graph G = (V, E), R a set of colors, ncol = |R|, k, the demanded number
of colors of node v, r, C R the set of feasible colors for v and c,, the maximum number of colors that can be shared by
adjacent vertices u, v.

We define a (k, c, r)-coloring of G as a mapping f : V — 2R such thatf(v) C r,, [f (V)| = k, and |[f (u) Nf(v)| < Cup. The
graph (k, c, r)-coloring problem is to find a (k, c, r)-coloring using as few colors as possible.
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In case that we impose c,, = O foralluv € E and r, = R, for all v € V, this problem can be formalized as the well known
multicoloring problem and ¢, = 0 for all uv € E and k, = 1, for all v € V corresponds to a list coloring problem.

Like most optimization problems on graphs, the (k, c, r)-coloring problem can be formulated as a linear integer program-
ming problem. Approaches in this way were proposed for the coloring problem [1,4,7-9], multicoloring problem [10] and
list coloring [2].

LP-based Branch-and-Cut algorithms are currently the most important tools for dealing with linear integer programming
problems computationally. The basic structure is a Branch-and-Bound algorithm which may call a cutting plane algorithm at
each node of the search tree. Therefore, the main elements of a Branch-and-Cut algorithm are the formulation, the separation
procedures and the branching strategies, which we will describe in the next sections. We also include some additional
features, such as heuristics based on rounding LP-solutions.

The structure of the remainder of the paper is as follows. In the next section, we give an integer programming
formulation and present some valid inequalities. In Section 3 we describe the ingredients of our Branch-and-Cut algorithm.
Computational results are given in Section 4. The paper closes with final remarks.

2. Integer programming formulation and valid inequalities

We consider binary variables x,;, withv € V and j € r,, where x,; = 1 if color j is assigned to vertex v and x,; = 0
otherwise. We also define ncol binary variables w; (1 < j < ncol), that indicate whether color j is used in some vertex, i.e.
w; = 1ifx,; = 1for some vertex v. Finally, binary variables y,,;, withuv € E,j € r, Nr,, where y,,; = 1if color j is assigned
to both endpoints u, v. The (k, c, r)-coloring problem can be formulated as:

ncol

Min )" wj
j=1

subject to
Y X =ky forallv e V (M)
Jjery

> Ywj<cw foralluveE (2)
jeruNry
Xy + Xpj — Yy < 1 foralluv € E,jer,Nr, (3)
Xy < w forallveV,jer, (4)
x,; € {0, 1} forallveV,jer,
Yuwj € {0, 1} foralluv € E,jer,Nr,
w; € {0, 1} 1 <j < ncol

Constraints (1) assert that each vertex must receive exactly k, colors, and constraints (2) say that every pair of adjacent
vertices u, v may not share more than ¢, colors. Constraints (3) force y,,; = 1 if color j is shared by the adjacent vertices
u, v. If color j is assigned to some vertex, constraints (4) impose w; = 1.

Our main focus is on developing a Branch-and-Cut algorithm that takes advantage of the particular structure and exploits
the properties of the problem.

From now on, we restrict our attention to the particular case where k, = k,r, = Rforallv € V and ¢,, = c for all
uv € E. The complexity of the general case makes it very difficult to study the polytope. Despite this restriction, we find the
problem interesting on its own and it is still hard.

In order to break some symmetry, we also add the constraints w; > wj; forall 1 < j < ncol — 1 to impose that
color j + 1 can be assigned to a vertex provided color j has already been assigned. These constraints imply that any feasible
(k, ¢, r)-coloring uses the first colors.

As a result of our polyhedral investigations of the underlying polytope associated with this formulation, the inequalities
that follow are proven to be valid for that polytope. The cuts are based on the idea of how many of the vertices of a subset
V’ C V with a particular structure, such as cliques, can share ¢ + 1 colors. This idea leads to the following inequalities.

Proposition 2.1. Let C = (V', E’) be a clique of sizep > 2 of Gandj; < jp < -++ < jey1 € R, then

c+1 c
§ : E Xy =P E wj; + Wicyq
i=1 veV’ i=1

is a valid inequality.

