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Crustal Shortening, Root Spreading, Isostasy, and the Growth of Orogenic Belts' 
A Dimensional Analysis 
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Scaling laws that describe the growth of mountain belts and the change in their regional topographic profiles with 
time (t) are obtained by physical arguments that account for cmstal shortening, isostasy, and creeping flow at the 
mountain roots. An average power law theology characterized by an exponent n is assumed, and different values 
of n are considered. The model predicts the formation of a localized range characterized by a height (h) and a width 
(a). As cmst on the sides of a range is compressed, the root broadens due to buoyancy-driven creep. This process 
in conjunction with isostasy causes h to increase with time as tu4-t TM, and a as Pt4-t2n, as n is varied from 1 (Newtonian 
theology) to oo (plastic theology). Accordingly, the aspect ratio a/h increases as tm-t TM. The scaling laws depend 
on the theology, but rather weakly; the aspect ratio increases with age but is nearly independent of the rate of 
shortening. The deformation extends gradually inland with increasing time, so that the age of tectonic deformation 
decreases with distance from the continental border. Uplift takes place inland from the crest while subsidence occurs 
at the opposite side. The ratio a/h of the Andes and Tibet is consistent with this model. 

INTRODUCTION 

It is generally believed that large horizontal forces, such as those 
associated with subduction of oceanic lithosphere, or collision of two 
continental blocks, produce the folding and shortening of the crust 
that leads to the growth of mountain belts (e.g., Dewey and Bird 
[ 1970]). The characteristic time for isostatic adjustment is short com- 
pared to the time scale of orogeny as attested by measurements ofiso- 
static rebound and by the fact that isostatic compensation prevails on 
a regional scale (e.g.,Jacobs et al. [ 1974]). However, an isostatically 
compensated mountain range is not in hydrostatic equilibrium and 
will spread and collapse laterally unless restrained by appropriate 
stresses. Clear indications that spreading is actually taking place de- 
spite the fact that the crust on the sides of the range is under com- 
pression have been observed by Dalmayrac and Molnar [ 1981 ] and 
Suarez et al. [1983] in the Andes and by Molnar and Tapponnier 
[1978] in Tibet. A satisfactory model of range growth must explain 
this puzzling fact. 

A detailed description of the growth of a range requires knowledge 
o f the stresses acting on the litho sphere, its structure and rheo lo gy, and 
the boundary conditions. These data are not completely available. In 
addition, such a project would run into enormous observational as 
well as mathematical and computational difficulties. Clearly, models 
that take into account the basic physics and the most relevant pa- 
rmeters of the problem may be of great help in clarifying the issues, 
even if the simplification is achieved at the price of some drastic and 
rough approximations. 

In this paper we develop physical arguments that take into account 
isostasy, shortening of the crust, and a very simple rheology, all of 
which allow us to derive scaling laws that describe the evolution of 
highmountain ranges and some of their main features. Similarity and 
dimensional methods (see, for example, Sedov [ 1959]) are chiefly 
used. By comparison with observational data it is possible to constrain 
the theology of the upper mantle and the crustal roots. It is not our 
purpose to develop a fully realistic picture, but only physical insight 
into the mai• factors that govern the growth of a range. This is a 
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necessary first step before attempting a more derailed description be- 
yond the scope of the present paper. 

Various physical models have been used recently to understand the 
buildup and evolution o fmountain belts. The thin viscous sheet model 
of England and McKenzie [ 1982] has been used by Houseman and 
England [1986] to calculate the deformation of continental litho- 
sphere produced by the collision with a rigid indenter, and the results 
have been compared with observations in the India-Asia collision 
zone [England and Houseman, 1986]; the calculations of Cohen and 
Morgan [ 1986] are also based on this model, which assumes a verti- 
cally averaged power law rheology like that of the present paper. 
Vilotte et al. [1982, 1986] considered a closely related model, also 
with a vertically averaged rheology (slightly more general as it in- 
cludes a yield stress parameter); they also calculated the continental 
deformation due to an indenter, using a wider variety of boundary 
conditions than the other authors. The main difference between these 

and the present model is that here it is assumed that the velocity de- 
pends on the vertical coordinate, while all the thin sheet models ig- 
nore this dependence, so that viscous stresses can only arise due to the 
horizontal changes of the velocity; this approximation may be 
appropriate if only a small partL of the continental border is invested 
by the indenter as in the India-Asia collision, thenL is the natural scale 
of the velocity gradients, but some doubts can arise when most of its 
length is involved (so that the scaleL drops out of the problem). An- 
other difference is that these authors perform numerical experiments, 
no attempt being made to derive approximate analytical scaling laws, 
as we do here. The bulldo zer-driv en prism model o fD avis et al. [ 1983 ] 
implies a depth-dependent velocity as in the present paper, but as it 
aims primarily to describe the mechanics of fold-and-thrust belts and 
accretionary wedges Coulomb rheology is assumed, and an integral 
description of the dynamics of the whole growing range, including the 
inland slope, is not attempted. 

SPREADING AND COLLAPSE OF AN ISOSTATIcALLY 
BALANCED P•NOE 

Let us first argue why the depth dependence of the velocity during 
the process of deformation may be an important factor in determining 
the topography of a range. To this purpose we shall begin by ascer- 
taining if the lithospheric rocks are sufficiently strong to prevent 
collapse of a mountain range in isostatic balance. In the following we 
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shall be concerned only with average properties on a regional scale 
rather than the detailed slamcture of the range (such as local to- 
pography, faults, etc.). 

