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Abstract

Chromatic scheduling polytopes arise as solution sets of the bandwidth allocation problem in certain radio access networks,
supplying wireless access to voice/data communication networks for customers with individual communication demands. To maintain
the links, only frequencies from a certain spectrum can be used, which typically causes capacity problems. Hence it is necessary to
reuse frequencies but no interference must be caused by this reuse. This leads to the bandwidth allocation problem, a special case
of so-called chromatic scheduling problems. Both problems are NP-hard, and there do not even exist polynomial time algorithms
with a fixed quality guarantee.

As algorithms based on cutting planes have shown to be successful for many other combinatorial optimization problems, the
goal is to apply such methods to the bandwidth allocation problem. For that, knowledge on the associated polytopes is required.
The present paper contributes to this issue, exploring the combinatorial structure of chromatic scheduling polytopes for increasing
frequency spans. We observe that the polytopes pass through various stages—emptyness, non-emptyness but low-dimensionality,
full-dimensionality but combinatorial instability, and combinatorial stability—as the frequency span increases. We discuss the
thresholds for this increasing “quantity” giving rise to a new combinatorial “quality” of the polytopes, and we prove bounds on these
thresholds. In particular, we prove combinatorial equivalence of chromatic scheduling polytopes for large frequency spans and we
establish relations to the linear ordering polytope.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of a point-to-multipoint radio access system (PMP-system) is to supply wireless access to voice/data
communication networks. Base stations form the access points to the backbone network and customer terminals are
linked to base stations by means of radio signals.

There are two main differences between PMP-systems and cellular phone networks. Firstly, each customer is provided
a fixed antenna and is assigned to a certain sector of a base station (see Fig. 1a). Secondly, the customers do not have a
uniform communication demand but individual ones, hence the task is to assign frequency intervals instead of single
channels (see Fig. 1c). A central issue is that a link connecting a customer terminal and a base station may be subject to
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(a) Sectorization (c) Frequency plan(b) Graph

Fig. 1. Bandwidth allocation in Point-to-Multipoint radio access systems.

interference from another link using the same frequency: links to customers of the same sector must not use the same
frequency (since they are served by the same antenna) and, in addition, some links of customers in different sectors
may also cause interferences (due to power and direction of the transmitted signals), see the links in Fig. 1b.

To maintain the links in PMP-systems, some specific part of the radio frequency spectrum has to be used. This
typically causes capacity problems and, therefore, it is necessary to reuse frequencies. The bandwidth allocation
problem has to be solved in order to guarantee an interference-free communication. The goal is to assign a frequency
interval within the available radio frequency spectrum to each customer (see Fig. 1c), taking into account the individual
communication demands and possible interference.

The input of this problem is given as follows. Let T = {t1, . . . , tn} be the set of all customer terminals, and
S={S1, . . . , Sk} be a partition of T into sectors, providing the information which sector Sj serves the terminal ti ∈ T.
Let d = (d1, . . . , dn) be the vector of communication demands associated with the customer terminals, indicating that
customer ti ∈ T has demand di ∈ Z. Additionally, we have a set EX of unordered pairs (ti , tj ) of terminals in different
sectors that must not use the same frequency due to possible interference. We can represent this setting by a weighted
interference graph (G, d) = (V , E, d), where the node set V stands for the customer terminals, the edge set E for pairs
of interfering customers, and the node weights d for the communication demands. Throughout this paper we denote by
n = |V | resp. m = |E| the number of nodes resp. edges of G.

In base stations, oscillators provide the different frequencies—with a possible difference � to the required frequency.
Thus, between the frequency intervals of possibly interfering links (ti , tj ) ∈ EX in different sectors, a guard distance
g = 2� has to be obeyed. Finally, we have the available radio frequency spectrum [0, s], with s ∈ Z, where all the
frequency intervals have to be placed in. Thus, the problem input consists in the quadruple (G, d, s, g).

The desired output is an assignment of an interval I (i) = [li , ri] ⊆ [0, s], with li , ri ∈ Z, to each customer ti ∈ T
such that ri − li �di for every ti ∈ T and

max{li , lj } − min{ri, rj }�
{

0 if ti and tj belong to the same sector,
g if (ti , tj ) ∈ EX

for every pair of interfering customers ti , tj ∈ T. For g=0, the problem can be seen as a chromatic scheduling problem
[3] or a consecutive coloring problem [4] on the weighted graph (G, d); the problem corresponds to the ordinary graph
coloring problem if d = 1 holds in addition.

Small instances of the bandwidth allocation problem could be handled by greedy-like heuristics [1], but in order
to tackle problem sizes of real world applications, algorithms have to be designed that rely on a deeper insight of
the problem structure. The polyhedral approach, consisting of an in-depth investigation of polytopes associated with
a combinatorial structure and the application of linear programming based cutting plane techniques, has been very
successful in the recent years. To apply such methods to the bandwidth allocation problem, the convex hull of the
incidence vectors of all feasible solutions has to be studied. In order to represent a solution, besides the interval bounds
li and ri for all i ∈ V , we introduce the ordering variables xij ∈ {0, 1} for all ij ∈ E, i < j , such that xij = 1 if and
only if ri � lj .

