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Abstract

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of
pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum
clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are
equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not
known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of
forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a graph, with vertex set V (G) and edge set E(G). Denote by G, the complement of G. Given two graphs G
and G′ we say that G′ is smaller than G if |V (G′)| < |V (G)|, and that G contains G′ if G′ is isomorphic to an induced
subgraph of G. When we need to refer to the non-induced subgraph containment relation, we will say so explicitly. A
claw is the graph isomorphic to K1,3. A graph is claw-free if it does not contain a claw. The line graph L(G) of G is the
intersection graph of the edges of G. A graph F is a line graph if there exists a graph H such that L(H) = F . Clearly,
line graphs are a subclass of claw-free graphs.

� An extended abstract of this paper was presented at GRACO 2005 (second Brazilian Symposium on Graphs, Algorithms, and Combinatorics)
and appeared, under a different title, in Electronic Notes in Discrete Mathematics 19 (2005) 95–101.
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The neighborhood of a vertex v is the set N(v) consisting of all the vertices which are adjacent to v. The closed
neighborhood of v is N [v] = N(v) ∪ {v}. A vertex v of G is universal if N [v] = V (G). Two vertices v and w are twins
if N [v] = N [w]; and u dominates v if N(v) ⊆ N [u].

A complete set or just a complete of G is a subset of vertices pairwise adjacent. (In particular, an empty set is
a complete set.) We denote by Kn the graph induced by a complete set of size n. A clique is a complete set not
properly contained in any other. We may also use the term clique to refer to the corresponding complete subgraph.
Let X and Y be two sets of vertices of G. We say that X is complete to Y if every vertex in X is adjacent to every
vertex in Y, and that X is anticomplete to Y if no vertex of X is adjacent to a vertex of Y. A stable set in a graph G is a
subset of pairwise non-adjacent vertices of G. The stability number �(G) is the cardinality of a maximum stable set
of G.

A complete of three vertices is called a triangle, and a stable set of three vertices is called a triad. Let A be a set of
vertices of G, and v a vertex of G not in A. Then v is A-complete if it is adjacent to every vertex in A, and A-anticomplete
if it has no neighbor in A.

A vertex is called simplicial if its neighbors induce a complete, and singular if its non-neighbors induce a complete.
Equivalently, a vertex is singular if it is in no stable set of size three. The core of G is the subgraph induced on G by
the set of non-singular vertices.

Let G be a graph and X be a subset of vertices of G. Denote by G|X the subgraph of G induced by X and by G\X the
subgraph of G induced by V (G)\X. X is connected, if there is no partition of X into two non-empty sets Y and Z, such
that no edge has one end in Y and the other one in Z. In this case the graph G|X is also connected. X is anticonnected
if it is connected in G. In this case the graph G|X is also anticonnected.

The set X is a cutset if G\X has more connected components than G. Let G be a connected graph, X a cutset of G,
and M1, M2 a partition of V (G)\X such that M1, M2 are non-empty and M1 is anticomplete to M2 in G. In this case
we say that G=M1 +M2 +X, and Mi +X denotes G|(Mi ∪X), for i = 1, 2. When X ={v}, we simplify the notation
to M1 + M2 + v and Mi + v, respectively.

Let X be a cutset of G. If X = {v} we say that v is a cutpoint. If X is complete, it is called a clique cutset. A clique
cutset X is internal if G = M1 + M2 + X and each Mi contains at least two vertices that are not twins.

Let G be a graph and H a subgraph of G (not necessarily induced). The graph H is a clique subgraph of G if every
clique of H is a clique of G.

A clique cover of a graph G is a subset of cliques covering all the vertices of G. The clique-covering number k(G) is
the cardinality of a minimum clique cover of G. The chromatic number of a graph G is the smallest number of colors
that can be assigned to the vertices of G in such a way that no two adjacent vertices receive the same color, and is
denoted by �(G). An obvious lower bound is the maximum cardinality of the cliques of G, the clique number of G,
denoted by �(G).

A graph G is perfect if �(H) = �(H) for every induced subgraph H of G. Perfect graphs are interesting from the
algorithmic point of view, see [16]. While determining the clique-covering number, the independence number, the
chromatic number, and the clique number of a graph are NP-complete problems, they are solvable in polynomial time
for perfect graphs [17].

The clique graph K(G) of G is the intersection graph of the cliques of G. A graph G is K-perfect if K(G) is perfect.
A graph is bipartite if its vertex set can be partitioned into two stable sets. A graph is split if its vertex set can be

partitioned into a stable set and a complete. Bipartite and split graphs are perfect.
A hole is a chordless cycle of length at least 4. An antihole is the complement of a hole. A hole or antihole is said to

be odd if it consists of an odd number of vertices. A hole of length n is denoted by Cn.
A graph is chordal if it does not contain a hole. Chordal graphs can be recognized in polynomial time [25].
An r-sun, r �3, is a chordal graph of 2r vertices whose vertex set can be partitioned into two sets: W ={w1, . . . , wr}

and U = {u1, . . . , ur}, such that W is a stable set and, for each i and j, wj is adjacent to ui if and only if i = j or
i ≡ j + 1 (mod r). Please note that, since an r-sun is a chordal graph, it follows that U induces a cycle with no holes.
An r-sun is said to be odd if r is odd.

A graph is balanced if its vertex-clique incidence matrix is balanced. A 0–1 matrix is balanced if it does not contain
the incidence matrix of an odd cycle as a submatrix.

A family of sets S is said to satisfy the Helly property if every subfamily of it, consisting of pairwise intersecting
sets, has a common element. A graph is clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary
clique-Helly (HCH) if H is CH for every induced subgraph H of G.
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A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is
a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G,
denoted by �C(G) and �C(G), are the sizes of a minimum clique-transversal and a maximum clique-independent set
of G, respectively. It is easy to see that �C(G)��C(G) for any graph G. A graph G is clique-perfect if �C(H) = �C(H)

for every induced subgraph H of G. Clique-perfect graphs have been implicitly studied in [1,3,6,4,7,14,18,19]. The
terminology “clique-perfect” has been introduced in [18]. There are two main open problems concerning this class of
graphs:

• find all minimal forbidden induced subgraphs for the class of clique-perfect graphs, and
• is there a polynomial time recognition algorithm for this class of graphs?

In this paper, we present some results related to these problems. We characterize clique-perfect graphs by forbidden
subgraphs when the graph belongs to a certain class. Both classes studied are subclasses of claw-free graphs: line graphs
and HCH claw-free graphs. As corollaries of these partial characterizations, we can immediately deduce polynomial
time algorithms to recognize clique-perfect graphs in these classes of graphs.

2. Preliminaries

It has been proved recently that perfect graphs can be characterized by two families of minimal forbidden induced
subgraphs [9] and recognized in polynomial time [8].

Theorem 1 (Strong perfect graph theorem, Chudnovsky et al. [9]). Let G be a graph. Then the following are equivalent:

(i) no induced subgraph of G is an odd hole or an odd antihole.
(ii) G is perfect.

On the other hand, the problem of recognition of clique-perfect chordal graphs can be reduced to the recognition of
balanced graphs, which is solvable in polynomial time [5,13].

Theorem 2 (Lehel and Tuza [19]). Let G be a chordal graph. Then the following are equivalent:

(i) G does not contain odd suns.
(ii) G is balanced.

(iii) G is clique-perfect.

Next we define the family of the so-called “generalized suns” [4]. Let G be a graph and C be a cycle of G not
necessarily induced. An edge of C is non-proper (or improper) if it forms a triangle with some vertex of C. An r-
generalized sun, r �3, is a graph G whose vertex set can be partitioned into two sets: a cycle C of r vertices, with all its
non-proper edges {ej }j∈J (J is permitted to be an empty set) and a stable set U = {uj }j∈J , such that, for each j ∈ J ,
uj is adjacent only to the endpoints of ej . An r-generalized sun is said to be odd if r is odd. Clearly, an odd hole is an
odd generalized sun, with the set of non-proper edges J being empty. Odd suns are also odd generalized suns, since
every edge of the cycle in an r-sun is a non-proper edge.

Theorem 3 (Bonomo et al. [4]). Odd generalized suns and antiholes of length t = 1, 2 mod 3 (t �5) are not clique-
perfect.

Unfortunately, odd generalized suns are not necessarily minimal (with respect to taking induced subgraphs) and
besides there are other minimal non-clique-perfect graphs, for example, the following family of graphs. Define the
graph Sk , k�2, as follows: V (Sk) = {v1, . . . , v2k, v, v′, w, w′} where v1, . . . , v2k induce a path; v is adjacent to
v′, v1, v2, and v2k; v′ is adjacent to v, v1, v2k−1, and v2k; w is adjacent only to v1 and v2; and w′ is adjacent only to
v2k−1 and v2k (Fig. 1).
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Fig. 1. The graph Sk .

Fig. 2. Forbidden induced subgraphs for hereditary clique-Helly graphs: (left to right) 3-sun (or 0-pyramid), 1-pyramid, 2-pyramid, and 3-pyramid.

Every clique of Sk contains at least two of the vertices v1, . . . , v2k, v, so �C(Sk)�k. On the other hand, consider
the following family of cliques of Sk: {v2k−1, v2k, w

′}, {v2k , v, v′}, {v, v1, v′}, {v1, v2, w}, and either {v2, v2k−1}, if
k = 2, or {v2, v3}, . . . , {v2k−2, v2k−1}, if k > 2. No vertex of Sk belongs to more than two of these 2k + 1 cliques, so
�C(Sk)�k + 1.

At this time we do not know whether the list of all such forbidden graphs has a nice description. However, if we
restrict our attention to certain classes of graphs (that can be described by forbidding certain induced subgraphs), we
can describe all the minimal forbidden induced subgraphs.

HCH graphs are of particular interest because in this case it follows from [4] that if K(H) is perfect for every induced
subgraph H of G, then G is clique-perfect (the converse is not necessarily true). On the other hand, the class of HCH
graphs can be characterized by forbidden induced subgraphs.

Theorem 4 (Prisner [23]). A graph G is HCH if and only if it does not contain the graphs of Fig. 2 as induced
subgraphs.

One of our main results in this paper is a characterization of clique-perfect HCH claw-free graphs by forbidden
induced subgraphs. To prove this characterization we use a recent structure theorem for claw-free graphs [11]. In order
to state that theorem we need to introduce some definitions.

A graph G is prismatic if for every triangle T of G, every vertex of G not in T has a unique neighbor in T. A graph G
is antiprismatic if its complement graph G is prismatic.

Construct a graph G as follows. Take a circle C, and let V (G) be a finite set of points of C. Take a set of intervals
from C (an interval means a proper subset of C homeomorphic to [0, 1]) such that there are not three intervals covering
C; and say that u, v ∈ V (G) are adjacent in G if the set of points {u, v} of C is a subset of one of the intervals. Such a
graph is called circular interval graph. When the set of intervals does not cover C, the graph is called linear interval
graph (Fig. 3).