The regionally averaged profile of the crust of a range is shown 
schematically in Figure i assuming an Airy model for isostatic 
compensation; p denotes the density of the crust and p+p' that of the 
supporting layer (mantle lithosphere); h is the height of the range and 
h' the depth of the crustal root (or equivalently, the depth o f the trough 
in the mantle lithosphere). Isostasy requires that 

p'h' =ph (1) 

I a I 

P+P' [ h' 

Fig. 1. Schematic cross section of a range in isostatic balance. 

Let a denote the width of the range, so that (• -- 2h/a represents the 
typical value of its slope and {z' -- 2h'/a that of its root. A profile like 
Figure 1 is not in hydrostatic equilibrium since both the slopes of the 
range and that of its root will tend to collapse and spread laterally for 
nonzero •, (•' unless the strength (deviatoric stress capacity) of the 
lithosphere acts to balance the forces due to gravity and hydrostatic 
pressure. By dimensional analysis one can estimate typical values of 
the shearing stress tending to produce the collapse of the slope of the 
range as 

x -- pghlz -- 2pgh2/lz (2) 

(the local value of the stress increases linearly with depth, so that it 
depends on which point we are considering, but as the incipient fail- 
ure involves a portion of the crust whose depth is of the order of h, 
the stresses involved will have a characteristic value given by (2)). In 
(2), g denotes the acceleration of gravity. Since failure will occur if 
x exceeds the strength x of the crust, the stability condition will be 

y. 

'O > 2pgh/xy (3) 
where O = a/h denotes the "aspect ratio" of the range. A similar ar- 
gument can be applied to the root; the shearing stress that tends to 
produce its collapse will be typically 

x' -- p'gh'lz' -- 2p'gh'2/a (4) 

and to achieve stability x' must not exceed the strength x' of the ß y 

medium (xy and x' will be different, in general). Using equations y 

(1) and (4) one obtains the condition: 

0 > 2pgh'i/xy hi= pxy/p'x'y (5) 
Here it must be observed that it is not sufficient to overcome the 

strength of the crustal rocks to produce the collapse of the root, since 
it is necessary at the same time that a slumping of the mantle litho- 
sphere (over which rests the crust) accompanies the sliding of crustal 
material: the slopes of the mantle lithosphere trough that contains and 
supports the root must also fail. In other words, a change in the shape 
o f the root requires displacements in both media. Clearly, the stability 
of the shape of the interface between two media is determined by the 

stronger one. Then, the appropriate x'y in (5) is that of the stronger 
of both layers, which according to present knowledge is the mantle 
lithosphere (see, forexample, RanalliandMurphy [ 1987]). However, 
for the purpose of the present analysis it is irrelevant which layer is 
the stronger, provided one uses the appropriate x'.. 

Which condition, (3) or (5), is the most restricti•,e will depend on 
the value of T. If the belt formed by a thrust along the continental bor- 
der, it seems reasonable that its slopes would be as steep as allowed 
by conditions (3) and (5), independent of the details of the buildup 
mechanics. This is what happens, for instance, when a bulldozer 
slowly pushes a mound of earth (in this connection see Davis et al. 
[1983]). It is easy to see that young belts are consistent with rather 

small values of x and/or x'y, of the order of 0.1 kbar. For example, y 

typical values for the Andes (h = 4.5 km, O = 60-70) yield crustal 

strengths ofxy = 35-40 bar, orx' = 160-190 bar. These values are much y 

smaller than observed strengths, which are in the kilobar range (see, 
for example, Brace and Kohlstedt [1980]). This discrepancy is 
expected since the behavior of rocks at time scales corresponding to 
the growth of a range must be very different from that corresponding 
to fast processes such as faulting. However, the extrapolation of ex- 
perimentally determined properties of rocks to conditions that pre- 
sumably prey ail at the depth of mountain roots and to strain rates typ- 
ical of orogeny [e.g., Hobbs et al., 1975] indicates that the strength 

x'y required to explain observed profiles is roughly 1 order ofmagni- 
tude too large. 

Therefore it appears that static equilibrium at time scales typical of 
oro geny is implausible since too much strength is required in the roots, 
and plastic failure must occur there. There is ample evidence that plas- 
tic deformation is a key process in orogeny. For example, Davis et al. 
[1983] observe that Coulomb wedge theory is not valid toward the 
interior o fv ery wide mountain ranges and accretionary wedges, when 
the thickness of the crust exceeds the depth of the brittle-plastic 
transition. Apparently, plastic flow rather than static strength is the 
main factor that determines the large-scale profile of mountain 
ranges. 

This conclusion is consistent with the fact that large-scale profiles 
of ranges are generally in equilibrium with respect to fast processes 

such as faulting: the conditions (3) and (5) are fulfilled ifxy and 
correspond to short time scale behavior. This has no relevance to 
large-scale features such as the profile of the range. These are deter- 
mined by the behavior on very long time scales. 

Because lithospheric viscosity decreases with depth, flow will oc- 
cur mainly in the vicinity of roots, which will lead to lateral spread- 
ing. As the root broadens and shallows due to lateral flow, the topog- 
raphy of the range will undergo a corresponding isostatic adjustment. 
Near the surface this readjustment may occur either byway ofplastic 
deformation or by faulting. 