The ordering variables are necessary as the convex hull of the solutions represented only by the interval bounds
may contain infeasible integer points. For example, consider the instance (K2, d, 5, 0), with d = (1, 2). The vectors
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z = (0, 1, 1, 3, 1) and z′ = (3, 1, 4, 3, 0) represent feasible solutions, but dropping the information given by x12, the
convex hull of even these two points contains two infeasible but integral points, namely (1, 1, 2, 3) and (2, 1, 3, 3).

For ij ∈ E, define �ij to be �ij = 0 if ti and tj belong to the same sector, and �ij = g otherwise. A feasible solution
is, therefore, an assignment of values to li , ri ∀i ∈ V and xij ∀ij ∈ E such that the following constraints are satisfied:

di �ri − li ∀i ∈ V , (1)

0� li �ri �s ∀i ∈ V , (2)

ri + �ij � lj + s(1 − xij ) ∀ij ∈ E, i < j , (3)

rj + �ij � li + sxij ∀ij ∈ E, i < j , (4)

xij ∈ {0, 1} ∀ij ∈ E, i < j , (5)

li , ri ∈ Z ∀i ∈ V . (6)

The demand constraints (1) and the bound constraints (2) assert that the interval I (i)=[li , ri] must satisfy the demand
di and fit within the available frequency spectrum [0, s]. Inequalities (3) and (4) realize the antiparallelity constraints,
which prevent interfering pairs of intervals from overlapping. Note that the intervals corresponding to the pairs of
customers located in the same sector must not overlap, and there must be a distance of at least g between the intervals
corresponding to pairs of interfering customers in different sectors. Finally, the integrality constraints (5) resp. (6) force
the x-variables to be binary resp. the interval bounds to be integral.

Definition 1 (Chromatic scheduling polytope). Let (G, d, s, g) be an instance of the bandwidth allocation problem
in PMP-systems. We define the chromatic scheduling polytope P(G, d, s, g) ⊆ R2n+m to be the convex hull of all
feasible solutions (l, r, x) ∈ Z2n+m satisfying constraints (1)–(6).

Chromatic scheduling polytopes admit interesting properties from a combinatorial point of view. As experimentally
observed in [5,9] for small instances with co-bipartite and general interference graphs, respectively, the polytopes are
empty if the frequency span s is too small and pass through several stages as s increases: from a nonempty but low-
dimensional stage to full-dimensionality and, finally, to a combinatorially steady state. In this paper, we shall discuss
these combinatorial stages and prove the existence of the corresponding thresholds smin(G, d, g), sfull(G, d, g), and
smax(G, d, g) as the minimum frequency span s such that P(G, d, s, g) is nonempty, full-dimensional, and combina-
torially stable, respectively.

We address in Section 2 the threshold smin(G, d, g) for nonemptyness. Proving nonemptyness for P(G, d, s, g) is
an important task as knowing one feasible solution enables us to run a PMP-system properly. The NP-completeness
of the bandwidth allocation problem implies, however, that the exact calculation of smin(G, d, g) is NP-hard. We,
therefore, provide lower and upper bounds for smin(G, d, g) as certificates for the existence/nonexistence of feasible
solutions respectively the nonemptyness/emptyness of the associated polyhedra.

Section 3 presents results related to full-dimensionality. We show that determining the dimension of P(G, d, s, g)

is an NP-hard problem. As knowledge on the dimension is crucial for proving which valid inequalities are facets
(and, therefore, the best possible cutting planes), we again provide an upper bound on sfull(G, d, g) guaranteeing
full-dimensionality.

Section 4 gives a characterization of the extreme points of chromatic scheduling polytopes, which is employed in
Section 5 to establish the combinatorial equivalence of all polytopes {P(G, d, s, g)}s � smax(G,d,g). This implies that
frequency spans larger than smax(G, d, g) do not further simplify the bandwidth allocation problem as all polytopes
{P(G, d, s, g)}s � smax(G,d,g) have the same combinatorial structure of facets and extreme points. We give an upper
bound on smax(G, d, g) guaranteeing combinatorial equivalence.

Finally, we explore some relations between chromatic scheduling polytopes and the linear ordering polytope P n
LO. In

particular, we prove that P(Kn, d, s, 0) is affinely isomorphic to P n
LO if s = ∑

di . This result implies that even simple
chromatic scheduling polytopes are hard to characterize by means of linear inequalities, since a complete description
of P(Kn, d, s, 0) includes all the linear ordering facets.