Let G be a graph and A, B be disjoint subsets of V (G). The pair (A, B) is called a homogeneous pair in G if for every
vertex v ∈ V (G)\(A ∪ B), v is either A-complete or A-anticomplete and either B-complete or B-anticomplete. If, in
addition, B is empty, then A is called a homogeneous set. Let (A, B) be a homogeneous pair, such that A, B are both
completes, and A is neither complete nor anticomplete to B. In these circumstances the pair (A, B) is called a W-join.
Note that there is no requirement that A∪B �= V (G). The pair (A, B) is non-dominating if some vertex of G\(A∪B)

has no neighbor in A∪B, and it is coherent if the set of all (A∪B)-complete vertices in V (G)\(A∪B) is a complete.
Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are non-empty and there are no edges between V1

and V2. The pair (V1, V2) is called a 0-join in G. Thus G admits a 0-join if and only if it is not connected.
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Fig. 3. Example of a circular interval graph and its circular interval representation.

Next, suppose that V1, V2 is a partition of V (G), and for i = 1, 2 there is a subset Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a complete, and Ai , Vi\Ai are both non-empty,
• A1 is complete to A2,
• every edge between V1 and V2 is between A1 and A2.
In these circumstances, the pair (V1, V2) is a 1-join.

Now, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for i = 1, 2 there are subsets Ai, Bi of Vi

satisfying the following:

• for i = 1, 2, Ai, Bi are completes, Ai ∩ Bi = ∅, and Ai , Bi , and Vi\(Ai ∪ Bi) are all non-empty,
• A1 is complete to A2, and B1 is complete to B2, and there are no other edges between V1 and V2,
• V0 is a complete, and, for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete to Vi\(Ai ∪ Bi).

The triple (V0, V1, V2) is called a generalized 2-join, and, if V0 = ∅, the pair (V1, V2) is called a 2-join. This is closely
related to, but not the same as, what has been called a 2-join in other papers like [8].

The last decomposition is the following. Let (V1, V2) be a partition of V (G), such that for i=1, 2 there are completes
Ai , Bi , Ci ⊆ Vi with the following properties:

• for i = 1, 2 the sets Ai , Bi , Ci are pairwise disjoint and have union Vi ,
• V1 is complete to V2 except that there are no edges between A1 and A2, between B1 and B2, and between C1 and C2,
• V1, V2 are both non-empty.

In these circumstances it is said that G is a hex-join of G|V1 and G|V2. Note that if G is expressible as a hex-join as
above, then the sets A1 ∪ B2, B1 ∪ C2, and C1 ∪ A2 are three completes with union V (G), and consequently no graph
G with �(G) > 3 is expressible as a hex-join.

Now, define classes S0, . . . ,S6 as follows:

• S0 is the class of all line graphs.
• The icosahedron is the unique planar graph with 12 vertices all of degree five. For 0�k�3, icosa(−k) denotes the

graph obtained from the icosahedron by deleting k pairwise adjacent vertices. A graph G ∈ S1 if G is isomorphic
to icosa(0), icosa(−1), or icosa(−2). As it can be seen in Fig. 4, all of them contain odd holes.

• Let H1 be the graph with vertex set {v1, . . . , v13}, with adjacency as follows: v1v2...v6v1 is a hole in G of length 6;
v7 is adjacent to v1, v2; v8 is adjacent to v4, v5 and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to
v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent
to v1, v2, v4, v5, v7, v8. A graph G ∈ S2 if G is isomorphic to H1\X, where X ⊆ {v11, v12, v13}. Please note that
vertices v3v4v5v6v9v3 induce a hole of length 5 in G (Fig. 5).

• S3 is the class of all circular interval graphs.
• Let H2 be the graph with seven vertices h0, . . . , h6, in which h1, . . . , h6 are pairwise adjacent and h0 is adjacent to

h1. Let H3 be the graph obtained from the line graph L(H2) of H2 by adding one new vertex, adjacent precisely to
the members of V (L(H2)) = E(H2) that are not incident with h1 in H2. Then H3 is claw-free. Let S4 be the class
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Fig. 4. Graphs icosa(0), icosa(−1), and icosa(−2).
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Fig. 5. Graph H1\{v11, v12, v13}. Every graph in S2 contains it as an induced subgraph.
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Fig. 6. Graph H4, for n = 2.

of all graphs isomorphic to induced subgraphs of H3. Note that the vertices of H3 corresponding to the members of
E(H2) that are incident with h1 in H2 form a complete in H3. So every graph in S4 is either a line graph or it has a
singular vertex.

• Let n�0. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} be three completes, pairwise disjoint. For
1� i, j �n, let ai, bj be adjacent if and only if i = j , and let ci be adjacent to aj , bj if and only if i �= j . Let d1, d2,
d3, d4, d5 be five more vertices, where d1 is (A ∪ B ∪ C)-complete; d2 is complete to A ∪ B ∪ {d1}; d3 is complete
to A ∪ {d2}; d4 is complete to B ∪ {d2, d3}; d5 is adjacent to d3, d4; and there are no more edges. Let the graph just
constructed be H4. A graph G ∈ S5 if (for some n) G is isomorphic to H4\X for some X ⊆ A ∪ B ∪ C. Note that
vertex d1 is adjacent to all the vertices but the triangle formed by d3, d4, and d5, so it is a singular vertex in G (Fig. 6).

• Let n�0. Let A = {a0, . . . , an}, B = {b0, . . . , bn}, C = {c1, . . . , cn} be three completes, pairwise disjoint. For
0� i, j �n, let ai, bj be adjacent if and only if i = j > 0, and for 1� i�n and 0�j �n let ci be adjacent to aj , bj

if and only if i �= j �= 0. Let the graph just constructed be H5. A graph G ∈ S6 if (for some n) G is isomorphic to
H5\X for some X ⊆ (A\{a0}) ∪ (B\{b0}) ∪ C, and then G is said to be 2-simplicial of antihat type (Fig. 7).
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Fig. 7. Graph H5, for n = 2.
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Fig. 8. Some graphs mentioned in the paper.

The structure theorem in [11] is the following:

Theorem 5 (Chudnovsky and Seymour [11]). Let G be a claw-free graph. Then either G ∈ S0 ∪ · · · ∪ S6, or G
admits twins, or a non-dominating W-join, or a coherent W-join, or a 0-join, or a 1-join, or a generalized 2-join, or a
hex-join, or G is antiprismatic.

In the proofs in this paper we will mention some special graphs, shown in Fig. 8, and we will use the following
results on perfect graphs, cutsets, and clique graphs (some of the results below are immediate, and in these cases we
do not give a proof or a reference; we state these in order to make it more convenient to refer to them in the future).

Lemma 6. Let G be a graph and v be a simplicial vertex of G. Then G is perfect if and only if G\{v} is.

Theorem 7 (Berge [2]). Let G be a graph and X be a clique cutset of G such that G = M1 + M2 + X. Then the graph
G is perfect if and only if the graphs M1 + X and M2 + X are.

Theorem 8 (Tucker [27]). Let G be a perfect graph and let e = v1v2 be an edge of G. Assume that no vertex of G is a
common neighbor of v1 and v2. Then G\e is perfect.

Let P be an induced path of a graph G. The length of P is the number of edges in P. The parity of P is the parity of
its length. We say that P is even if its length is even, and odd otherwise.

Theorem 9. Let G be a graph, and let u, v ∈ V (G) be non-adjacent such that {u, v} is a cutset of G, G = M1 + M2 +
{u, v}. For i = 1, 2, let Gi be a graph obtained from Mi + {u, v} by joining u and v by an even induced path. If G1 and
G2 are perfect, then G is perfect.

Proof. Suppose G1 and G2 are perfect, and G contains an odd hole or an odd antihole; denote it by A. Since no odd
antihole of length at least 7 has a one- or two-vertex cutset, if A is an odd antihole of length at least 7, then A is contained
either in G1 or in G2, a contradiction. So A is an odd hole, and it is not contained in Mi + {u, v} for i = 1, 2, thus
{u, v} is a cutset for A. Let A1, A2 be the two subpaths of A joining u and v. Then both A1, A2 have length at least
2, and one of them, say A1, is odd. But then, if A1 is contained in Mi + {u, v}, the graph Gi contains an odd hole,
a contradiction. �

Theorem 10 (Chvátal and Sbihi [12]). Let G be a graph and let U be a homogeneous set in G. Let G′ be the graph
obtained from G by deleting all but one vertex of U. Then G is perfect if and only if both G′ and G|U are.
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Theorem 11. Let G be a graph, and let u, v ∈ V (G) such that u dominates v. Then G is perfect if and only if both
G\{u} and G\{v} are.

Proof. The “only if” part is clear, so it is enough to prove that if G\{u} and G\{v} are perfect, then so is G. Since
neither odd holes nor odd antiholes contain a pair of vertices such that one of them dominates the other one, the result
follows from Theorem 1. �

Theorem 12 (Chudnovsky and Seymour [10]). Let G be a claw-free graph admitting an internal clique cutset. Then
G is either a linear interval graph or G admits twins, or a 0-join, or a 1-join, or a coherent W-join.

Lemma 13. Let G be a graph and H a clique subgraph of G. Then K(H) is an induced subgraph of K(G).

Lemma 14. If G admits twins u, v, then K(G) = K(G\{v}).
Lemma 15. If G is disconnected, then so is K(G), and G is K-perfect if and only if each connected component is.

Theorem 16 (Maffray and Reed [22], Protti and Szwarcfiter [24]). Let G be a claw-free graph with no induced 3-fan,
4-wheel, or odd hole. Then K(G) is bipartite.

Graphs whose line graph is perfect were characterized in [26,21].

Theorem 17 (Maffray [21], Trotter [26]). Let G = L(H) be the line graph of a graph H. Then the following three
conditions are equivalent:

(i) G is a perfect graph.
(ii) No subgraph of H is an odd cycle of length at least 5.

(iii) Any connected subgraph H ′ of H satisfies at least one of the following properties:
• H ′ is a bipartite graph;
• H ′ is a complete of size four;
• H ′ consists of exactly p + 2 vertices x1, . . . , xp, a, b, such that {x1, . . . , xp} is a stable set, and {xj , a, b} is a

triangle for each j = 1, . . . , p;
• H ′ has a cutpoint.

3. Partial characterizations

We say that a graph is interesting if no induced subgraph of it is an odd generalized sun or an antihole of length
greater than 5 and equal to 1, 2 mod 3. Since odd generalized suns and antiholes of length greater than 5 and equal
to 1, 2 mod 3 are not clique-perfect, it follows that every clique-perfect graph is interesting. We prove that for some
subclasses of claw-free graphs, this necessary condition is also sufficient.