Letus consider now that the roots are spreading laterally due to vis- 
cous flow and that viscous stresses balance the stresses due to buoy- 
ancy, as given by equation (4). The problem here is to estimate the 
viscous stresses, since it is necessary to evaluate the velocity gradi- 
ents, which in turn require a knowledge of the flowpattern. Ofcourse, 
we have no direct evidence o f the type o f to w that occurs near the too ts 
of a belt. In lack of better knowledge two extreme hypotheses can be 
made:(1) the flow is characterized by strong vertical gradients of the 
velocity, i.e., •)u/•z is large (u is the velocity, and z, x denote the 
vertical and horizontal coordinate, respectively); (2) the velocity 
depends weakly on z, so that its gradients are essentially horizontal. 
In the light of the preceding discussion it seems reasonable to favor 
the first possibility, as it appears that the flow should consist of an 
almost horizontal outward motion of the crustal material of the root, 

accompanied by a counterflow of the mantle lithosphere tending to 
fill the root trough as it is being vacated (in addition there must be 
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deformations of the upper part of the crust to preserve isostasy); this 
pattern is consistent with the buoyancy forces that drive the motion. 
It is also reasonable to expect that the flow will be conf'med within a 
layer whose depth is of the order of the thickness of the structure (i.e., 
of the order of h') since the buoyancy stresses are localized there (the 
rest of the lithosphere is in hydrostatic equilibrium). We are then led 
to expect that the motion will exhibit a considerable velocity shear in 
nearly horizontal planes, and that •u/•z >> •u/•x, since the scale 
lengths of the gradients are, respectively, the vertical and horizontal 
scales of the structure h' and a, and h' •< a. Thus, we shall assume that 
the flow is strongly two-dimensional, and that the main contribution 
to the viscous stresses arises from •)u/3z, and not from 3u/•)x, that can 
be neglected in a first approximation. This assumption differentiates 
the present model from the thin sheet models, already discussed in the 
Introduction, which correspond to the assumption (2). In fact, these 
models postulate •)u/3z -- 0, so that flows whose velocity varies with 
depth are excluded. The test of the validity of the assumptions (1) or 
(2) will ultimately be the consistency of the predictions of our model 
with the observed large scale topography of of mountain belts, and 
other data concerning the style of deformation, as shall be discussed 
later on. For completeness we shall derive in the last Section the 
results corresponding to the assumption that •u/•z • O, i.e., that the 
main contribution to the viscous stresses originates from •)u/3x, as in 
the case of the thin sheet models; it will be seen that it leads to 
predictions that are not very different from those derived under the 
assumption 3u/•)z >> 3u/3x for the theologies usually assumed for the 
lithosphere. By considering the two extreme cases, all possible 
intermediate patterns of flow are bracketed by our analysis (in the 
spirit of the present approximations, the only conceivable scale 
lengths for the velocity gradients are the height and the width of the 
range), and the fact that regardless of which is chosen one derives very 
similar predictions indicates that the gross features of the processes 
are not very sensitive to the details of the flow pattern. 

To estimate the velocity gradients we observe that u -- v/2 where 
v = da/dt is the rate of increase of a, so that 3u/&z -- v/2h'. Let us first 
assume, for greater simplicity, aNewtonianrheology. Iflx denotes the 
viscosity, the viscous stress is given by 

'r"= I•v/2h' (6) 

Here, as said above, the crustal flow associated with the broadening 
of the root must be accompanied by a corresponding flow of the man- 
fie lithosphere tending to fill the root trough. The rate of change of a 
will be determined by the most viscous of the layers involved, and this 
gives the value of Ix that must be used in (6). 

Equating x" to x' (equation (4)) one obtains the spreading rate 

v = (4gp/tx)(p/p')2h3/a (7) 

The characteristic time of the collapse of the range resulting from root 
spreading can be estimated as 

t* = a/v (8) 

i.e., t* is the time required to double the width of the range, and ac- 
cordingly, to reduce its height to one half. For example, if Ix = 10 •2 
P, then v= 2.1-2.5 cm/yr and t* = 11-15 m.y. for the Andes. The corre- 
sponding strain rate is roughly 1044 s -•, and the viscous stress is ap- 
proximately 160-180 bar. 

As the roots spread and become more shallow (and therefore 
colder) the viscosity must increase, so that the collapse of the range 
will not proceed indefinitely. 

It could be argued that a Newtonian theology is not acceptable as 
a model of the lithosphere. A more realistic assumption would be to 
chose a vertically averaged power law theology of the type [Byrd, 
1976 

x.. = BE(U'-•)e.. (9) 
IJ 

(usually referred to as the Norton-Hoff law) where 'r.. are the verti- 

cally averaged components of the deviatoric stress tensor, I;ii are the 
strain rates, and 

E = (e0eo)m (10) 
In (9) B is a constant that depends on the vertically integrated 

structure of the lithosphere (more precisely, the layer, or layers, that 
make the major contribution to its strength for the deformation one 
is considering). The justification for disregarding the theological 
stratification of the lithosphere, and using a constitutive relation like 
(9), has been discussed in detail by England [1983], Sonder and 
England [ 1986], and Houseman and England [ 1986] in the context 
of thin sheet models of lithospheric deformation. Their arguments, 
which for brevity we shall not repeat in detail here, are also appropri- 
ate to the purpose of the present analysis, as we are not attempting to 
describe the local and small-scale details of the phenomenon. We are 
contented here to derive scaling laws and other relations between the 
characteristic values of large-scale physical variables, in order to de- 
scribe the gross features of the process. These are not sensitive to lo- 
cal properties but only to average ones. 