We close with some concluding remarks and open problems.
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2. On emptyness/nonemptyness

This section treats the problem of proving nonemptyness for chromatic scheduling polytopes P(G, d, s, g). Clearly,
if the frequency spectrum [0, s] is too small, there exists no feasible schedule for the frequency intervals at all, and so
the polytope P(G, d, s, g) is empty. Since the bandwidth allocation problem in PMP-systems is NP-complete [9], the
exact calculation of the minimum frequency span smin(G, d, g) ensuring nonemptyness is an NP-hard problem. We,
therefore, provide straightforward bounds on smin(G, d, g) that guarantee emptyness resp. nonemptyness. It is worth
noting that lower bounds for smin(G, d, g) arise from maximum weighted clique arguments, whereas upper bounds
come from coloring assertions.

Let �(G, d) denote the weighted clique number of (G, d), i.e., the maximal weight of a clique in G. Then
smin(G, d, g)��(G, d) clearly holds but a better bound can be achieved taking into account the guard distance g.
If A ⊆ V , we define d(A) = ∑

i∈Adi .

Definition 2 (Clique bound). Define K(G) to be the set of all cliques of G and, for K ∈ K(G), let pK =|{i : Si ∩K �=
∅}| denote the number of sectors intersecting the clique K. We define the clique bound �(G, d, g) by

�(G, d, g) = max
K∈K(G)

(d(K) + g(pK − 1)).

Proposition 1. If s < �(G, d, g), then P(G, d, s, g) is empty.

Proof. Let K ⊆ V be a clique such that d(K) + g (pK − 1) = �(G, d, g). Since K is a clique, then the intervals
{I (i) : i ∈ K} must be disjoint. Moreover, in every feasible solution there are at least pK − 1 adjacent intervals
belonging to different sectors, and since K is a clique they must obey the guard distance, hence at least pK − 1 guard
distances must occur among the intervals assigned to the nodes of K. Therefore, we need a frequency span of at least
d(K) + g (pK − 1) to assign all these intervals. �

However, s��(G, d, g) does not provide a certificate for feasibility, as there exist instances where �(G, d, g) is
strictly smaller than the span of any feasible solution. Note that such instances exist not only for the special case d = 1,
g = 0 of usual graph coloring, but also if d �= 1 by [6]; even such real-world instances are reported in [1], see [9] for
more details.

In order to derive an upper bound on smin(G, d, g), we use some coloring arguments. Let �(G) denote the chromatic
number of G, i.e., the least s such that the nodes of G can be partitioned into s stable sets. Then obviously �(G) =
smin(G, 1, 0) holds and we have to consider the general case d �= 1 and g �= 0.

Definition 3 (Chromatic bound). Let dmax = max{di : i ∈ V } denote the maximum node weight of (G, d). We define
the chromatic bound �(G, d, g) as

�(G, d, g) = (dmax + g) �(G) − g.

Proposition 2. If s��(G, d, g), then P(G, d, s, g) is nonempty.

Proof. Let k = �(G) and let c : V → {1, . . . , k} be a coloring of G (i.e., a partition of V into disjoint stable subsets).
Construct a feasible solution z ∈ P(G, d, s, g) ∩ Z2n+m by setting zli = (c(i) − 1)(dmax + g) and zri = zli + di ,
where c(i) is the color assigned to i by c. Note that this assignment is feasible and fits in the frequency spectrum [0, s].
Therefore, P(G, d, s, g) is nonempty. �

Thus, Propositions 1 and 2 imply that smin(G, d, g) can be bounded by the clique bound and the chromatic bound
as follows:

�(G, d, g)�smin(G, d, g)��(G, d, g).

Note that the weighted chromatic number �(G, d) (i.e., the minimum number of stable sets covering every node i at
least di times) cannot be used to obtain a better bound than �(G, d, g) since the colors assigned to each node cannot
be expected to be consecutive.
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However, smin(G, d, 0) equals the interval chromatic number �int(G, d) introduced in [4]. Integrating the guard
distance g into the communication demand d by d ′

i =di +g for all i ∈ V yields, therefore, �int(G, d ′) as a further upper
bound on smin(G, d, g) which is even better than the chromatic bound. Unfortunately, determining all the bounds on
smin(G, d, g) is as hard as calculating smin(G, d, g) itself.

3. Full-dimensional chromatic scheduling polytopes

This section deals with nonempty chromatic scheduling polytopes and addresses the problem of calculating their
dimension. We show that this problem is NP-complete in general. However, knowledge on the dimension is important
as the best cutting planes are facets, i.e., inequalities defining a face with dimension one less than the polytope itself.
We, therefore, establish a lower bound on sfull(G, d, g) guaranteeing full-dimensionality.

The polytope P(G, d, s, g) is nonempty if and only if s�smin(G, d, g), but it may not have full dimension even if
s > smin(G, d, g). For example, we have smin(C4, 1, 0)= 2 but it is a routine to check that the polytopes P(C4, 1, 2, 0)

and P(C4, 1, 3, 0) are not full-dimensional.
However, every feasible solution of P(G, d, s, g) is also a feasible solution of P(G, d, s+1, g), thus P(G, d, s, g) ⊆

P(G, d, s + 1, g) holds and the dimension is a nondecreasing function of the frequency span s. We now prove that
chromatic scheduling polytopes are full-dimensional if s 	 �(G, d). An ordering of the nodes of a directed graph
D = (V , A) is called a topological ordering if the node i is located before the node j for every ij ∈ A.