Our two main results are the following.

Theorem 18. Let G be a line graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd hole
or a 3-sun.

Theorem 19. Let G be an HCH claw-free graph. Then G is clique-perfect if and only if no induced subgraph of G is
an odd hole or an antihole of length 7.

We observe the following:

Proposition 20. Let S be an odd generalized r-sun, and assume that S is claw-free. Then either S is an odd hole or
r = 3.

Proof. As in the definition of a generalized sun, let C be a cycle of S, and let U =V (S)\V (C) be a stable set, such that
every vertex of U is complete to both ends of exactly one non-proper edge of C and has no other neighbor in V (C).
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K

Fig. 9. A clique-perfect graph that is not K-perfect.

We may assume that S is not an odd hole, and so C has at least one non-proper edge. Let c1c2 be a non-proper edge of
C, let c3 ∈ V (C)\{c1, c2} be such that {c1, c2, c3} is a triangle, and let u be the vertex of U adjacent to c1 and c2. We
may assume r > 3, and therefore, possibly with c1 and c2 switched, c1 has a neighbor c′

2 in C, different from c2 and
c3. Since {c1, u, c3, c

′
2} does not induce a claw in S, it follows that c′

2 is adjacent to c3, and therefore c1c
′
2 is another

non-proper edge of S. Let u′ be the vertex of U adjacent to c1 and c′
2. Then {c1, u, u′, c3} is a claw, a contradiction. �

Let us call a class of graphs C hereditary if, for every G ∈ C, every induced subgraph of G also belongs to C. The
following is a useful fact about HCH graphs:

Proposition 21. Let L be a hereditary graph class, such that every graph in L is HCH, and every interesting graph
in L is K-perfect. Then every interesting graph in L is clique-perfect.

Proof. Let G be an interesting graph inL. Let H be an induced subgraph of G. SinceL is hereditary, H is an interesting
graph in L, so it is K-perfect. Since every graph in L is HCH, it follows that H is CH, and so �C(H) = �(K(H)) =
k(K(H)) = �C(H) [4], and the result follows. �

In general, the class of clique-perfect graphs is neither a subclass nor a superclass of the class of K-perfect graphs.
It is not difficult to verify that the 3-sun or 0-pyramid (Fig. 8) is K-perfect but it is not clique-perfect and, on the other
hand, the graph in Fig. 9 is clique-perfect but its clique graph contains a hole of length 5. However, we will prove that
within the classes of graphs analyzed in this paper, clique-perfect graphs are also K-perfect.

3.1. Line graphs

First, we prove that interesting line graphs are K-perfect.

Proposition 22. A line graph is interesting if and only if it has no induced subgraph isomorphic to an odd hole or a
3-sun.

Proof. Since no line graph contains an antihole of length at least 7, and every line graph is claw-free, the result follows
from Proposition 20. �

Note that if G = L(H) then G contains no odd hole if and only if H contains no odd cycle of length at least 5 as a
subgraph. A trinity is the complement of the 3-sun, and its line graph is also the 3-sun. Moreover, the trinity is the only
graph whose line graph is the 3-sun. Therefore, G does not contain a 3-sun if and only if H does not contain a trinity
as a subgraph.

Theorem 23. If G is a line graph and G contains no odd holes, then K(G) is perfect.

Proof. The proof is by induction on |V (G)|. The theorem holds for the graph with one vertex, and in each case we
will reduce the K-perfection of G to the K-perfection of some proper induced subgraphs of G. Since every induced
subgraph of a line graph with no odd holes is also a line graph with no odd holes, the result will then follow from the
inductive hypothesis.

Let G = L(H). By Lemma 15, we may assume H is connected. Since G has no odd holes, it follows that all the odd
cycles of H are triangles. So by Theorem 17 either H is a bipartite graph, or H is a complete of size four, or H consists
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of exactly p + 2 vertices x1, . . . , xp, a, b, such that {x1, . . . , xp} is a stable set, and {xj , a, b} is a triangle for each
j = 1, . . . , p, or H has a cutpoint.

If H is bipartite then G = K(H) and K(G) = K2(H) is an induced subgraph of H [15], so it is bipartite and hence
perfect.

If H is a complete of size four, then K(L(H)) is the complement of 4K2, and so it is perfect (it is the complement
of a bipartite graph).

If H consists of exactly p + 2 vertices x1, . . . , xp, a, b, such that {x1, . . . , xp} is a stable set, and {xj , a, b} is a
triangle for each j = 1, . . . , p, then all the cliques of G contain the vertex corresponding to the edge ab of H, so K(G)

is a complete graph, and hence perfect.
Suppose H has a cutpoint x, and let Mx be the complete subgraph of G induced by the vertices corresponding to the

edges of H incident with x. Since x is a cutpoint of H, Mx is a clique of G, and let v be the vertex of K(G) corresponding
to Mx .

If H =H1+H2+x and both H1 and H2 have at least one edge, then v is a cutpoint of K(G), and K(G)=M1+M2+v,
where Mi is the clique graph of the line graph of the subgraph of H formed by Hi and the edges incident with x with
their respective endpoints. So the property follows from Theorem 7 by the inductive hypothesis.

Otherwise, x is adjacent to at least one vertex y of degree one in H. Let M ′
x be the complete subgraph of L(H\{y})

induced by the vertices corresponding to the edges of H −{y} incident with x. If M ′
x is still a clique of L(H\{y}), then

K(G) = K(L(H\{y})), and the property holds by the inductive hypothesis.
If M ′

x is not a clique in L(H\{y}), then x has degree three in H, and the other two neighbors z and w of x in H are
adjacent. The cliques meeting Mx in G pairwise intersect (all of them contain the vertex corresponding to the edge wz of
H), so v is simplicial in K(G). On the other hand, K(L(H\{y})) = K(G)\{v}, so the property follows from Lemma 6
by the inductive hypothesis. �

Theorem 18 is an immediate corollary of the following:

Theorem 24. Let G be a line graph. Then the following are equivalent:

(i) No induced subgraph of G is an odd hole, or a 3-sun.
(ii) G is clique-perfect.

(iii) G is perfect and it does not contain a 3-sun.

Proof. The equivalence between (i) and (iii) is a corollary of Theorem 17. From Theorem 3 it follows that (ii)
implies (i).

It therefore suffices to prove that (i) implies (ii). This proof is again by induction on |V (G)|. The class of line graphs
with no odd holes or induced 3-suns is hereditary, so we only have to prove that for every graph in this class �C equals
�C. By Theorem 23 and Proposition 22, every such graph is K-perfect. So, by Proposition 21, an interesting HCH line
graph is clique-perfect. Let G = L(H) and suppose that G is not HCH. Then G contains a 0-, 1-, 2-, or 3-pyramid (see
Fig. 2).

A 0-pyramid is a 3-sun. A 2-pyramid is not a line graph, and therefore is not an induced subgraph of G.
Suppose that G contains a 3-pyramid. This happens if and only if H contains a complete set of size four, say K. By

Lemma 15 we may assume H is connected. We analyze how vertices of V (H)\K attach to K. If a vertex v is adjacent
to two different vertices of K, then H contains an odd cycle as a subgraph and G contains an odd hole. If two different
vertices v, w are adjacent to two different vertices of K, then H contains a trinity as a subgraph and so G contains a
3-sun. These cases can be seen in Fig. 10.

So, only one of the four vertices x1, x2, x3, x4 of K may have neighbors in H\K , say x1. Let v, w, z1, z2, z3, and z4
be the vertices of G corresponding to the edges x1x2, x3x4, x1x3, x1x4, x2x4, and x2x3 of H, respectively. The vertex w

is adjacent in G only to z1, z2, z3, and z4. These four vertices induce a hole of length 4 and are adjacent also to v. So
G\{w} is a clique subgraph of G (every clique of G\{w} is a clique of G). On the other hand, since x2 has no neighbors
in H\K , all the neighbors of v other than z3 and z4 are vertices corresponding to edges of H containing x1, and they
are a complete in G. This situation can be seen in Fig. 11.

By the inductive hypothesis, G\{w} is clique-perfect. Let A be a maximum clique-independent set and T be a
minimum clique-transversal of G\{w}. By maximality and by the structure of G, A has exactly one clique containing v.
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Fig. 10. How the remaining vertices of H can be attached to the K4.

v

w

complete

rest of the graph

Fig. 11. Structure of G when H has a K4.

v1

v5

v3

v4

v2

Fig. 12. Subgraph of H when H contains no K4 and G contains a 1-pyramid.

Adding w, four new cliques appear, each one disjoint from a different one of the four cliques containing v, and adding
w to T we have a clique-transversal of G, so �C(G) = �C(G\{w}) + 1 = �C(G\{w}) + 1 = �C(G). So we may assume
that H contains no complete set of size four.

Suppose finally that G contains a 1-pyramid. Since G contains a 1-pyramid, H contains as a subgraph a graph on
five vertices v1, . . . , v5 where v1 is adjacent to v2, v3 and v4, v2 is adjacent to v3 and v4, and v3 is adjacent to v5
(Fig. 12). Moreover, v3 and v4 are not adjacent because H does not contain a complete set of size four; v1 and v2 are not
adjacent to v5, otherwise H contains an odd cycle as a subgraph; and v1 and v2 do not have other neighbors, otherwise
H contains a trinity as a subgraph. Then v1 and v2 form a cutset in H, because if there is a path v3Pv4 in H\{v1, v2},
then either v3Pv4v1v3 or v3Pv4v1v2v3 is an odd cycle in H.

Let w1, . . . , w5 be the vertices of G corresponding to the edges v1v3, v2v3, v1v4, v2v4, and v1v2 of H, respectively.
Then w1w2w4w3w1 is a hole of length 4 in G, w5 is adjacent only to w1, w2, w3, w4, and w2, w3, w5 is a cutset of G.
The remaining neighbors of w1 or w2 are adjacent to both w1 and w2, and form a non-empty complete in G (they are
the vertices corresponding to the edges of H containing v3 and not v1 or v2, and there exists at least one such edge,
namely the edge v3v5). Similarly, the remaining neighbors of w3 or w4 are adjacent to both w3 and w4, and form a
(possibly empty) complete in G. The structure of G in this case can be seen in Fig. 13.

We show that �C(G) = �C(G′) and �C(G) = �C(G′), where G′ is the line graph of the graph H ′ obtained from H by
deleting the edges v2v3 and v1v4. So G′ = G\{w2, w3}.
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complete

rest of the graph II

rest of the graph I

complete

w2

w3

w5

w1

w4

Fig. 13. Structure of G when H has no K4.