Equation (9) implies assuming a stress-dependent effective viscos- 

I.t = BE x•/"-•> (11) 

The exponent n depends on the combination o fdeformationmecha- 
nisms across the (relevant layers of the) lithosphere; n = 3 would be 
appropriate if the theology is dominated by the power-law creep of 
olivine; higher values of n are a better approximation if high stress 
plasticity is prevalent or when friction on faults is a significant fac- 
tor. A Newtonian fluid corresponds to n = 1, and n --o o• simulates a 
perfectly plastic behavior. It is generally accepted that a power law 
constitutive equation is adequate for practically all crustal and upper 
mantle rocks [Kirby, 1983; Ranalli and Murphy, 1987; see also 
Goetze, 1978]; vertically averaged theologies similar to that assumed 
here have been used by Bird and Piper [1980], England [1983], 
Houseman and England [ 1986], Cohen and Morgan [ 1986], Vilotte 
et al. [ 1982,1986], as well as others in studies of lithospheric deforma- 
tions. See also Karner et al. [ 1983 ],Sonder and England [ 1986], and 
Paterson [1987] for further discussions on this subject. 

The spreading of the root can be estimated on the assumption of a 
power law theology by a slight modification of the preceding argu- 
ments. In place of (6) one has now 

x"= B(v/2h') TM (12) 

where as said before, B is a constant that can be obtained from tab- 

ulated properties of lithospheric materials (see, for example, Ranalli 
and Murphy [1987]) by means of some convenient vertical averag- 
ing procedure (which we shall not further discuss) over the relevant 
lithospheric layers. Then (7) is changed to 

v = 2(hp/p') '+•(2pgh/Ba)' (13) 

With the same data as above, ifone assumes n= 3 (olDhue [Goetze, 
1978]), andB = 10 •3 (cgs), which are reasonable values for the litho- 
spheric materials at the depth of the root [see Ranalli and Murphy, 
1987], one obtains t* = 10 m.y., that is of the same order of magni- 
tude of the result derived above. 

Notice that in any case t* is of the order of the orogenic time scale, 
and this indicates that spreading flow is an important phenomenon in 
the course of the growth of a range. This flow involves a (almost hori- 
zontal) sliding of crustal material out of the deepest parts of the root 
and toward its sides and a corresponding slumping of the lithospheric 
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manfie into the root trough, with vertical gradients of the velocity (in 
both instances) of the order of v/h'. Then we conclude that this depen- 
dence of the velocity with depth should be taken into account when 
describing the growth of mountain belts. 

CRUSTAL SHORTENING AND THE DYNAMICS 

OF THE GROWTH OF A RANGE 

Consider the situation of simultaneous crustal shortening and plas- 
tic flow at the root of the range. Let the rate of shortening be v•, pre- 
sumably caused by a thrust along the border such as may result from 
subduction. For simplicity we assume that the border is straight and 
infinitely long, that the horizontal forces that produce the shortening 
are normal to it, and that no mass is added to the crust. We shall also 
assume that the width of the continental plate is infinite (In practice 
this means that the results of the analysis can be applied only as long 
as the width of the range is considerably less than that of the conti- 
nent). If d is the thickness of undeformed crust, then the volume of 
the range plus that of its root must be proportional to dl, where l 
denotes the amount of shortening that has taken place. The geometry 
of the problem is sketched in Figure 2, where for simplicity we have 
assumed a triangular profile for the range; the justification of this 
idealization will be discussed later. If t is the time elapsed since the 
beginning of the process and v s is constant, l = v•t; then 

a(h+h') = 2dv•t (14) 

Note that the addition of mass (for example due to magmatism) 
could be taken into account, if required, by introducing an appropri- 
ate coefficient in equation (14). 

B C F 
i h 

I l = vt I a I ß 

Fig. 2. Sketch showing simplified geometry of crust deformation due to short- 
ening. 

If flow at the root is taking place simultaneously, then stresses given 
by (4)are balanced byv iscous stresses given by (6)or, more generally, 
by (12), and the range will tend to spread with a characteristic velocity 
v given by (7), or (13) (actually, the situation will be more complicate 
than that discussed in the previous Section, as the subductioncomplex 
participates in the range buildup process, and its presence must 
certainly affect the flow pattern; it is however reasonable to assume 
that the order of magnitude of the spreading velocity can still be esti- 
mated by (7) or (13)). Notice that now v will not be equal to da/dt. 

Lastly, we assume that isostatic compensation is occurring during 
the process, so that condition (1) holds for all t. This is reasonable 
because, as stated above, the characteristic time of isostatic recovery 
is much shorter than the time scale of range buildup [Vilotte et al., 
1986]. 

