Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A new polymeric phase of zinc(II) oxydiacetate

Ricardo Baggio, ${ }^{\text {a* }}$ María Teresa Garland ${ }^{\text {b }}$ and Mireille Perec ${ }^{\text {c }}$

${ }^{\text {a }}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, ${ }^{\text {b }}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile, and ${ }^{\text {c }}$ Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, UNBA, Buenos Aires, Argentina
Correspondence e-mail: baggio@cnea.gov.ar
Received 31 October 2002
Accepted 25 November 2002
Online 24 December 2002
A new polymeric phase of zinc(II) oxydiacetate, catena-poly[[[diaquazinc(II)]- μ-oxydiacetato $]$ hydrate $]$, $\left\{\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\left.\left.\mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, isomorphous with the Co homologue [Hatfield, Helms, Rohrs, Singh, Wasson \& Weller (1987). Proc. Indian Acad. Sci. Chem. Sci. 98, 23-31], is reported. It presents a chain-like structure, generated by ZnO_{6} cores which are bridged by carboxylate groups in an anti-anti conformation along the unique crystallographic b axis. The chains are held together through hydrogen-bonding interactions with the three water molecules.

Comment

The interactions of the $\mathrm{Zn}^{\mathrm{II}}$ ion with carboxylic acids are the subject of extensive research, due to the role of $\mathrm{Zn}-$ carboxylate bonds in the active sites of a variety of metalloenzymes and in precursor systems for Zn -containing ceramic materials. Because of the lack of ligand field stabilization energy, the $\mathrm{Zn}^{\mathrm{II}}$ cation exhibits no preferential coordination numbers and the actual coordination polyhedra are mainly determined by electrostatic forces and the steric effects of the ligands (Prince, 1987). Oxydiacetate (oda, ${ }^{-} \mathrm{OOC}^{-} \mathrm{CH}_{2}-\mathrm{O}-$ $\mathrm{CH}_{2}-\mathrm{COO}^{-}$) is a versatile complexing agent, having five potential O-donor atoms in different orientations, thus allowing the construction of networks of different dimensionalities. A thorough review of related structures has been reported in a recent study, in which the density functional theory (DFT) method was applied to investigate the flexibility of this ligand (Grirrane et al., 2002). The only binary zinc oxydiacetate complex known to date is the two-dimensional compound $\left\{[\mathrm{Zn}(\text { oda })] \cdot 0.3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, hereinafter (II), which consists of sheets perpendicular to the z axis, composed of ZnO_{5} units bridged by carboxylate groups in an anti-syn conformation (Baggio et al., 1996). For the related $\mathrm{Cd}^{\mathrm{II}}$ compounds, however, three different phases of binary cadmium oxydiacetates have been identified (Boman, 1974,

1977a,b,c), with discrete units, chains and layers containing CdO_{7} cores. We report here another polymeric phase of $\mathrm{Zn}^{\mathrm{II}}$ oxydiacetate, formulated as $\left\{\left[\mathrm{Zn}(\text { oda })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n},(\mathrm{I})$, and compare it with (II).

(I)

The structure of (I) is isomorphous with the homologous cobalt compound, $\left\{\left[\mathrm{Co}(\text { oda })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ [Hatfield et al., 1987; Cambridge Structural Database (Allen, 2002) refcode FICSUF]. Comparison of the two structures shows them to be almost identical. A least-squares fit of both coordination polyhedra ($X P$ in $S H E L X T L-N T$; Bruker, 2000) showed them to fit into one another, with deviations ranging from a minimum of $0.007 \AA$ (for atom $\mathrm{O} 1 W$) to a maximum of $0.027 \AA$ (for atom O5), and with an overall mean of $0.017 \AA$.

The environment of the Zn atom in (I) consists of a distorted octahedron, with the basal plane defined by atoms $\mathrm{O} 1, \mathrm{O} 3$ and O 5 of the tridentate oda ligand, and atom O 2 from an outer carboxylate group of a neighbouring oda ligand. The latter serves as the link in the resulting one-dimensional polymer formed along the unique crystallographic b axis (Fig. 1). The apical sites are occupied by two water molecules, and an additional hydrate water molecule completes the unitcell contents. The resulting polyhedron shows basal angles of ~ 74 and 166°, instead of the regular values of 90 and 180°, respectively, and the apical $\mathrm{Zn}-\mathrm{O}$ semi-axes subtend angles of $\sim 5^{\circ}$ to the vertical. This is a likely result of the hydrogenbonding interactions linking atom $\mathrm{O} 1 W$ to atoms O 4 and O 5 , and atom $\mathrm{O} 2 W$ to atoms O 4 and $\mathrm{O} 3 W$ (Table 2 and Fig. 2).

We note that the large $\mathrm{Zn}-\mathrm{O}_{\text {ether }}$ bonds in structures (I) and (II) are identical, at 2.114 (1) and 2.115 (1) \AA, respectively. However, the mean length of the $\mathrm{Zn}-\mathrm{O}_{\text {carboxy }}$ bond is slightly larger in (I), at 2.095 (1) \AA, versus 2.057 (1) \AA in (II), due to the higher coordination number in the former. This corresponds to a smaller out-of-plane deformation of the ligand, the dihedral angle formed by the lateral planar wings $(\mathrm{Zn}-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{Zn}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 5)$ around the $\mathrm{Zn}-\mathrm{O} 3$ bond being 6.5 (1) ${ }^{\circ}$ in (I) and 10.1 (1) ${ }^{\circ}$ in (II).