Since every clique-transversal of G′ either contains w5, or contains both w1 and w4, it follows that every clique-
transversal of G′ is a clique-transversal of G. On the other hand, starting with a clique-transversal T of G and replacing
the vertices w2 and w3 by w1 and w4, respectively, if w2 or w3 belong to T, produce a clique-transversal of G′. Therefore
�C(G) = �C(G′).

We claim that there is a maximum clique-independent set of G not containing either of the cliques {w1, w3, w5},
{w2, w4, w5}. Suppose the claim is false. Let I be a clique-independent set of G, we may assume I contains the clique
{w1, w3, w5}. Then I does not contain any other clique containing w1 or w5; and since the only clique containing w2
and not w1 is {w2, w4, w5}, it follows that every clique in I is disjoint from {w1, w2, w5}. But now the set obtained
from I by removing the clique {w1, w3, w5} and adding the clique {w1, w2, w5} has the desired property. This proves
the claim.

Let I be a maximum clique-independent set of G not containing either of the cliques {w1, w3, w5}, {w2, w4, w5}.
Let I ′ be a set of cliques of G′ obtained from I by replacing the clique {w1, w2, w5} by {w1, w5} if {w1, w2, w5} ∈ I ,
and the clique {w3, w4, w5} by {w4, w5} if {w3, w4, w5} ∈ I . On the other hand, clearly every clique-independent-set
of G′ gives rise to a clique-independent set of G, and therefore �C(G) = �C(G′).

But now, since G′ is a proper induced subgraph of G, it follows inductively that �C(G′) = �C(G′), and therefore
�C(G) = �C(G). This completes the proof of Theorem 24. �

The recognition of clique-perfect line graphs can be solved in linear time in the following way. Given a graph G, in
linear time we can obtain a graph H such that L(H) = G, or deduce that such a graph does not exist [20]. Now, by
Theorems 24 and 17, and since G contains a 3-sun if and only if H contains a trinity as a subgraph, it suffices to check
if H contains an odd cycle of length at least 5 or a trinity as a subgraph. It can be done in linear time in the number of
edges of H, which is the number of vertices of G, combining the ideas in the proofs of Theorems 17 and 24.

3.2. HCH claw-free graphs

Let us first describe interesting HCH claw-free graphs.
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Proposition 25. No HCH graph contains an antihole of length at least 8. An HCH claw-free graph is interesting if
and only if it does not contain an odd hole or an antihole of length 7.

Proof. Since by Theorem 4 an HCH graph contains no induced subgraph isomorphic to one of the graphs of Fig. 2, it
follows that no HCH graph contains a 3-sun. Since every antihole of length at least 8 contains a 2-pyramid, it follows
that no HCH graph contains an antihole of length at least 8. Finally, since by Proposition 20, every claw-free odd
generalized sun is either an odd hole or a 3-sun, it follows that an HCH claw-free graph is interesting if and only if it
contains no odd hole and no antihole of length 7. �

We will use Proposition 21 to prove the characterization for HCH claw-free graphs, so first we need to prove the
following.

Theorem 26. Let G be an interesting HCH claw-free graph. Then K(G) is perfect.

In the remainder of this section we use the structure theorem for claw-free graphs (Theorem 5) to prove that every
interesting HCH claw-free graph G is K-perfect. The proof is by induction on |V (G)|.

3.2.1. Circular interval graphs
First we prove that clique graphs of interesting HCH circular interval graphs are perfect.

Lemma 27. Let G be a circular interval graph. Then K(G) is an induced subgraph of G.

Proof. Let G be a circular interval graph with vertices v1, . . . , vn in clockwise order, say. We define a homomorphism
v from V (K(G)) to V (G) (meaning that for two distinct vertices a, b ∈ V (K(G)), v(a) �= v(b); and a is adjacent to
b if and only if v(a) is adjacent to v(b)). For every clique M of G, since no three intervals in the definition of a circular
interval graph cover the circle, M = {vi, . . . , vi+t } (where the indices are taken mod n). In this case we say that vi is
the first vertex of M. We define v(M) = vi . Since vi is the first vertex of a unique clique, it follows that v(M) �= v(M ′)
if M and M ′ are distinct cliques of G. It remains to show that v(M) is adjacent to v(M ′) if and only if M ∩ M ′ �= ∅.
If M and M ′ intersect at a vertex vk , then the clockwise order of v(M), v(M ′), and vk is either v(M), v(M ′), vk or
v(M ′), v(M), vk , and in both cases v(M) and v(M ′) are adjacent. On the other hand, if there are two cliques such that
v(M) and v(M ′) are adjacent, we may assume v(M) appears first clockwise in the circular interval which contains
both v(M) and v(M ′). Then since v(M) is the first vertex of the clique M, it follows that v(M ′) belongs to M, so M
and M ′ intersect. �

Proposition 28. Let G be an HCH interesting circular interval graph. Then K(G) is perfect.

Proof. By Lemma 27, K(G) is an induced subgraph of G. Since G is HCH and interesting, it contains no odd hole
and no antihole of length at least 7, and therefore it is perfect by Theorem 1. �

3.2.2. Decompositions
Now we show that if an interesting HCH claw-free graph admits one of the decompositions of Theorem 5, then either

it is K-perfect or we can reduce the problem to a smaller one.

Theorem 29. Let G be an interesting HCH claw-free graph. If G admits a 1-join, then K(G) has a cutpoint v,
K(G) = H1 + H2 + v, and Hi + v is the clique graph of a smaller interesting HCH claw-free graph.

Proof. Since G admits a 1-join, it follows that V (G) is the disjoint union of two non-empty sets V1 and V2; each Vi

contains a complete Mi , such that M1 ∪ M2 is a complete, and there are no other edges from V1 to V2. So M1 ∪ M2
is a clique in G. Let v be the vertex of K(G) corresponding to M1 ∪ M2. Every other clique of G is either contained
in V1 or in V2, and no clique of the first type intersects a clique of the second type. So v is a cutpoint of K(G), and
K(G) = H1 + H2 + v, where H1 (H2) is the subgraph of K(G) induced by the vertices corresponding to cliques of G
of the first (second) type. Let Gi be the graph obtained from G|Vi by adding a vertex vi complete to Mi and with no
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other neighbors in Gi . Then Gi is isomorphic to an induced subgraph of G, so it is interesting, HCH, and claw-free,
and, for i = 1, 2, Hi + v is isomorphic to K(Gi) (where the vertex v is mapped to the vertex of K(Gi) corresponding
to the clique Mi ∪ {vi} of Gi). This proves Theorem 29. �

Theorem 30. Let G be an interesting HCH claw-free graph. If G admits a generalized 2-join and no twins, 0-join or
1-join, then there exist two clique graphs of smaller interesting HCH claw-free graphs, H1 and H2, such that if H1 and
H2 are perfect, then so is K(G).

Proof. Since G admits a generalized 2-join, it follows that V (G) is the disjoint union of three sets V0, V1, and V2;
for i = 1, 2 each Vi contains two disjoint completes Ai , Bi , such that Ai , Bi , and Vi\(Ai ∪ Bi) are all non-empty,
A1 ∪A2 ∪V0 and B1 ∪B2 ∪V0 are completes, and there are no other edges from V1 to V2 or from V0 to V1 ∪V2. Since
G admits no twins, it follows that |V0|�1.

So A1 ∪ A2 ∪ V0 and B1 ∪ B2 ∪ V0 are cliques of G, and they correspond to vertices w1, w2 of K(G). Every other
clique of G is either contained in V1 or in V2, and no clique of the first type intersects a clique of the second type. So
{w1, w2} is a cutset in K(G).

If V0 is non-empty, then w1 is adjacent to w2 and {w1, w2} is a clique cutset in K(G). Let V0 = {v0}. Now
K(G)=M1 +M2 +{w1, w2}, where, for i =1, 2, Hi =Mi +{w1, w2} is the clique graph of the subgraph of G induced
by Vi ∪ {v0}. By Theorem 7, K(G) is perfect if and only if H1 and H2 are. So we may assume that V0 is empty, and
therefore w1 is non-adjacent to w2.

We start with the following easy observation:

(∗) Let S be a graph which is either a claw, or an odd hole, or C7, or a 0-, 1-, 2-, or 3-pyramid, and suppose there exists
a vertex s ∈ V (S), whose neighborhood is the union of two non-empty completes with no edges between them.
Then S is an odd hole.

Since G admits no 0-join or 1-join, for i = 1, 2 there exist ai in Ai and bi in Bi joined by an induced path with
interior in Vi\(Ai ∪ Bi). (The interior of a path is the set of vertices different from the endpoints; the interior may be
empty, if ai and bi are adjacent.)

Then, since G contains no odd hole, for every ai in Ai and bi in Bi , all induced paths from a1 to b1 with interior in
V1\(A1 ∪ B1) and all induced paths from a2 to b2 with interior in V2\(A2 ∪ B2) have the same parity.

Case 1: This parity is even. Note that in this case Ai is anticomplete to Bi . Let H be the graph obtained from K(G)

by adding the edge w1w2. Since Ai is anticomplete to Bi , there is no clique in G intersecting both A1 ∪A2 and B1 ∪B2.
So w1 and w2 have no common neighbor in K(G). By Theorem 8, if H is perfect then K(G) is.

Construct graphs Gi with vertex set Vi ∪ {vi}, where Gi |Vi = G|Vi and vi is complete to Ai ∪ Bi and has no other
neighbors in Gi . Now, H = M1 + M2 + {w1, w2}, with Mi + {w1, w2} = K(Gi), and {w1, w2} is a clique cutset in H.
By Theorem 7, it follows that if K(G1) and K(G2) are perfect then H is perfect and thus K(G) is perfect.

We claim that for i = 1, 2 the graphs Gi are claw-free, HCH, and interesting. Suppose that G1, say, is not. So G1
contains an induced subgraph S isomorphic to a claw, an odd hole, C7, or a 0-, 1-, 2-, or 3-pyramid. If V (S) does
not contain v1, then S is isomorphic to an induced subgraph of G, a contradiction. If V (S) contains v1 but has empty
intersection with A1 or B1, say B1, then S is isomorphic to an induced subgraph of G, obtained by replacing v1 by
any vertex of A2, a contradiction. So V (S) meets both A1 and B1, and therefore the neighborhood of v1 in S can be
partitioned into two non-empty completes AS , BS , such that AS is anticomplete to BS . By (*), S is an odd hole. Let
a1 ∈ A1 and b1 ∈ B1 be the neighbors of v1 in S. Then S\{v1} is an induced odd path from a1 to b1 with interior in
V1\(A1 ∪ B1), a contradiction.

Case 2: This parity is odd. Construct graphs Gi with vertex set Vi +{vA,i, vB,i}, where Gi |Vi =G|Vi , vA,i is complete
toAi ,vB,i is complete toBi ,vA,i is adjacent tovB,i , and there are no other edges inGi . Now,K(G)=M1+M2+{w1, w2},
and K(Gi) is obtained from Mi + {w1, w2} by joining w1 and w2 by an induced path of length 2. By Theorem 9, if
K(G1) and K(G2) are perfect, so is K(G).