Lemma 1. Let � ∈ R2n+m and �0 ∈ R such that �Tz = �0 for every z ∈ P(G, d, s, g). If s > smin(G, d, g), then
�lj = �rj = 0 for every j ∈ V .

Proof. Let z ∈ P(G, d, s, g) ∩ Z2n+m be an integer feasible solution such that zri − zli = di for every i ∈ v and such
that all the intervals are contained in [0, smin(G, d, g)]. Construct a digraph D = (V , ED) such that ij ∈ ED if and only
if ij ∈ E and I (j) is located before I (i). Note that D is acyclic. Now, let i1, . . . , in be a topological ordering of the
nodes of D and construct 2n feasible solutions {zk, wk}nk=1 as follows. The point zk is obtained from z by shifting the
intervals I (ij ) for j = 1, . . . , k one unit to the right. The point wk is obtained from z by shifting the intervals I (ij ) for
j = 1, . . . , k − 1 one unit to the right, and enlarging I (ik) one unit to the right. These new points are feasible solutions.
Indeed, if the interval I (ij ) has been shifted resp. enlarged to the right in zk resp. wk , then all the possible interfering
intervals to the right of I (Ij ) have already been shifted, since the corresponding nodes are located before ij in any
topological ordering of D. The pair of solutions zk and wk for k = 1, . . . , n only differ in their lik -coordinate, hence
the lik -coordinate of � must be zero. Moreover, the pair of solutions zk and zk−1 for k = 1, . . . , n (where we consider
z0 = z) only differ in their lik - and rik -coordinates, hence the rik -coordinate of � must be zero. Therefore, �lj = �rj = 0
for every j ∈ V . �

This enables us to provide a lower bound on s ensuring full-dimensionality in the general case.

Definition 4. For any instance (G, d, s, g), let

�(G, d, g) = smin(G, d, g) + max
jk∈E

(dj + dk) + 2g.

Theorem 1. If s��(G, d, g) then P(G, d, s, g) is full-dimensional.

Proof. Let �Tz = �0 for every z ∈ P(G, d, s, g). By Lemma 1, we have �li = �ri = 0 for every i ∈ V . Now, let
z ∈ P(G, d, s, g) ∩ Z2n+m be a feasible solution such that maxi∈V zri = smin(G, d, g) (such a solution exists by the
definition of the nonemptyness threshold smin(G, d, g)). Consider an arbitrary edge ij ∈ E and construct the feasible
solution z1 as follows:

z1
lk

=
{

smin(G, d, g) + g if k = i,

smin(G, d, g) + di + 2g if k = j,

zlk otherwise.
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(a)

(b)

Fig. 2. Constructions for the proof of Theorem 1.

Define further z1
rk

= z1
lk

+ dk for every k ∈ V . Now construct a new feasible solution z2 from z1 by swapping the
intervals I (i) and I (j) (see Figure 2). These solutions only differ in their li-, ri-, lj -, rj - and xij -coordinates and,
therefore, �xij

= 0. Since ij is an arbitrarily chosen edge, we have � = 0, and so we conclude that P(G, d, s, g) is
full-dimensional. �

Theorem 1 implies that the polytope P(G, d, s, g) is full-dimensional if s is large enough. Hence there exists indeed
a threshold sfull(G, d, g) for full-dimensionality, and Theorem 1 can be restated as

sfull(G, d, g)��(G, d, g).

This bound is sharp, in the sense that there exist infinitely many graphs G such that P(G, d, s, g) does not have full
dimension for s < �(G, d, g), see [9]. However, calculating sfull(G, d, g) turns out to be an NP-hard problem even
for uniform instances. Consider the associated decision problem for g = 0:

Full-Dimensionality
Instance: A weighted graph (G, d) and an integer s ∈ Z+.
Question: Has P(G, d, s, 0) full dimension?

Theorem 2. Full-Dimensionality is NP-complete.

Proof. It is not hard to verify that this problem belongs to NP, since we can nondeterministically generate a set of
integer feasible solutions and verify in polynomial time whether this set is a set of affinely independent points with the
required number of elements or not. To complete the proof, we shall reduce Graph coloring to Full-dimensionality. Let
G = (V , E) be an arbitrary graph and construct a graph H = (VH , EH ) from G by taking

VH = V ∪ {v1, v2, v3, v4},
EH = E ∪ {vi w : w ∈ V, i = 1, . . . , 4} ∪ {v1v2, v2v3, v3v4, v4v1}.