Proof. The proof is performed by induction on p.
The case p = 2 is trivial.
Assume that this is a valid inequality for 2 < p <'s. We have to prove that it is also valid forp = s + 1.
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LetC = (V',E), |V'| =s+ 1and u € V'. We have to show that

c+1 c+1
> D xi =) > xyt quj. < SZwJ + Zw;, + Wiy
i=1 veV’ i=1 veV/\{u}

If Y7 %y, < ¢ then 37 %y, < Y0 wy and by the inductive hypothesis Y7 3 cyn, %o < S Y wj, + wj,,. The
result follows.
If Y %y, = ¢ + 1, then Y %, < 30wy, + wy,,. Since uv € E' forallv € V' \ {u}, this also implies that

Yt %y < ¢ = Y0, wj,. We conclude that the inequality is valid.

Proposition 2.2. Let C = (V', E’) be a clique of sizep > 2 of Gandj; <j, < -+ < jcx1 € R, then

c+1
p va]] Z Yuvj; + Z Z Yij, = (D +p> Wi,

veV’ uveE’ i=2 uveE’

is a valid inequality.

Proof. If w;, = 0 the inequality is trivial. Let us assume that w;, = 1. The proof is performed by induction on p.
Assume p = 2 and V' = {vq, v,}.
If2(xy,j; + Xuyj,) < 2theny,,,,j, =0.
Since Zfi; Youyj; < € and (C”("zi—l) + p)wj, = ¢ + 2, the inequality is valid.

If2(xy,j, +X.,j,) = 4theny,,,,;, = 1.Since vy, v; canshare at most ¢ colors, Zfizl Yoqugj; < ¢—1.Then4—1+4c—1 = c+2
and the inequality follows.
Assume that this is a valid inequality for 2 < p < s. We have to prove that it is also valid forp = s + 1

LetC = (V',E),|V'| =s+ 1and w € V'. We have to prove that

2ji =

c+1 c+1
SEPEVEDDEDIDTELIDURETEDIEVED DD DTN DI
veV’ uveE’ i=2 uveE’ veV/\{w} uvek i=2 uveE’ veV/\{w}
uvFEW u,vFW
c+1
+(S+ 1)ij1 - Z vaj1 + Z Z vaj,-

veV/\{w} i=2 veV/\{w}

c(s+ 1)s cs(s

=< (%4—(5—1—1)) (% —l—s) wj, + (s + Dwy,.

Ifx,j, =0then_ Afw) Yowjy = 0.1F D ey A\ qw) Xuiy = ¢, then ZCH Y vev Yowj; < (€ — g+ c(s — q) = cs — q. Now,
applying the inductive hypothesis, the result follows.
Suppose that x,,;, = 1and ZUE\,,\{W} Xyj, = qwith g > 0. Then

c+1 c+1
SPIETED WUES D) VRS VRS CR IR VD D D
veV/\{w} uue#E/ i=2 HLE#E/ veV/\{w} veV/\{w} i=2 veV/\{
-1 -1 s—qQs—q—1
SSq_q(q2 ) . _1)q(q ) ( q)(2 q )+q+s+]_q+(c_1)q+c(s_q)

c(s+ 1)s
= % +(s+ 1)+ (c — (G — sq)-
Since g < sand ¢ > 1, then (c — 1)(¢?> — sq) < 0 and the result follows. ®

Proposition 2.3. Let C = (V', E’) be a clique of sizep of Gand j; < j» < -+ < jey1 € R, then

valc+1 Z yUUJc+1 + Z Z yuv.h — p(p Z Wj; + pw]c+1

veV’ uveE’ i=1 uveE’

-1 —1
Proof. Suppose that )~ .\ Xuj.,, = 0. We know that 3, cp Yuvj, < 22Dy, hence 301 D vep Yui < BB wy
and the inequality is valid.
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Suppose that )~ _ X,;.,,; = q. Then

< qq—-1)  (G-pm—qg—1) q(@—1)
pzxvjc+l - Zyuvjc+1+zzyuvji pq — 2 +c B +(C—1)#

veC uveE’ i=1 uveE’

pp—1)
5 +q.
Since q < p, the inequality follows. =

Finally, the next inequality is a transitive consequence of using color j, among three adjacent vertices.
Proposition 2.4. Let {uy, u,, us} be adjacent vertices and jo € R. Then