We claim that both Gi are claw-free, interesting, and HCH. Suppose that G1 contains an induced subgraph S
isomorphic to a claw, an odd hole, C7, or a 0-, 1-, 2-, or 3-pyramid.

If V (S) does not contain vA,1 or vB,1, say vB,1, then S is isomorphic to an induced subgraph of G, obtained by
replacing vA,1 by any vertex of A2, a contradiction. If V (S) contains vA,1 and vB,1 but has empty intersection with A1
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or B1, say B1, then S is isomorphic to an induced subgraph of G, obtained by replacing vA,1 and vB,1 by two adjacent
vertices a2, c2 of V2 such that a2 ∈ A2 and c2 ∈ V2\A2 (such a pair of vertices exist because there is at least one
path from A2 to B2 in G), a contradiction. So V (S) meets both A1 and B1, and the neighborhood of vA,1 in S can
be partitioned into two non-empty completes with no edges between them, namely AS = A1 ∩ V (S) and {vB,1}. By
(*) S is an odd hole. Let a1 ∈ A1 and b1 ∈ B1 be the neighbors of vA,1 and vB,1 in V (S) ∩ V1, respectively. Then
S\{vA,1, vB,1} is an induced even path from a1 to b1 with interior in V1\(A1 ∪B1), a contradiction. This concludes the
proof of Theorem 30. �

Lemma 31. Let G be an HCH graph such that G is a bipartite graph. Then K(G) is perfect.

Proof. In this proof we use the vertices of K(G) and the cliques of G interchangeably. By Theorem 1, if K(G) is not
perfect then it contains an odd hole or an odd antihole.

Let A, B be two disjoint completes of G such that A ∪ B = V (G). If there exists a vertex v of G adjacent to every
other vertex in G, then v belongs to every clique of G and K(G) is a complete graph, and therefore perfect. So we may
assume that no vertex of A is complete to B and no vertex of B is complete to A. Then A and B are cliques of G, and
every other clique of G meets both A and B. The degree of A and B in K(G) is |V (K(G))| − 1, so they cannot be part
of an odd hole or an odd antihole in K(G).

It is therefore enough to show that there is no odd hole or antihole in the graph obtained from K(G) by deleting the
vertices A and B. We prove a stronger statement, namely that there is no induced path of length 2 in this graph. Since
every hole and antihole of length at least 5 contains a two-edge path, the result follows.

Suppose for a contradiction that there are three cliques X, Y, and Z in G, each meeting both A and B, and such that X
is disjoint from Z, and both X ∩ Y and Y ∩ Z are non-empty. From the symmetry we may assume that X ∩ Y contains
a vertex axy ∈ A.

Suppose first that there is a vertex ayz ∈ A ∩ Y ∩ Z. Let by be a vertex in Y ∩ B. Since no vertex of B is complete
to A, there is a vertex a in A non-adjacent to by . Since ayz does not belong to X, there is a vertex bx in X non-adjacent
to ayz, and since A is a complete, bx belongs to B. Analogously, since axy does not belong to Z, there is a vertex bz in
B ∩ Z non-adjacent to axy . But now {axy , ayz, by , bz, bx , a} induce a 1-, 2-, or 3-pyramid, a contradiction.

So A ∩ Y ∩ Z is empty, and therefore B ∩ Y ∩ Z is non-empty, and, by the argument of the previous paragraph with
A and B exchanged, B ∩ X ∩ Y is empty. Choose byz in B ∩ Y ∩ Z. Choose az in Z ∩ A, then az /∈ X ∪ Y . Since az

does not belong to X, there is a vertex bx ∈ X non-adjacent to az, and, since A is a complete, bx is in B. Since byz does
not belong to X and B is a complete, there is a vertex ax ∈ A ∩ X non-adjacent to byz; and since axy does not belong
to Z and A is a complete, there is a vertex bz ∈ B ∩ Z non-adjacent to axy . But now {az, axy, byz, ax, bx, bz} induces a
2- or a 3-pyramid, a contradiction. This proves Lemma 31. �

Theorem 32. Let G be a connected interesting HCH claw-free graph, and suppose G admits no twins. Assume that G
admits a coherent or a non-dominating W-join (A, B). Then either K(G) is perfect, or there exist induced subgraphs
G1, . . . , Gk of G, each smaller than G, such that if Gi is K-perfect for every i = 1, . . . , k, then so is G.

Proof. Choose a coherent or non-dominating W-join (A, B) with A ∪ B minimal. Let C be the vertices complete to A
and anticomplete to B, D be the vertices complete to B and anticomplete to A, E be the vertices complete to A ∪ B, and
F be the vertices anticomplete to A ∪ B. Since the W-join (A, B) is either coherent or non-dominating, it follows that
either E is a complete, or F is non-empty.

32.1. A ∪ C, B ∪ D are both completes, and E is anticomplete to F.

Suppose not. Assume first that there exist two non-adjacent vertices c1, c2 in C. Choose a in A and b in B such that
a is adjacent to b; now {a, c1, c2, b} is a claw, a contradiction. So C is a complete, and since A is a complete, it follows
that A ∪ C is a complete. From the symmetry it follows that B ∪ D is a complete.

Next assume that there are two adjacent vertices e in E and f in F. Choose a in A and b in B such that a is not adjacent
to b. Then {e, a, b, f } is a claw, a contradiction. This proves 32.1

Let E1 be a clique of G|E. Let L be the set of all cliques of G|(A ∪ B). Let

U = {E1 ∪ L : L ∈ L and L �= A, B}.
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Since E is anticomplete to F, and every member of U meets both A and B, it follows that the members of U are cliques
of G.

32.2. We may assume that |U |�2.

Suppose |U |�1. Since in G there is at least one edge between A and B, it follows that there is a unique clique L
in G|(A ∪ B) meeting both A and B, and |U | = 1. Let A′ = A ∩ L, B ′ = B ∩ L. Then A′ is complete to B ′, A\A′
is anticomplete to B, and B\B ′ is anticomplete to A. Since G does not admit twins, each of A′, A\A′, B ′, B\B ′ has
size at most one, and by the minimality of A ∪ B at most one of A\A′, B\B ′ is non-empty. By the symmetry, we may
assume that B\B ′ is empty and |A′| = |B ′| = |A\A′| = 1. Let A′ = {a1}, B ′ = {b1}, and A\A′ = {a2}.

If K(G\{a2}) = K(G) then the theorem holds, so we may assume not. Therefore, there exists a subset E′ of E such
that M = A ∪ E′ is a clique of G. It follows, in particular, that no vertex of C is complete to E.

If G|E is complete, consider the cliques M1 = {a1, b1} ∪ E and M2 = {a1, a2} ∪ E of G. Since every clique of G
containing a2 also contains a1, then every clique of G, that has a non-empty intersection with M2, meets M1. Therefore,
the vertex w1 of K(G), corresponding to M1, dominates the vertex w2 of K(G), corresponding to M2. Since K(G)\{w1}
is an induced subgraph of K(G\{a1}) and K(G)\{w2} = K(G\{a2}), by Theorem 11, K(G) is perfect if K(G\{a1})
and K(G\{a2}) are and the theorem holds. So we may assume that E is not a complete.

Next we claim that D is empty. Since E is not a complete, there are two non-adjacent vertices e1, e2 in E, and let d in D.
If d is non-adjacent to both of e1 and e2, then {b1, e1, e2, d} is a claw, a contradiction. Otherwise, {b1, e1, e2, d, a1, a2}
induces a 1- or 2-pyramid, a contradiction. This proves that D is empty.

Since D is empty, every clique disjoint from F contains the vertex a1, and, since every clique containing a vertex
of F is disjoint from A, B, and E, it follows that the vertices of K(G) corresponding to the cliques {a1, b1} ∪ E′,
with E′ a clique of G|E, are simplicial in K(G). By Lemma 6, K(G) is perfect if and only if K(G\{b1}) is. This
proves 32.2.

32.3. We may assume that no vertex of B is complete to A, and no vertex of A is complete to B.

Suppose there is a vertex b ∈ B complete to A. Since A is not complete to B, there is a vertex b′ ∈ B\{b}. By 32.2,
|A| > 1. But now (A, B\{b}) is a coherent or non-dominating W-join in G, contrary to the minimality of A ∪ B. This
proves 32.3.

In view of 32.2 and 32.3, we henceforth assume that |U |�2, no vertex of A is complete to B, and no vertex of B is
complete to A.

32.4. G|E is complete.

Since no vertex of B is complete to A, and there is at least one edge between A and B, there is a vertex a1 ∈ A with
a neighbor b1 and a non-neighbor b2 in B. Since b1 is not complete to A, there is a vertex a2 ∈ A, non-adjacent to b1.
Since A, B are both cliques, a1 is adjacent to a2 and b1 to b2. If there exist two non-adjacent vertices e1 and e2 in E,
then {a1, a2, b1, b2, e1, e2} induces a 2- or a 3-pyramid in G, a contradiction. This proves 32.4.

32.5. Every vertex of K(G)\U with a neighbor in U is complete to U.

Throughout the proof of 32.5 we use cliques of G and vertices of K(G) interchangeably.
It follows from 32.4 that E1 = E. Let w be a vertex of K(G)\U with a neighbor in U. Since w has a neighbor in U,

it follows that w meets one of A, B, E. If w meets E, then w is complete to U and the result follows. If w includes one
of A, B, then since every member of U meets each of A, B, we again deduce that w is complete to U and the result
follows. So we may assume that w is disjoint from E, and the sets w ∩ (A ∪ B), A\{w}, and B\{w} are all non-empty.

Assume first that w meets both A and B. Since w is a clique of G, C ∪ F is anticomplete to B, and D ∪ F is
anticomplete to B, it follows that w ⊆ A ∪ B ∪ E. But now, since w is a clique, it follows that w includes E and w

belongs to U, a contradiction. So we may assume that w is disjoint from at least one of A and B.
By the symmetry we may assume that w is disjoint from B, and therefore w meets A. Since F ∪D is anticomplete to

A, it follows that w is a subset of A ∪ C ∪ E, and, since w is a clique, w includes A, a contradiction. This proves 32.5.
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32.6. U is a homogeneous set in K(G) and the graph K(G)|U is perfect.

It follows from 32.5 that U is a homogeneous set in K(G). The graph K(G)|U is isomorphic to the graph obtained
from K(G|(A∪B ∪E)) by deleting the vertices corresponding to the cliques A∪E and B ∪E. Since G|(A ∪ B ∪ E)

is bipartite, it follows from Lemma 31 that K(G)|U is perfect. This proves 32.6.
Choose u ∈ U .