We claim that �(G)�s if and only if P(H, 1, s + 4, 0) has full dimension. For the forward direction, if �(G)�s then
�(H, 1, 0) = �(H) + 2��(G) + 4�s + 4, and P(H, 1, s + 4, 0) is full-dimensional by Theorem 1. For the converse
direction, suppose �(G)�s + 1 and consider any feasible solution z ∈ P(H, 1, s + 4, 0) ∩ Z2|VH |+|EH |. This solution
must have at least s + 1 colors occupied by intervals corresponding to nodes in V, and this leaves at most three colors
left for the nodes {v1, . . . , v4}. Thus, either v1 and v3 or v2 and v4 have the same color, and only the four configurations
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Fig. 3. Illustration for the proof of Theorem 2.

depicted in Fig. 3 (along with their symmetrical solutions) are possible. All of them satisfy xv1v2 −xv1v4 =xv3v2 −xv3v4 ,
hence P(H, 1, s + 4, 0) is not full-dimensional. �

4. A characterization of the extreme points

In this and the following section we explore the combinatorially steady state of chromatic scheduling polytopes. We
start by providing a characterization of the extreme points for this kind of polyhedra. For every ij ∈ E, recall that �ij

is the minimum required gap between the intervals I (i) and I (j), i.e., �ij = g if i and j belong to different sectors, and
�ij = 0 otherwise.

Definition 5 (Adjacency graph). Let z ∈ P(G, d, s, g)∩Z2n+m be a feasible schedule. The adjacency graph associated
with this schedule is H(z) = (V ′, E′), with

V ′ = {li : i ∈ V } ∪ {ri : i ∈ V },
E′ = {liri : i ∈ V and zri − zli = di} ∪ {ri lj : ij ∈ E and zri + �ij = zlj }.

For example, if H is the interference graph depicted in Fig. 4(a) and d = 1, then Fig. 4(b) shows a feasible schedule
in P(H, 1, 6, 0), and Fig. 4(c) presents its associated adjacency graph.

Definition 6. A connected component C of H(z) is called a border component if there exists some li ∈ C with zli = 0
or some ri ∈ C with zri = s.

Theorem 3. The point z ∈ P(G, d, s, g)∩ Z2n+m is an extreme point of the polytope P(G, d, s, g) if and only if every
connected component of H(z) is a border component.

Proof. Only if. Consider a feasible solution z and its adjacency graph H(z). Suppose that H(z) has a nonborder
component C, and construct two feasible schedules z1, z2 ∈ P(G, d, s, g) ∩ Z2n+m from z by shifting the bounds in C
one unit to the left resp. to the right, i.e.,

z1
lj

=
{

zlj − 1 if lj ∈ C,

zlj if lj /∈ C,
z2
lj

=
{

zlj + 1 if lj ∈ C,

zlj if lj /∈ C,

z1
rj

=
{

zrj − 1 if rj ∈ C,

zrj if rj /∈ C,
z2
rj

=
{

zrj + 1 if rj ∈ C,

zrj if rj /∈ C.

Claim: z1, z2 ∈ P(G, d, s, g) ∩ Z2n+m. We first verify that z1
rj

− z1
lj

�dj for every j ∈ V . Suppose that rj ∈ C but

lj /∈ C. The construction of H(z) implies zrj − zlj > dj , since otherwise lj would belong to C. Hence z1 satisfies the
demand constraints. It is not difficult to verify that 0�z1

lj
for every j ∈ V , since the left interval bound lj is shifted

to the left only when lj belongs to a nonborder component, implying zlj > 0. The opposite constraints z1
lj

�s − dj are
clearly satisfied.
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(a) (b)

(c) (d)

Fig. 4. Examples for Section 4.

To complete the proof of the claim we show that z1 satisfies the antiparallelity constraints, by verifying that no
overlappings are produced by the shifting. In this setting, an overlapping can occur only when zxjk

= 1 (for jk ∈ E)
and zlk is shifted but zrj remains unchanged. By construction, this implies lk ∈ C and rj /∈ C, hence zrj + �jk < zlk

and so z1
rj

+ �jk �z1
lk

. The schedule z2 is defined similarly, and the same arguments show that it is feasible.

But now we have z = 1
2 (z1 + z2) and, therefore, z is not an extreme point.

If : Let z be a feasible solution such that every connected component of H(z) is a border component. Further, suppose
that z1, . . . , zp ∈ P(G, d, s, g)∩Z2n+m are p extreme points of P(G, d, s, g) such that z=∑p

i=1�iz
i , with

∑p
i=1�i =1

and �i > 0 for i = 1, . . . , p. Since zxe , z
i
xe

∈ {0, 1} for every edge e ∈ E, then zxe = zi
xe

.
Let C be a connected component of H(z). Since C is a border component, then either (a) lt ∈ C and zlt = 0 or (b)

rt ∈ C and zrt = s, for some t ∈ V . Assume w.l.o.g. that the former holds. For k ∈ C, define �k to be the distance from
node k to lt in H(z) (note that �lt