The evolution of the range will be the result of the combined effects 
of the shortening, the spreading flow, and of isostasy. We shall now 
present arguments to show that a state of dynamic balance in which 
v -- vs is maintained during the process. First, we observe that as the 
plate is shortened, the volume of the range must increase according 

to (14). This can in principle be accommodated either by varying a, 
or h' (and then h by isostasy), or both. But v increases as h' increases, 
and decreases with increasing a. Clearly, v cannot exceed v•, other- 
wise the crustal material that is spreading out from the root would be 
left behind by the border (this would mean, in fact, that the effective 
rate of shortening should be v, and not v• as assumed by hypothesis); 
then any increase of h' must be accompanied by an appropriate 
increase of a, and should not be too fast, in order to keep v < v•. On 
the other hand, if h' has been increasing too slowly in the past, v will 
be accordingly small; suppose, for instance, that v < v•: in this case, 
since the range is spreading very slowly, the shortening due to themo- 
rion of the border will actually effect a reduction of the width of the 
range, i.e. a will diminish with time. But in this situation, conservation 
ofmass will lead to a fast increase of h ', and then of v, and this increase 

will continue until v = v•. We conclude that the process is autoregu- 
lated, in such a way that a state of dynamic balance is maintained, in 
which v--v• as stated above. In what follows we shallputv• = v to take 
into account this autoregulation. 

We shall now derive the scaling laws that describe the evolution of 
arange, taking into account shortening, root spreading, and isostasy. 

Let us consider fin:st the case of a Newtonian theology. Then 

vlMh' = 4p' gh'2/a (15) 

Combining (14), (15), and (1) yields h(t) and a(t): 

where 

h = d(tlT•)m(Tl/t)•tn (16) 
a = 2a(t/T)t/Try' (17) 

T, = d(l+•.)/v3. Ti= •.(l+3.)/2Ad (18) 
•. = p'/p A = pg/lx (19) 

These formulae show that the evolution of the range is determined 
by two characteristic times: T• associated with crustal shortening, and 
TI associated with viscous flow. Due to the combination of these pro- 
cesses the evolution of the profile is self similar, with a vertical scale 
that increases with the 1/4 power of time while the horizontal scale 
increases as the 3/4 power of time. From (16) and (17) one obtains the 
evolution of the aspect ratio: 

O = 2(t/Tl)m (20) 

As a range grows in height its average slope becomes gentler; i.e., 
it spreads while its height increases and crust shortens, This dynamic 
equilibrium between growth and spreading explains the puzzle we 
mentioned in the introduction. 

Figure 3 is a sketch of the evolution of the profile of amountain belt, 
as given by equations (16) and (17). As the range front (indicated by 
F in the figure) advances inland, the surface of the cn•t between F 
and the crest C rises, whereas crust left behind by the crest (i.e., those 
points between B and C) subsides. The kinematics of the profile are 
reminiscent o f a w ave: pointP rises as the front reaches that point ( that 
can be visualized as a locus on the surface). This motion continues un- 
til P is riding the crest of the profile; afterwards P slowly subsides. 
These features agree qualitatively with the style of deformation for 
a young range such as the Andes in which thrust faulting occurs to the 
east of the crest of the belt, instances of normal faulting occur to the 
west, and the ageof tectonic deformation decreases steadily eastward 
[Suarez et al., 1983]. 

Itcan be observed from (18) and (20) thatO depends only on Tland 
t and is independent of the rate of crustal shortening. Then if)h Ix, d, 
and the age of the range are known, the average profile can be pre- 
dicted. Conversely, the geographical data (height and width) and the 
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Fig. 3. Sketch of the time evolution of the visible profile of a mountain belt; 
x denotes the horizontal coordinate, measured from the initial position of the 
plate border, which changes in time due to the shortening of the plate so that 
the distance of B from the vertical axis gives the amount of shortening that 
has taken place; F denotes the position of the front of the deformation wave. 
A point on the surface such as P is at rest until reached by the front of the defor- 
mation wave (a litfie before t = 0.3 T,), then is uplifted until it rides the crest 
(near t = 0.6 T,); after that it slowly subsides. Uplift occurs at all points of the 
deformation wave between the front and the crest, while subsidence takes 

place between the crest and the border. The vertical exaggeration is 10x; T, 
= 1.46x10 • T r 

age of the range provide constraints on the rheological properties at 
the depth of the root. Consider, for example, the Central Andes where 
)%=0.217, d = 33 km, h =4.5 km, and O = 60-70. If the profile of the 
belt is due to the present orogeny which started some 15 m.y. ago (e.g., 
Audebaud eta/. [ 1973]) then m = 2.9-3.0x1022 P; the rate of crustal 
shortening is v = 0.76 cm/yr. 

A second example is the Tibetan plateau where )% and d are as be- 
fore, and h is 4.5 km, the average height of the top of the plateau (we 
shall discuss below why the present scalings, which were derived with 
the assumption that the range is sharply peaked, may be also applied 
to the case of a plateau). The top of the plateau is more appropriate 
for h than the height of the Himalaya since this range seems to be sup- 
ported by flexure of the Indian plate (see, for example,Lyon-Caen and 
Molnar [1983] and Karner and Watts [1983]), not accounted for by 
the present model of isostatic support. Then • = 220-230. If orogeny 
started 55 m.y. ago, then g = 0.9-1.0x1022 P and v = 0.7 crn/yr. 