32.7. If there exist a1, a2 ∈ A and b1, b2 ∈ B such that a1 is adjacent to b1 and not to b2, and a2 is adjacent to b2 and
not to b1, then either K(G) is perfect, or there is an induced subgraph G′ of G such that K(G)\(U\{u}) = K(G′).

If there exist non-adjacent c ∈ C and e ∈ E, then {a1, a2, e, c, b1, b2} induces a 1-pyramid, a contradiction, so C
is complete to E, and similarly D is complete to E. By 32.4, G|E is complete. Since G admits no twins, |E|�1. If
C ∪ D is empty, then, since G is connected, F is empty, and G is the complement of a bipartite graph. By Lemma
31, K(G) is perfect. So we may assume that C is non-empty, and, in particular, A ∪ E is not a clique of G. But now
K(G)\(U\{u}) = K(G\((A ∪ B)\{a1, b1, b2})). This proves 32.7.

To finish the proof, let a1 ∈ A and b1 ∈ B be adjacent. By 32.3, there exist a vertex b2 ∈ B, non-adjacent to a1 and
a vertex a2 ∈ A non-adjacent to b1. If a2 is adjacent to b2, then the theorem follows from 32.6, 32.7, and Theorem 10.
So we may assume that a2 is non-adjacent to b2. Let G′ = G\((A ∪ B)\{a1, b1, a2, b2}). We deduce from 32.2 that G′
is smaller than G. Moreover, G′ is an induced subgraph of G. But K(G)\(U\{u}) = K(G′), and, together with 32.6
and Theorem 10, this implies that the theorem holds. This proves Theorem 32. �

Theorem 33. Let G be an interesting HCH claw-free graph. Suppose G admits a hex-join and no twins and every
vertex of G is in a triad. Then G = C6.

Proof. Since G admits a hex-join, there exist six completes A1, B1, C1, A2, B2, C2 in G such that A1 is anticomplete
to A2 and complete to B2 and C2; B1 is anticomplete to B2 and complete to A2 and C2; C1 is anticomplete to C2 and
complete to A2 and B2; A1 ∪ B1 ∪ C1 and A2 ∪ B2 ∪ C2 are non-empty; and V (G) = A1 ∪ B1 ∪ C1 ∪ A2 ∪ B2 ∪ C2.
Since every vertex of G is in a triad and no stable set of size three meets both A1 ∪B1 ∪C1 and A2 ∪B2 ∪C2, it follows
that Ai , Bi , Ci are all non-empty.

Suppose there is an edge a1b
′
1 with a1 in A1 and b′

1 in B1. Since every vertex is in a triad, there exists a stable set
{a2, b2, c2} with a2 in A2, b2 in B2, and c2 in C2, and a stable set {a1, b1, c1} with a1 in A1, b1 in B1, and c1 in C1.
Since G is interesting, a1b

′
1a2c1b2a1 is not a hole in G, so b′

1 is adjacent to c1. But now {b′
1, a1, b1, c1} is a claw in G,

a contradiction. So A1 is anticomplete to B1, C1. Since the vertices of A1 are not twins in G, it follows that |A1| = 1.
From the symmetry, |Ai |= |Bi |= |Ci | = 1 for i = 1, 2, and G = C6. This proves Theorem 33. �

Theorem 34. Let G be an interesting HCH graph. Assume that G admits no twins and no coherent or non-dominating
W-join, and contains no stable set of size three. Then K(G) is perfect.

Proof. Since G is claw-free, we may assume G contains either a 4-wheel or a 3-fan, otherwise, by Theorem 16, K(G)

is bipartite.
Case 1: G contains a 4-wheel. Let a1a2a3a4a1 be a hole and let c be adjacent to all ai . We claim every vertex in G

is adjacent to c. Suppose v is non-adjacent to c. Then since G contains no stable set of size three, from the symmetry
we may assume v is adjacent to a1, a2. But now {a1, a2, a3, a4, c, v} induces a 1-, 2-, or 3-pyramid, a contradiction.
So every clique in G contains c; then K(G) is a complete graph and the result follows. This proves Case 1.

Case 2: G contains a 3-fan and no 4-wheel. Let A1, . . . , Ak be anticonnected sets in G, pairwise complete to each
other, with k > 2, |A1| > 1, and subject to that with maximal union, say A. (Such sets exist because there is a 3-fan. Let
c1c2c3c4 be a path and let c be adjacent to all ci . Then A1 = {c1, c3}, A2 = {c2}, A3 = {c} make a family of sets with
the desired properties.)

Suppose |A2| > 1. Then, since A1, A2 are both anticonnected, each of A1, A2 contains a non-edge, say aibi . Choose
a3 in A3. Now {a1, a2, b1, b2, a3} is a 4-wheel, a contradiction. So for 2� i�k, |Ai | = 1, and let Ai = {ai}.

(*) No vertex in V (G)\A is complete to more than one of A1, . . . , Ak .
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Let v be a vertex in V (G)\A and define I = {i : 1� i�k and v is complete to Ai} and J = {j : 1�j �k and v

has a non-neighbor in Aj }. Suppose |I | > 1. Define A′
t = At for t ∈ I and A′

J = ⋃
j∈J Aj ∪ {v}. Then {A′

i}i∈I , A
′
J is

a collection of at least three anticonnected sets, pairwise complete to each other, but their union is a proper superset of
A, contrary to the maximality of A. This proves (*).

(**) There is no C4 in A1.

Otherwise, G contains a 4-wheel with center a2, a contradiction. This proves (**).
Since |A1| > 1 and A1 is anticonnected, A1 contains a non-edge, and so, since there is no stable set of size three in

G, every vertex of V (G)\A has a neighbor in A1. Let A′ = A\A1. If no vertex of V (G)\A has a neighbor in A′, then
the vertices of A′ are twins (they are pairwise adjacent, complete to A1, and anticomplete to V (G)\A), a contradiction.

So there exists v in V (G)\A with a neighbor in A1 and a neighbor a′ in A′. By (*) v has a non-neighbor a′′ in A′.
If v has two non-adjacent neighbors in A1, say x, y, then xvya′′x is a 4-hole and a′ is complete to it, so G contains
a 4-wheel, a contradiction. So the neighbors of v in A1 are a complete. Since G has no stable set of size three, the
non-neighbors of v in A1 are a complete. Thus, G|A1 is the union of two completes (complement bipartite), and since
it is anticonnected the bipartition is unique, say X, Y , both X and Y are non-empty, and every vertex of V (G)\A with
a neighbor in A′ is either complete to X and anticomplete to Y, or complete to Y and anticomplete to X. Let X′ be the
vertices with a neighbor in A′ and complete to X, Y ′ be the vertices with a neighbor in A′ and complete to Y. Then,
X′ ∪ Y ′ is non-empty, and since there is no stable set of size three in G, X′, Y ′ are both completes.

For i = 2, . . . , k let Xi be the vertices of X′ adjacent to ai , and let Yi be defined similarly. By (*), Xi ∩ Xj = ∅ for
i �= j , and the same holds for Yi, Yj . If there is an edge from X to Y then there is no edge from Xi to Yi , or else G
contains a 4-wheel with center ai .

34.1. k�4 and X′ = Xi , Y ′ = Yj for some i different from j.

Suppose both X2, X3 are non-empty, choose x2 in X2 and x3 in X3. Then a2x2x3a3a2 is a hole of length 4, and
every x in X is complete to it, so G contains a 4-wheel, a contradiction. So we may assume that X′ = X2 and, similarly,
Y ′ = Yj for some j. If Y2 is non-empty, then since x2, y2, a3 is not a stable set of size three, x2 is adjacent to y2. Since
A1 is anticonnected, there exist non-adjacent vertices x ∈ X and y ∈ Y . But now xx2y2ya3x is a hole of length 5, a
contradiction. So Y2 is empty and therefore i is different from j, say j = 3. Since a4, a5 are not twins, k�4. This proves
34.1.

By 34.1 we may assume that X′ = X2, Y ′ = Y3. Let Z be the vertices of G with no neighbor in A′. Then, since G
contains no triad, Z is a complete.

34.2. Every vertex in Z is complete to X′ ∪ Y ′ and to one of X, Y.

If some vertex z in Z has a non-neighbor x2 in X2, then z, x2, a3 is a stable set of size three, a contradiction, so Z is
complete to X′, and similarly to Y ′. Next suppose some vertex z in Z has a non-neighbor x in X and a non-neighbor y
in Y. Then x is adjacent to y, and there is an odd antipath Q from x to y in X ∪ Y . By (**) X ∪ Y contains no C4, so Q
has length 3, say Q = xy′x′y. Since there is no stable set of size three, z is adjacent to y′ and x′. But then zx′xyy′z is
a hole of length 5, a contradiction. This proves 34.2.

Let Zx be the vertices of Z complete to X, and let Zy = Z\Zx .

34.3. If Z, X′, Y ′ are all non-empty then the theorem holds.

We may assume Zx is non-empty. Since a2x2zy3a3a2 (where z ∈ Z, x2 ∈ X2, and y3 ∈ Y3) is not a hole of length
5, X2 is complete to Y3. Suppose z in Zx has a neighbor y in Y. Since A1 is anticonnected, y has a non-neighbor x in X.
But now a3za2y3xyx2a3 (with x2 in X2 and y3 in Y3) is an antihole of length 7, a contradiction. So Zx is anticomplete
to Y. Choose z in Zx and non-adjacent x in X and y in Y. Then zxa2yy3z is a hole of length 5, a contradiction. This
proves 34.3.

34.4. If Z is empty then the theorem holds.
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The pairs (X, Y ) and (X2, Y3) are coherent homogeneous pairs, and, since G does not admit twins or a coherent
W-join, all four of these sets have size �1. Every vertex of G is adjacent to a3, except the vertex x2 of X2, if X′ is
non-empty. So every clique of G contains either a3 or x2, and therefore K(G) is perfect (it is either a complete graph,
or the complement of a bipartite graph). This proves 34.4.

In view of 34.4, we henceforth assume that Z �= ∅. By 34.3 we may assume X′ is empty, and so Y ′ is non-empty.
By 34.1 we may assume Y ′ = Y3. Since the vertices of Y3 are not twins, Y3 = {y3}.

34.5. Z is complete to Y.

Suppose not. Choose z in Z, with a non-neighbor y inY. Then z in Zx . Since A1 is anticonnected, y has a non-neighbor
x in X. But now zxa2yy3z is a hole of length 5, a contradiction. This proves 34.5.