Yupugio T Yuyuzio = Xupjo + Yuqusio

is a valid inequality.
3. Branch-and-Cut algorithm

Given an integer programming problem, the idea of a Branch-and-Cut is recursively to partition the solution set into
subsets and solving the problem over each subset. This procedure generates an enumeration tree where offspring of a
node correspond to the partition of the set associated with the parent node. In each node of the tree, a linear relaxation
of the problem is considered by dropping integrality requirements and adding valid inequalities which cut off the fractional
solution.

To reduce the number of nodes of the tree, it is important to have good lower and upper bounds, good rules to partition
the feasible set, good strategies to search on the tree and a good strengthening of the linear relaxations.

In the following, we describe the different aspects we consider in our implementation.

3.1. Initial upper bound

An upper bound is obtained with a greedy heuristic which is run once at the beginning of the algorithm.

The procedure starts with an ordered color list L = {1, ..., k}. In every step, a vertex is chosen and it is assigned the first
k colors not being incompatible with its neighbors from the list L. If there are not enough colors in L, new colors are added
to it. After the assignment, the used colors are moved to the end of the list and the procedure goes to the next step.

The procedure runs two times by considering different vertex orderings to perform the assignment:

o The highest number of colors used by its neighbors. Ties break by the highest number of non-colored neighbors.
e The highest number of colors used by its neighbors. Ties break by the lowest number of colored neighbors.

3.2. Initial lower bound

The lower bound is initiated with a simple heuristic to find a clique K, as large as possible. Then, we apply a complete
enumeration procedure to find an optimal (k, c, r)-coloring for K.

We do not preassign colors to the vertices of K, as it is usually done on classic coloring, because it could be not a feasible
assignment for an optimal (k, c, r)-coloring of G.

The enumeration of feasible solutions for instances associated with cliques up to 10 vertices is very fast to carry out.
However, it takes a prohibitive time for greater cliques if we consider that it is an initial phase of a Branch-and-Cut algorithm.
Then, we impose this limit on the size of the clique.

3.3. Primal heuristic

The availability of good feasible solutions may reduce the size of the Branch-and-Cut tree significantly. During the
procedure, we solve many linear problems and obtain fractional solutions. Every time we have a fractional solution, we
try to get an integer solution from it by using a rounding procedure. Many times, this process improves the best feasible
solution known so far. A simple procedure consists of choosing a vertex v and ordering the fractional variables x, in a
nonincreasing order of values. We take the first variable on the list and round it up to 1 if the corresponding color is feasible
and repeat the step while there are still colors to be assigned to v. The criteria we mentioned for the initial heuristic are used
for choosing the vertices.

3.4. Variable selection and enumeration strategy

The choice of branching variable has a large effect on the performance of the algorithm. We tried several strategies and
finally the pseudo-cost branching rule was shown to be the most successful.
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Table 1
Computational results.
k-c Low Medium High
Time Nodes Time Nodes Time Nodes
2-1 B&C 0.06 1.26 1.81 9.11 2.1 5.74
CPLEX 0.31 26.03 31.04 1098.89 2156.76 28878.8
3-1 B&C 1.01 7.13 16.71 38.86 559.06 (20) 519.31
CPLEX 9.8 (29) 305.8 1258.8 (14) 15678.4 ek ek
3-2 B&C 0.1 0.06 0.52 0.9 5.59 18.3
CPLEX 0.45 32.7 13.53 185.5 107.35 4239.63
4-2 B&C 3.99 15.26 412.69 (27) 475.03 116.85(13) 116.63
CPLEX 65.46 (29) 1120.9 884.3 (26) 17441 1487.8 (1) 2934

The idea underlying the pseudo-cost branching rule is to determine a priority of the variables in terms of the change in
the optimal objective value. We apply this strategy by prioritizing the w variables. On the left branch, the variable is fixed
to 1, on the right branch the variable is fixed to 0. We use a best first search strategy in choosing the node to evaluate.

3.5. Cutting plane generation

In order to make the inequality separation, we developed an heuristic procedure for the first three inequalities.