In both instances the values of g are of the same order of magni- 
tude and fall within the range o f typical values for the lowest portions 
of the crust and the upper manfie as obtained from isostatic rebound 
data (see, for example, Vening-Meinesz [ 1937] and Nakiboglu and 
Lainbeck [ 1983]) and from studies of creep (see the review article of 
Weertman and Weertman [ 1975]). Of course, we must be aware that 
the present comparisons suffer from various limitations. In the first 
place, the present topography only allows a comparison with the pro- 
files at single point of the time axis, while it would be desirable to 
compare the actual evolution of the ranges and the predictions, for 
different times. Second, erosion has not been taken into account; this 
process will modify the mass balance equation, introducing addi- 
tional nonlinear terms that could perhaps spoil the self similarity of 

the profile evolution. However, the effect may not be very large for 
fast growing ranges. 

Consider now a power law theology. Then (15) must be replaced 
by 

B(v/2h') TM = 2p' gh'2/a (21) 

and one obtains in place of (16), (17), and (20) 

h = d(t•s)(n+l)/(3n+l)(T/t) 1/(3n+1) (22) 
a = 2d(t/T,)2•/(•+•)(t/•/)•/(•+l) (23) 
0 = 2(t/T,)½•-•>/½'•*•>(tff/)2/<'•*l> (24) 

in which T• is given by (18) as before, but the definition o fT/is changed 
into 

T/= 
Now the height of the range increases with the n/(3n+l) power of 

time, while the width varies with the (2n+l)/(3n+l) power, and the 
aspect ratio changes according to the (n+l)/(3n+l)power. While the 
exponents of the scaling laws depend on the theology, it is clear that 
this dependence is weak (as n ranges from 1 to oo the exponents vary, 
respectively, in rather narrow intervals: 1/4-1/3, 3/4-2/3, and 1/2-1/ 
3) and does not change qu alitativ ely the behavior we discussed above: 
•.e evolution of the profile is also self similar; it can be observed that 
the result that the aspect ratio increases with the age of the range is 
independent of the theology, and the same is true of the main charac- 
teristics of the style of deformation, that are represented in Figure (3); 
in particular, uplift occurs in front of the crest, and subsidence occurs 
behind. We also observe that for n •- 1, the aspect ratio depends only 
extremely weakly on v (for n = 3, O ~ vl/5). The data of the examples 
can of course be fitted for any n by appropriate choices of B. Taking 
n = 3, which is a value frequently accepted as adequate for the litho- 
sphere, the corresponding B fall within the range of typical values [see 
Ranalli and Murphy, 1987]. 

Finally, notice that the evolution of the range can also be obtained 
by assuming that stresses given by (4) that tend to collapse the range 
are balanced by rock strength, i.e., the range evolves through a suc- 
cession of stable states of equilibrium instead of continuous evolu- 
tion. With this hypothesis, equation (15) should be replaced by 

h 2 = ayr/2pg 
so that equations (16)-(17) become 

(26) 

1/3 1/3 
h = 2(pgd/yr,)- (t•) 

a = 2d(pgd/T1;•)•13(t/T•)213 
The formula for the aspect ratio is changed to 

(27) 

(28) 

2/3 1/3 
0 = 2(pgd/yr,) (t/T,) (29) 

The evolution given by equations (27)-(29) is qualitatively similar 
to that corresponding to equations (16), (17), and (20), otto (22)-(25). 
The exponents of the po wet laws correspond to the limit n--> o• in (22)- 
(25). The data of the examples can be fitted by appropriate choices 

ofx• and x'? but the values thus obtained are not related to behavior 
of rocks during short time scales; furthermore, the resulting x' is 

y 

larger than expected for prevailing temperatures at root depth and at 
typical orogenic strain rates as discussed earlier. 

The present analysis is clearly limited to young, fast growing belts 
since erosion was not taken into account. Also, the scaling laws are 
more appropriate for advanced stages of growth of arange (i.e., when 
a considerable size has already been attained), when the height is 
varying slowly (see Figure 3), and the same happens to the depth of 
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the root. Then the effective viscosity will also vary slowly, so that the 
assumption of it being constant is more justified. 

Now we shall discuss the assumption of a triangular profile for the 
belt. In the first place, we want to stress that this hypothesis is not 
essential at all: we could have assumed any other reasonable shape, 
as long as it can be characterized by a "width," a, and a "height," h, 
and still the arguments leading to the scaling laws could be carded 
through just the same (the only difference would be that the continu- 
ity equation (14) would include a constant dimensionless geometri- 
cal factor of the order of unity), so that the same self similar scalings 
would be obtained within numerical factors that can be ignored in the 
spirit of the present dimensional analysis. The main reason for 
chosing the triangular shape is simplicity: we wish to avoid cluttering 
the formulae with geometrical factors that will obscure the basic facts 
we want to bring out, without gaining any real advantage, because we 
can not calculate these factors unless we know the exact theoretical 