= 0). We now verify by induction on � that zlj = zi
lj

for every lj ∈ C and zrj = zi
rj

for

every rj ∈ C. Let k ∈ C. If �k = 0 then k = lt , so zlt = 0. But zi
lt
�0 for i = 1, . . . , p, implying zi

lt
= 0. On the other

hand, if �k > 0, then either k = lj or k = rj for some j ∈ V . Suppose w.l.o.g. the former and consider the following
cases:

• If there exists some rl ∈ C such that zlj + �j l = zrl and �rl
= �lj

− 1, by inductive hypothesis we have zrl = zi
rl

for i = 1, . . . , p. Since z and zi have the same ordering among the intervals, then zi
lj

�zi
rl

− �j l = zrl − �j l = zlj ,

implying zi
lj

= zlj for i = 1, . . . , p.

• On the other hand, if zrj − zlj = dj and �rj
= �lj

− 1, the inductive hypothesis implies zi
rj

= zrj for i = 1, . . . , p.

Since zi
lj

�zi
rj

− dj = zrj − dj = zlj , then zi
lj

= zlj for i = 1, . . . , p.

The same arguments apply to the case k = rj . This way we show that z = zi for i = 1, . . . , p and, therefore, z is an
extreme point of P(G, d, s, g). �

In the example above, the feasible schedule depicted in Fig. 4(b) is not an extreme point of P(H, 1, 6, 0), whereas
Fig. 4(d) presents a solution whose incidence vector is an extreme point of P(H, 1, 6, 0).

5. Combinatorial equivalence for large frequency spans

The main result of this section asserts the existence of a value smax(G, d, g) ∈ Z+ such that the polytopes
{P(G, d, s, g)}s � smax(G,d,g) are pairwise affinely isomorphic and, hence, combinatorially equivalent. Moreover, we
establish an upper bound on smax(G, d, g).
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Definition 7. The polytopes P ⊆ Rn and Q ⊆ Rm are affinely isomorphic, denoted by P�Q, if there is an affine
map f : Rn → Rm that is a bijection between the two polytopes.

Note that the definition asks for an affine bijection between all the points of the polytopes, and this is equivalent to
finding an affine bijection between the extreme points of P and Q, since affine bijections preserve convex combinations
of points. Moreover, if f is a bijection in the ambient spaces, then P and Q are basically “the same polytope” with
respect to an affine change of coordinates. From the combinatorial point of view, if P and Q are affinely isomorphic,
then they share the same facial structure. In particular, the affine map gives an isomorphism between their extreme
points, and between their facets [11].

Definition 8. Let �(G, d, g) denote the minimum frequency spectrum length s such that there exists a solution for
every possible ordering among the intervals.

In order to prove the equivalence of P(G, d, s, g) and P(G, d, s + 1, g), we define a different representation for
feasible schedules in terms of binary variables. For every node i ∈ V and every k ∈ {0, . . . , s − 1}, define the binary
position variables qik and uik as

qik =
{

1 if li �k,

0 otherwise,
(7)

uik =
{

1 if ri �k,

0 otherwise.
(8)

We also consider the ordering variables xij , for ij ∈ E, with the usual meaning. To every extreme point z = (l, r, x)

of P(G, d, s, g) we can associate a point wz = (q, u, x) ∈ Z2ns+m with q resp. u defined by (7) resp. (8). We define
P(G, d, s, g) ⊆ R2ns+m to be the convex hull of all the points constructed this way, i.e.,

P(G, d, s, g) = conv{wz : z is an extreme point of P(G, d, s, g)}.
Since the extreme points z1, . . . , zt of P(G, d, s, g) are pairwise distinct, then wz1 , . . . , wzt are pairwise distinct as
well. Moreover, wz1 , . . . , wzt are 0/1-vectors and, therefore, none of them can be written as a convex combination of
the remaining ones. Hence P(G, d, s, g) has the same number of extreme points as P(G, d, s, g).

Lemma 2. P(G, d, s, g)�P(G, d, s, g).

Proof. Consider the affine map f : P(G, d, s, g) ∩ Z2ns+m → P(G, d, s, g) defined by

f (w)li =
s−1∑
k=0

wqik
∀i ∈ V ,

f (w)ri =
s−1∑
k=0

wuik
∀i ∈ V ,

f (w)xij
= wxij

∀ij ∈ E.

This function maps the point w = (q, u, x) onto the point f (w) = (l, r, x). Therefore, f maps extreme points of
P(G, d, s, g) onto extreme points of P(G, d, s, g). This mapping is clearly injective and, since the sets of the extreme
points of both polytopes have the same cardinality, it follows that f is a bijection between these sets. Since f is an affine
bijection between the set of extreme points of P(G, d, s, g) and the set of extreme points of P(G, d, s, g), then f is a
bijection between P(G, d, s, g) and P(G, d, s, g) and, therefore, these polytopes are affinely isomorphic. �

Lemma 3. If s > 2�(G, d, g), then P(G, d, s, g)�P(G, d, s + 1, g).