For each color k1, we consider the list of non-zero variables in decreasing order of the x;, values, where x* denotes the
current fractional solution.

We initialize a clique with vertex v for each xjj,<1 in the list. For each v, we do several trials bounded by an input parameter.

In trial j, we choose the fractional variable x,, such that vertex v’ is the j-th adjacent vertex to v in the list. We add this
vertex to the clique. Then, the clique is grown in size trying to add other adjacent vertices following the ordered list.

Once this is done, it remains to determine the other colors. We attempt all possibilities to find violated inequalities which
are added to the LP relaxation.

The last inequalities are handled by brute-force.

4. Computational experiments

We report in this section on computational experiences with our Branch-and-Cut algorithm. The code was implemented
in C4++4 using the CPLEX 10.1 LP solver.

We have performed the experiments on a SUN UltraSparc IIl workstation with a CPU running at 1 GHz and 2 GB of RAM
memory. CPU times are reported in seconds. We impose a CPU time limit of 1 h. The algorithm is tested on random graphs
G(20, p) of 20 vertices and an edge between each pair of vertices with independent probability p. We use random graphs
with low (p < 30%), medium (40% < p < 60%) and high (p > 70%) density.

Experiments were carried out over 30 instances per density considered and three different k, ¢ values. We report the
average CPU time and the average number of tree nodes explored. Asterisks indicate that the time limit was exceeded.
When the average is taken over less than 30 instances because the others could not be solved within the time limits, we
indicate the number of instances solved in brackets. For the root node of the enumeration tree 10 cutting plane rounds were
implemented. For tree nodes other than the root, a limit of 2 cutting plane rounds were considered.

To appreciate the benefits of using our cutting planes and other specific aspects we have implemented, we compare
our Branch-and-Cut algorithm with the general purpose IP-solver CPLEX. Tests were performed using all the advantages of
preprocessing, cutting, etc. that CPLEX offers.

As one may appreciate from the results reported in Table 1, our strategies attain a better performance than CPLEX. CPLEX
could not solve instances that could be managed by our Branch-and-Cut within the CPU time limit imposed.

In many cases, both algorithms find the optimal solution very early in the enumeration process, but CPLEX requires too
much time to obtain the optimal certification. However, our cutting planes improve the lower bounds and this improvement
allows one to fathom a large percentage of nodes earlier in the tree. The use of cutting planes seems to be essential for solving
most of the instances.

For low density graphs, the gap between the initial lower and the initial upper bounds is very small. The increase of
the lower bound applying cutting planes is achieved on the first levels of the tree, and it is not possible to find violated
inequalities on depth nodes.

For medium and high density graphs, the initial lower bound increases during the first levels, and then the objective
function does not change from one round to the next. However, the cutting planes are useful to fathom depth nodes for
infeasibility. For all instances considered, the cutting plane phase finds violated cuts.

We can also see from the table that the results do not show a clear pattern. Some instances could be solved to proven
optimality in a few CPU seconds, while others could not be solved within the time limit imposed. No obvious explanation
seems to exist for that behavior.

For any density, instances with ¢ = k — 1 are the easiest to solve.
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5. Final remarks

We have introduced a new generalization of the graph coloring problem. We propose an integer programming approach
and a Branch-and-Cut algorithm. We have characterized several new valid inequalities. Although no polyhedral analysis was
carried out, the usefulness of these inequalities has been demonstrated through computational experiments. A comparison
with version 10.1 of CPLEX shows that the Branch-and-Cut algorithm proposed here reduces both the CPU time and the
number of nodes explored in the Branch-and-Bound tree, and that it is capable of solving instances that are out of the reach
of CPLEX.

As aresult of this work, we could solve relatively small instances. Experimental tests show that this new generalization of
the graph coloring problem is computationally harder than the classical version. For the graph coloring problem, instances
with 20 vertices and any density can be tackled in few seconds with a Branch-and-Cut technique, and instances of up to 80
or 100 nodes can be solved within 1 h (see [8]).

Further work is needed to improve the algorithm. There is still a place for new cutting plane generation, methods for new
valid inequalities and other schemes to prune the search tree.
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