profile. In addition, a roughly symmetrical triangular profile seems 
to be a reasonable first approximation for ranges associated to 
subduction along a continental border, as the Andes, on the basis of 
observational data. In Figure 4 a series of topographic profiles from 
across the Andes of Peru are represented; these profiles span an area 
880 km long and 500 km wide as indicated in the inserted map; each 
profile represents the average relief of a strip 80 km wide, at right an- 
gles to the axis of the cordillera (that is nearly straight in the portion 
considered), and has been smoothed on a scale length of 40 km, trans- 
versely to the range, to cancel out small-scale (i.e., < d) topographic 
details. It can be appreciated that the profiles are nearly triangular and 
that their average width a is very well defined; the height h is also 
reasonably well defined, although not as sharply as a. We must be 
wary, however, and not take this evidence as proving that the correct 
theoretical shape of a range is triangular; actually, the observed av- 
eraged topography tends to be flat near the top (a fact that must be ex- 
pected on theoretical grounds); obviously this feature is not correctly 
described by a triangle. On the other hand, many theoretical shapes 
that are characterized by vertical and horizontal scales h, a, can be 
imagined, that fit the observed data equally well, or even better than 
the triangle, and that have in addition a rounded top. To give just an 
example, the profiles of Figure 4 can be fitted very well by a segment 
of an ellipse whose major half axes are given by 3h and 2a/3 
(approximately). When this segment of an ellipse is scaled self simi- 
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Fig. 4. Smoothed topographic profiles of the Andes of Peru. Each profile rep- 
resents the relief of an 80-km-wide strip, at right angle to the axis of the 
cordillera, and has been smoothed on a scale length of 40 km transversely to 
the range to average small-scale topographic details. The 11 profiles span an 
area of 880 x 500 km as indicated in the inserted map. The profile asstuned 
in the text is represented by the shadowed triangle. 

larly to a greater age (50-60 m.y., say) according to (16), (17) (or (22), 
(23)), the top flattens and the proffie looks very plateau-like. For this 
reason we feel justified in using the present scalings for a plateau such 
as Tibet. 

It must be emphasized that we have given a very simplified treat- 
ment of the present model, which does not allow a theoretical predic- 
tion of the profile; at the present stage of development of our theory 
the shape must be assigned on an empirical basis. Nevertheless• an 
important theoretical result follows from our dimensional analysis, 
namely that we can predict that the evolution o f the pro file o f the range 
is self similar, even if we are not able to compute its exact shape; this 
is a direct consequence of our assumptions concerning the governing 
parameters of the phenomenon. 

To conclude this section, we shall complement the preceding 
statement by presenting some arguments to show (1) that pro files like 
those of Figure 4 are consistent with the physics of the present model, 
if appropriate boundary conditions are included, and (2)why the pre- 
sent model predicts a localized range, with a characteristic height and 
width. 

To predict the observed shape, the theory must include the follow- 
ing features: anhorizontalpush to produce shortening, buoyancy, and 
in addition, (1) a mechanism to support the foot of the range on the 
side of the continental border (to the left of the crest in the figures), 
(2) a mechanism to localize the deformation near the continental bor- 
der (i.e., to restrain its spreading inland from the crest, so that therange 
does not become arbitrarily wide). Basal shear traction due to the sub- 
ducting plate, as in the model olDavis et al. [ 1983] is the obvious can- 
didam as mechanism (1); clearly, except in narrow portion near the 
border (where the Coulomb wedge theory olDavis et al. [1983] is 
applicable) a power law viscous theology such as (9) could be a 
reasonable choice; by this mechanism as shortening takes place, the 
crest will thicken in a wedgelike shape, thus buttressing the root of 
the range on the side of the continental border. An intuitive image of 
the process can be given as follows: this wedge acts like the blade of 
a fictitious bulldozer, pushing inland the rest of the root and causing 
the deformation to spread into the continent with a downward slope. 
The top of the range marks the position of the blade of this contrived 
bulldozer. Thus, each slope buttresses the other, and their feet are 
restrained from spreading by viscous stresses. To describe this 
situation, the theory must provide an adequate flow pattern, which 
probably should include vertical velocity shear; In this respect thin 
sheet models such as that of England and McKenzie [1982] may not 
be adequate since they lack this feature. On the other hand the present 
model includes it from the beginning; in fact, it is the balance between 
buoyancy and the viscous forces due to the vertical velocity shear as 
shortening is occurring that determines the slope of the range on the 
side of the continental border. The same viscous forces also provide 
naturally the required mechanism (2) that localizes the deformation 
and determines the slope on the other (inland) side. 

It should be clear that while we cannot yet calculate the exact pro- 
file of the belt, the physics of the present model very definitely pre- 
dict that the shortening will be concentrated in a localized range. This 
can be traced to the assumption that as expressed by equation (21) the 
viscous stresses (given by equation (12)) must balance the buoyancy 
stresses (given by equation (4)) that produce the spreading o f the root. 
The autoregulation mechanism discussed at the beginning of this 
section ensures that this balance is maintained throughout the'•rocess 
of growth of the range. But (21) establishes a constraint linking a to 
h', and by the isostasy assumption (1), to h, that can be written 
(omitting constant factors) as 

a ~ h 2+lln v TM (30) 