Proof. Let z be an extreme point of P(G, d, s, g), and let C be a connected component of H(z). Since C is a bor-
der component, there exists some i ∈ C such that either zli = 0 or zri = s holds. If zli = 0, s > 2�(G, d, g) im-
plies maxj∈Czlj < �s/2� and maxj∈Czrj < �s/2�. Similarly, if zri = s, s > 2�(G, d, g) implies minj∈Czlj > �s/2� and
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minj∈Czrj > �s/2�. Hence zli �= �s/2� and zri �= �s/2� for every i ∈ V , and thus the interval bounds can be partitioned
into two subsets, namely the bounds located in [0, s/2 − 1] and the bounds located in [s/2 + 1, s].

Now, if wz is the corresponding feasible solution ofP(G, d, s, g), we denote by shift(wz) the corresponding extreme
point of P(G, d, s + 1, g), which has the same configuration, but the interval bounds located in [s/2 + 1, s] are now
shifted one unit to the right. Therefore, the point shift(wz) can be written as:

shift(wz)qik
=

{
wqik

if k < �s/2�,
wqi,k−1 if k��s/2�,

shift(wz)uik
=

{
wuik

if k < �s/2�,
wui,k−1 if k��s/2�,

shift(wz)xij
= wxij

.

This mapping shifts the left resp. right interval bounds located in [s/2 + 1, s] (and therefore with qi,s/2 = 1 resp.
ui,s/2 = 1) one unit to the right, and lets the remaining bounds unchanged. Moreover, it is an affine bijection between
the extreme points of P(G, d, s, g) and P(G, d, s + 1, g) implying that they are affinely isomorphic. �

Theorem 4. If s > 2�(G, d, g), then P(G, d, s, g)�P(G, d, s + 1, g).

Proof. From Lemma 2 and Lemma 3 follows P(G, d, s, g)�P(G, d, s, g)�P(G, d, s + 1, g)�P(G, d,

s + 1, g). �

Remark. The definition of P(G, d, s, g) presented in this section was inspired by the construction given in [8] for
characterizing the integer hull of a general polytope. It is also worth noting that an alternative proof of a weaker
version of Theorem 4 can be obtained by proving that the Fourier–Motzkin elimination method [11] performs the same
operations on P(G, d, s, g) and P(G, d, s + 1, g) when s 	 �(G, d).

The previous results ensure the existence of a threshold smax(G, d, g) on the frequency span such that P(G, d, s, g)

�P(G, d, s + 1, g) for all s�smax(G, d, g). Theorem 4 implies

smax(G, d, g)�2�(G, d, g) + 1

but computational evidence suggests smax(G, d, g) =�(G, d, g) + 1, see [9]. The latter has been verified for disjoint
unions of cliques as interference graphs in [9] but remains open for arbitrary interference graphs.

6. Relations to the linear ordering polytope

A linear ordering of a finite set V = {1, . . . , n} is a bijective mapping � : V → {1, . . . , n}. For i ∈ V and j ∈ V ,
i �= j , we say that i is before j in � if �(i) < �(j). With each linear ordering � we associate a characteristic vector
x� ∈ Rn(n−1), defined as follows:

x�
ij =

{
1 if �(i) < �(j),

0 otherwise,
∀i, j ∈ V, i �= j .

The linear ordering polytope P n
LO on n nodes is the convex hull of the characteristic vectors of all linear orderings of

{1, . . . , n} [7]. Complete descriptions of P n
LO are known for n�7, with 87.472 facets for n=7. A conjectured complete

description for n = 8 contains over 480 million facets [2].
Chromatic scheduling polytopes share many structural properties with the linear ordering polytope, since the ordering

variables have the same meaning in both settings. Not surprisingly, some of the simplest cases of chromatic scheduling
polytopes, namely the instances defined over complete graphs, with minimum frequency spectrum length are equivalent
to P n

LO.

Theorem 5. If s = ∑n
i=1di , then P(Kn, d, s, 0)�P n

LO.
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Proof. Since s = �(Kn, d, 0) then P(Kn, d, s, 0) is nonempty. Moreover, in every feasible solution all intervals I (i)

have exactly length di and there is no gap between two intervals left; thus the feasible solutions distinguish only in the
order of the intervals. Therefore, the following linear equations are satisfied by every feasible solution of P(Kn, d, s, 0):

li =
∑
j �=i

dj xji , i = 1, . . . , n,

ri =
∑
j �=i

dj xji + di, i = 1, . . . , n.

Hence the interval bound variables can be written as affine combinations of the ordering variables, which are precisely
the linear ordering variables. Moreover, this affine mapping is a bijection, since every linear ordering generates a
feasible schedule in P(Kn, d, s, 0) and conversely. Thus, P(Kn, d, s, 0)�P n

LO. �

This result implies that even simple chromatic scheduling polytopes are hard to characterize. A complete description
of P(Kn, d, s, 0) in terms of its facets should include all the linear ordering facets, which amount to several millions
of valid inequalities even for small instances. A similar relationship holds for chromatic scheduling polytopes over
arbitrary interference graphs, as shown in the remaining of this section.