Let M be the set of vertices in X with a neighbor in Z. Suppose some z in Z has adjacent neighbors x in X and y in
Y. Then zxa3y3z is a hole of length 4, and y is complete to it, so G contains a 4-wheel, a contradiction. This proves
that M is anticomplete to Y. Now (Z, M) is a coherent homogeneous pair, and the same for (X\M, Y). Since G admits
no twins and no coherent W-join, all four of these sets have size �1. Also, since a2 and a4 are not twins, k = 3. Let
Z = {z}. Every vertex of G different from z is adjacent to a3. So every clique of G contains either a3 or z, and then
K(G) is perfect (it is the complement of a bipartite graph). This completes the proof of Theorem 34. �

Theorem 35. Let G be an interesting HCH claw-free graph, and suppose that G is connected, does not admit a coherent
or non-dominating W-join, or a 1-join, or twins. If G contains a stable set of size three and a singular vertex, then
K(G) is perfect.

Proof. The proof is by induction on |V (G)|. Assume that, for every smaller graph G′ satisfying the hypotheses of the
theorem, K(G′) is perfect. Let v be a singular vertex in G with maximum number of neighbors (there exists at least
one singular vertex in G, by hypothesis). Let A be the set of neighbors of v and B be the set of its non-neighbors. Since
v is singular, B is a complete.

Since G contains a stable set of size three, and every such set meets both A and B (because B is a complete, and G is
claw-free), there exist vertices in B that are non-singular. Let U be the set of all such vertices.

35.1. If U is anticomplete to A then K(G) is perfect.

Let B2 = B\U , so every vertex of B2 is singular, and, since G is connected, B2 is non-empty. Let a1, a2 be two
non-adjacent vertices in A. If b ∈ B2 is non-adjacent to both a1, a2, then {b, a1, a2} is a stable set of size three, and
if b is adjacent to both a1, a2 then {b, a1, a2, u} is a claw for every u ∈ U ; in both cases we get a contradiction. So
every vertex in B2 is adjacent to exactly one of a1, a2. Suppose there exist v1, v2 in B2 with vi adjacent to ai . Then
v1v2a2va1v1 is a hole of length 5, a contradiction. So one of a1, a2 is anticomplete to B2, and therefore the other
one is complete to B2. Let A1 be the vertices in A complete to B2, A2 be the vertices in A anticomplete to B2, and
A3 = A\(A1 ∪ A2). It follows from the previous argument that A1 ∪ A3 and A2 ∪ A3 are both completes. If A3 is
non-empty, then |B2| > 1 and (A3, B2) is a coherent W-join, a contradiction. So we may assume A3 is empty. Now
(A1, A2) is a coherent homogeneous pair, and all the vertices of each of U, B2 are twins. So all these sets have size
at most one and K(G) is the clique graph of an induced subgraph of a four-edge path, and hence perfect. This proves
35.1.

So we may assume that there exists a non-singular vertex u in B with a neighbor in A. Let M be the set of neighbors
of u in A, N the set of non-neighbors. Since u is non-singular, N contains two non-adjacent vertices x, y. Choose m
in M. If m is adjacent to both x, y then {m, x, y, u} is a claw. If m is non-adjacent to both x, y then {v, x, y, m} is a
claw. So every vertex in M is adjacent to exactly one of x, y. So there is no complement of an odd cycle in G|N , and
therefore the complement of G|N is bipartite and N is the union of two completes.

Let M1 be the vertices in M adjacent to x, M2 those adjacent to y, then M1 ∪ M2 = M and M1 ∩ M2 = ∅.
If there exist m1 in M1 and m2 in M2 such that m1 is adjacent to m2, then the graph induced by {m1, m2, v, x, y, u}

is 3-sun, a contradiction. So there are no edges between M1 and M2, M1 is anticomplete to y, and M2 is anticomplete
to x. Since {v, m, m′, y} is not a claw for m, m′ in M1, it follows that M1 is a complete, and the same holds for M2.

Case 1: M1 and M2 are both non-empty. Since A contains no stable set of size three (for otherwise there would
be a claw in G), every vertex in N is complete to one of M1, M2. Let N3 be the vertices complete to M1 ∪ M2, N1
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the vertices of N\N3 complete to M1, and N2 the vertices of N\N3 complete to M2. So x ∈ N1 and y ∈ N2. Since
{m, n, n′, u} is not a claw for m in M1 and n, n′ in N1 ∪ N3, it follows that N1 ∪ N3 is a complete. Similarly, N2 ∪ N3
is a complete. Suppose N3 is non-empty, and choose n ∈ N3. Then n is complete to (A ∪ {v})\{n}, and therefore is
singular (for its non-neighbors are a subset of B); and by the choice of v, n and v are twins. Since G admits no twins,
it follows that N3 is empty. Suppose some n1 in N1 is adjacent to n2 in N2. Choose m′

1 in M1 non-adjacent to n2 and
m′

2 in M2 non-adjacent to n1. Thenm′
1n1n2m

′
2um′

1 is a hole of length 5, a contradiction. So N1 is anticomplete to N2.
Suppose n1 in N1 has a neighbor m′

2 in M2. Then {m′
2, n1, y, u} is a claw, a contradiction. So N1 is anticomplete to

M2, and, similarly, N2 is anticomplete to M1.
For i = 1, 2 choose m′

i in Mi , and assume that m′
i has a non-neighbor bi in B. If m′

1 and m′
2 have a common non-

neighbor b ∈ B, then {u, m′
1, m

′
2, b} is a claw, a contradiction. So there are two vertices b1 and b2 in B such that b1 is

non-adjacent to m′
1 and adjacent to m′

2, and b2 is non-adjacent to m′
2 and adjacent to m′

1. But then m′
1b2b1m

′
2vm′

1 is a
hole of length 5, again a contradiction. So, exchanging M1 and M2 if necessary, we may assume that M1 is complete
to B, and, since G admits no twins, |M1| = 1, say M1 = {m1}.

Let b be a vertex of B with a neighbor n1 in N1. We claim that b is complete to M2 and anticomplete to N2. If b has
a non-neighbor m2 in M2, then n1bum2vn1 is a hole of length 5; and, if b has a neighbor n2 in N2, then {b, n1, n2, u}
is a claw; in both cases there is a contradiction. This proves the claim.

So every vertex of B is either anticomplete to N1, or complete to M2 and anticomplete to N2. Let B1 be the set of
vertices of B with a neighbor in N1. Then (B1, N1) is a non-dominating homogeneous pair, and, since G does not admit
a non-dominating W-join or twins, it follows that |B1|�1 and |N1| = 1, say N1 = {x}.

Assume that B1 is non-empty, let B1 = {b1}. Let B2 = B\B1. We claim that in this case B2 is complete to M2. If
b2 in B2 has a non-neighbor m2 in M2, then b2 �= b1 and {b1, x, m2, b2} is a claw, a contradiction. This proves the
claim. But now the vertices of M2 are all twins, and, since G does not admit twins, |M2| = 1. Moreover, (B2, N2) is
a non-dominating homogeneous pair, and, since G does not admit a non-dominating W-join or twins, it follows that
|B2| = |N2| = 1, so B2 = {u} and N2 = {y}. But now every clique of G contains either v or b1, and hence K(G) is the
complement of a bipartite graph, and therefore perfect. This finishes the case when B1 is non-empty.

If B1 is empty, (B, M2 ∪N2) is a non-dominating homogeneous pair, and, since G does not admit a non-dominating
W-join or twins, it follows that |B| = |M2 ∪ N2| = 1, a contradiction because both M2 and N2 are non-empty. This
finishes the case when both M1 and M2 are non-empty.

Case 2: One of M1, M2 is empty. We may assume that M2 is empty, and so M is complete to x and anticomplete
to y. Let N1 be the set of vertices in N complete to M, N2 the set of vertices in N that are anticomplete to M, and let
N3 = N\(N1 ∪ N2).

We claim that N1 ∪ N3 and N2 ∪ N3 are both completes. Choose two different vertices n3 in N3 ∪ N1 and n1 in
N1, and let m be a neighbor of n3 in M. Since {m, u, n1, n3} is not a claw, n1 is adjacent to n3, and therefore N1 is a
complete and N1 is complete to N3. Next, choose two different vertices n3 in N3 ∪ N2 and n2 in N2, and let m be a
non-neighbor of n3 in M. Since {v, m, n2, n3} is not a claw, n2 is adjacent to n3, and therefore N2 is a complete and
N2 is complete to N3. Finally, suppose there exist two non-adjacent vertices n3 and n′

3 in N3. Since {m, u, n3, n
′
3} is

not a claw for any m ∈ M , it follows that no vertex of M is adjacent to both n3 and n′
3. Let m be a neighbor of n3 in

M and m′ be a neighbor of n′
3 in M. Then m is non-adjacent to n′

3 and m′ is non-adjacent to n3, and the graph induced
by {v, m, m′, u, n3, n

′
3} is a 3-sun, a contradiction. So N3 is a complete. This proves the claim. Since there exist two

non-adjacent vertices in N, both N1 and N2 are non-empty.

35.2. Let b in B be adjacent to n3 in N3 and to m in M. Then n3 is non-adjacent to m.

Suppose they are adjacent. Let m′ be a non-neighbor of n3 in M, and let n2 be in N2. Then n3mv is a triangle, b is
adjacent to n3, m, n2 is adjacent to v and n3, m′ is adjacent to v and m, and this is a 0-, 1-, or 2-pyramid, a contradiction.
This proves 35.2.

35.3. Every vertex in N1 has a non-neighbor in N2.

Suppose some vertex n1 of N1 is complete to N2. Then the set of non-neighbors of n1 is included in B, and therefore
n1 is singular, and it is complete to A\{n1}. From the choice of v, n1 has no neighbor in B, but now n1 and v are twins,
a contradiction. This proves 35.3.
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35.4. M is complete to B.

Let B1 be the set of vertices in B that are complete to M. Suppose there exists b2 in B\B1, and let m be a non-neighbor
of b2 in M.

35.4.1. |N2| = 1 and N2 is anticomplete to B.

Let n be in N2. Since nb2umvn is not a hole of length 5, it follows that n is non-adjacent to b2, and the same holds
for every vertex of B\B1. So n is anticomplete to B\B1. Since {b1, b2, m, n} is not a claw for b1 ∈ B1, it follows
that n is anticomplete to B1, and the same holds for every vertex of N2. Therefore N2 is anticomplete to B. But now
{v} ∪ N1 ∪ N3 is a clique cutset separating N2 from M ∪ B. By Theorem 12, G is either a linear interval graph or G
admits twins, or a 0-join, or a 1-join, or a coherent W-join, or it is not an internal clique cutset; and it follows from the
hypotheses of the theorem and from Proposition 28 that we may assume that the last alternative holds, and |N2| = 1,
say N2 = {n2}. This proves 35.4.1.

35.4.2. B is anticomplete to N3.

Suppose a vertex b ∈ B has a neighbor n ∈ N3. By the definition of N3, n has a neighbor m′ in M. By 35.2, m′ is
non-adjacent to b. But now {n, n2, b, m′} is a claw, a contradiction. This proves 35.4.2.