The relationship (30) is, of course, implicit in equations (22) and 
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(23). It tells us that for any rate of shortening the width a cannot be 
chosen freely, since it is uniquely determined by the height of the 
range. Since on the othe• hand the volume of the range ( ~ ah) is de- 
termined by the amount of shortening that has taken place, botha and 
h are uniquely determined at any given time (as expressed by 
equations (22) and (23)). It is then impossible to balance stresses for 
other values of a. In other words, viscosity can balance the buoyancy 
stresses if, and only if, the deformation is localized in a well-der'reed 
width. Any other assumption regarding the deformation (such as a 
diffuse thickening across the entire continent) must be ruled out: it 
cannot be reconciled with the present model and leads to inconsisten- 
cies. For example, a uniform thickening of the plate implies that the 
horizontal velocity varies linearly withx, which in mm means that the 
viscous stress is zero; it is clearly impossible to generate from the 
initial conditions of the problem such a vdocity field, without passing 
farst through an phase in which the horizontal forces arising from 
buoyancy (that appear because the slope is nonzero) that act to set in 
motion portions of the medium farther and farther away from the 
border (where the perturbation started) are balanced by viscosity; this 
balance determines the velocity of the motion at each point. This 
initial phase is precisely that in which we are interested. In this 
context, a uniform thickening from the very start of the process could 
be accepted only if it is assumed that nonviscous (for instance, elastic) 
forces, which are not considered in the present model, govern the 
phenomenon. But observational evidence rules out this possibility. 
Actually the argument may be turned around: the fact that a localized 
range (and not a uniform thickening of the continent) is observed indi- 
cates that viscous forces are a key factor. Summarizing, the localiza- 
tion of the deformation, the characteristic width a, and the height h, 
descend from the basic assumptions of the model: once nonviscous 
forces are excluded, autoregulation and its consequences follow by 
necessity. 

SCALING FOR FLows OF THE 

THIN SHEET MODEL TYPE 

In thin sheet models it is assumed that the velocity field does not 
depend on the vertical coordinate. As we are considering an infinitely 
long straight range, a horizontal velocity gradient can occur only 
transversely to the range, and can be estimated as v/2a (instead of v/ 
h' as we assumed in the preceding section). We shall consider apower 
law theology; then (21) must be replaced by 

B(v/2a) TM = 2p' gh'2/a (31) 

Using (1), (14), and (31) one obtains the following scalings 

h = d(4 •,)-u(•-•)(ttT,)n/(•4)(Tl/t)uon4) (32) 
a = 2d(4•,)uø'-•)(t/T,X•-•)/ø'-•)(t/Tl) TM (33) 
0 = 2(4l)2/o'-•)(t/T,)½n-•)/o"-•)(t/Ti)2/o'-•) (34) 

It can be observed that (apart from a numerical factor that depends on 
the density contrast factor •.) the ratio T/r//is equal to the n-th power 
of the Argand number, which was introduced by England and 
McKenzie [1982] in the context of the thin sheet model. 

For NewtonJan theology (n = 1), it can be seen that one obtains the 
peculiar result that the height o f an infinitely long range is independent 
of time; its value is given by 

• = 4([t•v/4pg) (35) 

so that it is proportional to the square root of the shortening rate (for 
example, if • = 3X10 22 P, •, = 0.217, v = 1 cm/yr, one obtains h • 1.4 
km). Except for this special case, the scalings agree qualitatively with 
the behavior already discussed in the preceding section, and tend to 

coincide with (22)-(24) for large n. In particular for n = 3, which as 
said before, is a value generally accepted for the lithosphere, it can 
be observed that the scalings (32)-(34) already differ very little from 
the previous results (22)-(24) which were derived assuming a very 
different flow pattern. This somewhat surprising result implies that 
the gross visible features of the process of growth of a mountain belt 
are rather ins ens itiv e to the details o f the velocity field within the litho- 
sphere. 

It must be stressed that the scaling (31) follows from the thin sheet 
model equations by assuming an indenter of infinite length (L ---> oo), 
so that O/Oy -- 0 (y denotes the horizontal coordinate along the con- 
tinental border). The calculations of Housemanand England [ 1986], 
Cohen and Morgan [ 1986] and others were made with the assump- 
tion of an indenter of finite length; thenL is also a scale length for the 
velocity gradients; as a consequence, the horizontal velocity gradi- 
ents on vertical planes transverse to the range, which must be also 
taken into account, give rise to additional stresses so that (31) no 
longer expresses the actual stress balance. Owing to the effect of the 
transverse stresses one obtains dh/dt • 0 in these calculations, even 

for Newtonian theology. This is not in contradiction with our result, 
which is valid only for L ---> 

DISCUSSION AND CONCLUSIONS 

Physical arguments that account for crustal shortening, isostasy, 
and a vertically averaged power law rheology permit scaling laws to 
be derived that describe the growth of a range and the shape of its pro- 
file. The formation of a localized range is predicted. The scalings of 
the width and height of the range are only weakly dependent on the 
rheology. As long as the crust is undergoing horizontal compression 
and shortening along its border, therange will grow bothinheight and 
width, and the average slope will decrease with time. Surface points 
away from the border are set in motion as the deformation wave 
propagates inland, being first uplifted until they ride the crest of the 
range and then subsided. Only order ofmagnitude estimates and qual- 
itative predictions are possible due to the extreme simplifications 
involved in the present analysis. Within these limitations, the present 
results agree with the data ofyoung structures such as the Andes (see, 
for example, Suarez et al. [1983]) and the Tibetan plateau [Molnar 
and Tapponnier, 1978]. On this basis we tentatively conclude that 
flow at the depth of roots is, together with isostasy and crustal shorten- 
ing, the basic process that governs large-scale evolution and charac- 
teristics of young mountain belts and plateaus. 

Amore detailed description of the dynamics ofthegrowth ofmoun- 
tain belts based on the present ideas may be obtained by solving the 
hydrodynamic equations that describe the buoyancy-driven creeping 
flow at the roots. If the simplifying assumption of constant viscosity 
is retaine• the problem may be solved analytically by appropriate 
generalizations of the lubrication approximation (see, for example, 
Huppert [1982, 1986]). More realistic assumptions could be tackled 
numerically. 
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