Definition 9. If 	Tx�	0 is a valid inequality of P n
LO, let S	 denote the set of edges having nonzero coefficients in the

inequality (i.e., S	 = {e ∈ E : 	e �= 0}).

Proposition 3. Let 	Tx�	0 be a valid inequality of P n
LO with S	 ⊆ E. Then the inequality

∑
ij∈S	

	ij xij �	0 is valid
for P(G, d, s, g).

Proof. Let (l, r, x) ∈ P(G, d, s, g) ∩ Z2n+m be an integer feasible solution. The vector x specifies a partial ordering
among the intervals, and can be extended into a linear ordering x′ ∈ P n

LO satisfying 	Tx′ �	0. Since S	 ⊆ E, then
	Tx′ = ∑

ij∈S	
	ij x

′
ij = ∑

ij∈S	
	ij xij , implying that

∑
ij∈S	

	ij xij �	0 is valid for P(G, d, s, g). �

Theorem 6. Let 	Tx�	0 be a facet-defining inequality of P n
LO with S	 ⊆ E. If s 	 �(G, d), then

∑
ij∈S	

	ij xij �	0
defines a facet of P(G, d, s, g).

Proof. Since the equations xij + xji = 1 ∀i �= j are a maximal equation system for P n
LO, there exist k = n(n − 1)/2

affinely independent integer points x1, . . . , xk ∈ P n
LO such that 	Txi =	0 for i=1, . . . , k. These points have n(n−1)/2

coordinates, one for each edge of Kn. Delete the coordinates corresponding to the edges that are not present in G. That
way we obtain the new points projx(x

1), . . . , projx(x
k) ∈ Rm, and we can find m affinely independent points among

them. Since s?�(G, d), we can extend x̄i =projx(x
i) to a feasible schedule zi ∈ P(G, d, s, g)∩Z2n+m, by assigning

the intervals in such a way that the precedence relation indicated by x̄i is satisfied.
We now construct 2n more affinely independent points from z1 as follows. Let D = (V , ED) be a digraph such that

ij ∈ ED if and only if ij ∈ E and I (j) is located before I (i) in z1. Let i1, . . . , in be a topological ordering of D, and
construct n feasible solutions u1, . . . , un ∈ P(G, d, s, g) by setting

ui
lj

=
{

z1
lj

+ 1 if j = it for t � i,

z1
lj

if j = it for t > i,

ui
rj

= ui
lj

+ dj .

Now, for j = 1, . . . , n, construct a point wj ∈ P(G, d, s, g) from uj by enlarging the interval I (ij ) one unit to the
left. These new schedules are affinely independent with respect to z1, . . . , zn. This way we complete a set of 2n + m

affinely points and, therefore,
∑

ij∈S	
	ij xij �	0 defines a facet of the (full-dimensional) polytope P(G, d, s, g). �

7. Concluding remarks and open problems

The present paper explores the different combinatorial stages of chromatic scheduling polytopes for increasing
frequency spans, from nonemptyness to full-dimensionality, and finally to a combinatorial steady state.As the associated
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decision problems areNP-hard, we provided bounds on the corresponding thresholds giving rise to a new combinatorial
“quality” of the polytopes.

Deciding emptyness/nonemptyness for P(G, d, s, g) is a crucial issue with strong practical implications; we provided
the clique bound and the chromatic bound as certificates for emptyness and nonemptyness, respectively. Clearly, further
strengthening or refining these bounds is of interest in order to obtain better conditions ensuring feasibility/infeasibility
of the original bandwidth allocation problem.

It turned out that determining the dimension of chromatic scheduling polytopes is a difficult task, both from the
computational and the theoretical point of view. Clearly, the dimension is a nondecreasing function of the frequency
span; we could prove that P(G, d, s, g) is full-dimensional if s��(G, d, g), but nothing is known about the dimension
in the case s < �(G, d, g). In particular, we do not even have a complete characterization of the dimension for usual
graph coloring instances (G, 1, s, 0). It would also be interesting to develop lower bounds of sfull(G, d, g).

Moreover, we proved combinatorial equivalence of all polytopes P(G, d, s, g) for s > 2�(G, d, g), but empirical
evidence suggests smax(G, d, g) = �(G, d, g) + 1. As the proof technique applied in Theorem 4 cannot be trivially
adapted to this case, further ideas related to the combinatorial stability are required in order to get a better bound.

Finally, we related chromatic scheduling polytopes with the linear ordering polytopes and proved that chromatic
scheduling polytopes associated with complete interference graphs are affinely isomorphic to linear ordering polytopes.
This implies that even chromatic scheduling polytopes associated with the simplest instances are hard to characterize.
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