Now M ∪ N1 is a clique cutset separating {v} ∪ N2 ∪ N3 from B. Since |B| > 1 and |{v} ∪ N2 ∪ N3| > 1, it follows
from Theorem 12 that G is a linear interval graph, and therefore K(G) is perfect by Proposition 28. This completes the
proof of 35.4.

By 35.4, for every non-singular vertex in B, the set of its neighbors in A is complete to B.

35.5. B is anticomplete to N3.

Suppose some vertex b in B has a neighbor n3 in N3. By the definition of N3, n3 has a neighbor in M, and this
contradicts 35.2. This proves 35.5.

35.6. N3 is empty and |M| = 1.

If N3 is non-empty then |M| > 1 and (N3, M) is a coherent homogeneous pair. So N3 is empty, but now the vertices
of M are twins, so |M| = 1. This proves 35.6.

It follows from 35.6 that every non-singular vertex in B has at most one neighbor in A, and, since M is complete to
B and has size one, every non-singular vertex in B is complete to M and anticomplete to A\M . Therefore, the vertices
of U are all twins, and, since G admits no twins, U = {u}. Let B2 = B\U .

35.7. B2 is non-empty.

Otherwise (N1, N2) is a coherent homogeneous pair, so each of them has size one and K(G) is a three-edge path.
This proves 35.7.

35.8. If n1 in N1 is non-adjacent to n2 in N2, then every b in B2 is adjacent to exactly one of n1, n2.

Let b2 in B2. Since b2 in B2 is singular, b2 is adjacent to at least one of n1, n2. Since {b2, n1, n2, u} is not a claw, b2
is non-adjacent to at least one of n1, n2. This proves 35.8.

35.9. No vertex of N1 has a neighbor and a non-neighbor in B2.

Suppose n1 in N1 has a neighbor b1 in B2 and a non-neighbor b2 in B2. By 35.3 n1 has a non-neighbor n2 in N2. By
35.8 n2 is adjacent to b2 and not to b1. But now b1n1vn2b2b1 is a hole of length 5, a contradiction. This proves 35.9.

Let N11 be the vertices of N1 complete to B2, N12 = N1\N11. So N12 is anticomplete to B. It follows from 35.8 that
every vertex of N2 is either complete to N11 or to N12. Let N22 be the set of vertices in N2 with a non-neighbor in N11.
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Then N22 is complete to N12. Let N21 be the vertices in N2 with a non-neighbor in N12. Then N21 is complete to N11.
Let N23 = N2\(N21 ∪ N22). So N23 is complete to N1. By 35.8 B2 is anticomplete to N22 and complete to N21. Now
(B2, N23) is a coherent homogeneous pair, and all the vertices of N11, N12, N22, N21 are twins, so all these sets have
size at most one.

Now, every clique of G contains either v or b2, so K(G) is the complement of a bipartite graph, and hence it is
perfect. This completes the proof of Theorem 35. �

3.2.3. Basic classes
Finally, we show that, if an interesting HCH claw-free graph belongs to one of the basic classes of Theorem 5, then

its clique graph is perfect.

Theorem 36. If G is interesting HCH, antiprismatic, and every vertex of G is in a triad, then K(G) is perfect.

Proof. We prove that G contains no 4-wheel or 3-fan, and, then, by Theorem 16, K(G) is bipartite.
Suppose G contains a 4-wheel. Let a1a2a3a4a1 be a hole and let c be adjacent to all ai . Since every vertex is in a triad,

there are two vertices c1, c2 different from a1, a2, a3, a4 such that {c, c1, c2} is a stable set. Since G is antiprismatic,
every other vertex in G is adjacent exactly to two of {c, c1, c2}. In particular, each ai is adjacent either to c1 or to c2. If
two consecutive vertices of the hole, for instance, a1, a2, are adjacent to the same cj , then {a1, a3, a2, a4, c, cj } induces
a 1-, 2-, or 3-pyramid, a contradiction because G is HCH. So, without loss of generality, we may assume that a1 and
a3 are adjacent to c1 and not to c2, while a2 and a4 are adjacent to c2, and not to c1. But then {a1, a2, a3, c2} induces a
claw, a contradiction. This proves that G does not contain a 4-wheel.

Suppose now that G contains a 3-fan. Let a1a2a3a4 be an induced path and let c be adjacent to all ai . Since every
vertex is in a triad, there are two vertices c1, c2 different from a1, a2, a3, a4 such that {c, c1, c2} is a stable set. Since
G is antiprismatic, each ai is adjacent either to c1 or to c2. If a2 and a3 are adjacent to the same cj , then {a1, a3, a2,
a4, c, cj } induces a 0-, 1-, or 2-pyramid, a contradiction because G is HCH. So, without loss of generality, we may
assume that a2 is adjacent to c1 and not c2, while a3 is adjacent to c2 and not c1. Since {a3, a2, c2, a4} is not a claw,
a4 is adjacent to c2, and, analogously, a1 is adjacent to c1. By the same argument applied to the 3-fan induced by
the path a2ca4c2 and the vertex a3, there is a vertex d adjacent to a4 and c2 but not adjacent to a2, c, or a3, and so
d /∈ {a1, a2, a3, a4, c, c1, c2} (see Fig. 14).

Since c1a2a2a4dc1 is not a hole of length 5, d is non-adjacent to c1. Thus, c1, c, and d form a triad, but the
vertex c2 is adjacent only to one of them, a contradiction because G is antiprismatic. This concludes the proof of
Theorem 36. �

Theorem 37. Let G ∈ S6 be a connected interesting HCH graph such that every vertex of G is in a triad. Then K(G)

is perfect.

Proof. Let A, B, and C be the sets of vertices of the graph H5 in the definition of the class S6, and let AG, BG, and CG

be those sets intersected with V (G). We remind the reader that a0 ∈ AG and b0 ∈ BG by the definition of S6. Every
triad in G is of the form {ai, bj , ck}, since AG, BG and CG are complete sets. Moreover, either i = j = 0 or k = i and
j = 0 or k = j and i = 0. Since every vertex of G is in a triad, it follows that AG, BG, and CG are non-empty and if
i �= 0 and ai ∈ AG, then ci ∈ CG. Analogously, if i �= 0 and bi ∈ AG, then ci ∈ CG. Let IA = {i > 0 : ai ∈ AG},
IB = {i > 0 : bi ∈ BG}, and IC = {i > 0 : ci ∈ CG}. Then IA ∪ IB ⊆ IC .

a1 a2 a3 a4

c1 c2

c

d

Fig. 14. Situation for the second part of the proof of Theorem 36.
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Fig. 15. Last three cases for the proof of Theorem 37.

Assume first that IC\(IA ∪ IB) is non-empty. Since the set C′ = {ci : i ∈ C\(IA ∪ IB)} is complete to V (G)\(C′ ∪
{a0, b0}), and the only cliques containing a0 or b0 are AG and BG, respectively, it follows that every pair of cliques of
G, except for the pair AG, BG, has non-empty intersection. Thus K(G) is a split graph, hence perfect.

So we may assume that IA ∪ IB = IC . If |IA ∪ IB |�3, we may assume by switching A and B if necessary that
1, 2 ∈ IA and 3 ∈ IC , and then the graph induced by {a1, a2, c1, c2, c3, a0} is a 1-pyramid, a contradiction because G
is HCH. On the other hand, since G is connected, both IA and IB are non-empty and |IA ∪ IB |�2. So, without loss of
generality, we consider three cases: IA = IB ={1, 2}, IA ={1, 2} and IB ={2}, IA ={1} and IB ={2}. Graphs obtained
in each case are depicted in Fig. 15, with their corresponding clique graphs, which are all perfect. That concludes this
proof. �

3.2.4. Proof of Theorem 19
First we prove that the clique graph of an interesting HCH claw-free graph is perfect.

Proof of Theorem 26. Let G be an interesting HCH claw-free graph. The proof is by induction on |V (G)|, using the
decomposition of Theorem 5. Assume that for every smaller interesting HCH claw-free G′, K(G′) is perfect. We show
that K(G) is perfect.

If G admits twins, then K(G) is perfect by Lemma 14, and, if G is not connected, then K(G) is perfect by
Lemma 15. If G is connected, admits a 1-join and no twins, then K(G) is perfect by Theorems 29 and 7. If G
admits no twins, 0-, or 1-joins, but admits a 2-join, then K(G) is perfect by Theorem 30. If G admits a coherent or
non-dominating W-join and no twins, then K(G) is perfect by Theorem 32. If G contains a singular vertex, then K(G)

is perfect by Theorems 34 and 35. So we may assume not. If G admits a hex-join and no twins, then by Theorem 33
G = K(G) = C6, and therefore K(G) is perfect.

So we may assume that G admits none of the decompositions of the previous paragraph, and, by Theorem 5, G is
antiprismatic, or belongs to S0 ∪ · · · ∪ S6.

If G ∈ S0, then K(G) is perfect by Theorem 23. The graphs icosa(−2), icosa(−1), and icosa(0) contain holes
of length 5, and therefore are not interesting, so G /∈S1. G /∈S2, because vertices v3, v4, v5, v6, v9 induce a hole of
length 5 in H1 (Fig. 5). If G ∈ S3, then, by Proposition 28, K(G) is perfect. If G ∈ S4 then, since G does not contain
a singular vertex, G is a line graph and K(G) is perfect by Theorem 23. G /∈S5, because the vertex d1 in the definition
of the class S5 is singular. If G ∈ S6, then K(G) is perfect by Theorem 37, and, finally, if G is antiprismatic, then
K(G) is perfect by Theorem 36. This completes the proof of Theorem 26. �

Now, Theorem 19 is an immediate corollary of the following:

Theorem 38. Let G be claw-free and assume that G is HCH. Then the following are equivalent:

(i) No induced subgraph of G is an odd hole, or C7.
(ii) G is clique-perfect.

(iii) G is perfect.
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Table 1
Forbidden induced subgraphs for clique-perfect graphs in each studied class

Graph classes Forbidden subgraphs Reference

HCH claw-free graphs Odd holes Theorem 19
C7

Line graphs Odd holes Theorem 18
3-sun

Proof. The equivalence between (i) and (iii) is a corollary of Theorem 1, because by Proposition 25 HCH graphs
contain no antiholes of length at least 8. From Theorem 3 it follows that (ii) implies (i). Finally, by Theorem 26 and
Propositions 21 and 25, we deduce that (i) implies (ii), and this completes the proof. �

The recognition of clique-perfect HCH claw-free graphs can be reduced to the recognition of perfect graphs, which
is solvable in polynomial time [8].

4. Summary

These results allow us to formulate partial characterizations of clique-perfect graphs by forbidden subgraphs, as is
shown in Table 1.

Note that in both cases all the forbidden induced subgraphs are minimal.
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