The major difference between the two polymeric forms of zinc oxydiacetate is in their crystal packing. In form (I), adjacent ZnO_{6} coordination polyhedra bridged by carboxylate groups in an anti-anti conformation define linear arrays along b, with $\mathrm{Zn} \cdots \mathrm{Zn}$ nearest-neighbour distances of 5.009 (1) \AA within the chains $[5.041$ (1) \AA in the homologous Co compound]. In compound (II), the adjacent ZnO_{5} polyhedra are bridged by the carboxylate groups in an anti-syn conformation along two mutually orthogonal directions, leading to a two-dimensional structure with closer $\mathrm{Zn} \cdots \mathrm{Zn}$ contacts within the planes $[4.867$ (1) \AA].

In spite of the differences in the $\mathrm{Zn} \cdots \mathrm{Zn}$ nearest-neighbour distances in the polymeric arrays, the overall densities in both structures are almost identical [2.034 (1) and 2.032 (1) $\mathrm{Mg} \mathrm{m}^{-3}$ for (I) and (II), respectively], suggesting that the 'less dense'

Figure 1
A view of the asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii and chain formation is indicated [symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $\left.-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}\right]$.
chains in (I) pack more closely than the 'more condensed' planes in (II). The reason for this is to be found in the marked differences of the hydrogen-bonding interactions. In structure (II), hydrogen-bond contacts are few and weak; one of them mediated by a disordered hydrate water molecule and another is of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type. In form (I), by contrast, the hydrogen-bond contacts involve all six water H atoms, and the contacts tightly connect the chains to each other.

Figure 2
A schematic packing view of (I) along a, showing the way in which the chains (running along b) interact to form a three-dimensional network. Hydrogen bonds are shown as broken lines. H atoms attached to C atoms have been omitted for clarity.

Experimental

Analytical grade zinc acetate dihydrate (Fluka) and oxydiacetic acid (Fluka) were used without further purification. Zinc acetate dihydrate $(0.20 \mathrm{~g}, 1 \mathrm{mmol})$ was dissolved in an aqueous solution $(25 \mathrm{ml})$ of oxydiacetic acid $(0.20 \mathrm{~g}, 1.5 \mathrm{mmol})$ and stirred at room temperature for 4 h . After four weeks, colourless crystals of (I) suitable for X-ray diffraction were filtered and dried in air. Recrystallization was from water-ethanol (1:1). Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{8} \mathrm{Zn}$: C 19.10, H 4.00, Zn 26\%; found: C 19.00, H 4.05, Zn 25.5\%.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=251.49$
Monoclinic, $P 2_{1} / n$
$a=7.132$ (1) \AA 。
$b=10.375$ (1) \AA
$c=11.100$ (1) \AA
$\beta=91.35$ (1) ${ }^{\circ}$
$V=821.1(1) \AA^{3}$
$Z=4$
$D_{x}=2.034 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 97 reflections
$\theta=7.2-19.3^{\circ}$
$\mu=3.01 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Needle, colourless
$0.32 \times 0.14 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
area-detector diffractometer
φ and ω scans
Absorption correction: refined on $\triangle F(S A D A B S$ in
SAINT-NT; Bruker, 2000)
$T_{\text {min }}=0.53, T_{\text {max }}=0.74$
1826 independent reflections 1654 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$
6664 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.09$
1826 reflections
142 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0357 P)^{2}\right. \\
\quad+0.1545 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.48 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Zn} 1-\mathrm{O}^{\text {i }}$	$2.0143(14)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.258(2)$
$\mathrm{Zn} 1-\mathrm{O} 2 W$	$2.0775(18)$	O2-C1	$1.254(2)$
$\mathrm{Zn} 1-\mathrm{O}$	$2.0848(14)$	O3-C2	$1.396(2)$
$\mathrm{Zn} 1-\mathrm{O} 1$	$2.1058(13)$	O3-C3	$1.412(2)$
$\mathrm{Zn} 1-\mathrm{O} 3$	$2.1143(15)$	O4-C4	$1.238(2)$
$\mathrm{Zn} 1-\mathrm{O} 1 W$	$2.1272(17)$	O5-C4	$1.270(2)$

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 1 W^{\text {i }}$	0.71 (3)	2.20 (3)	2.877 (3)	162 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 1$	0.92 (5)	1.91 (5)	2.817 (2)	167 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 4^{\mathrm{i}}$	0.73 (3)	2.09 (3)	2.818 (2)	176 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 3 W^{\mathrm{ii}}$	0.82 (3)	1.89 (3)	2.690 (3)	167 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 5^{\text {iii }}$	0.74 (3)	1.98 (3)	2.713 (2)	173 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {iv }}$	0.77 (3)	1.97 (3)	2.732 (2)	173 (3)

[^0]$1+x, y, z$.

metal-organic compounds

H atoms attached to C atoms were added at their expected positions $(\mathrm{C}-\mathrm{H}=0.97 \AA)$ and not refined, but these atoms were allowed to ride. H atoms pertaining to the water molecules were found in the final difference Fourier map and refined with isotropic displacement parameters.

Data collection: SMART-NT (Bruker, 2001); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXTL-NT (Bruker, 2000); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

We acknowledge Fundación Andes (grant No. C13575) and CONICYT-FONDAP (grant No. 11980002) for the purchase of the CCD detector, and the Spanish Research Council (CSIC) for providing us with a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). MP is a member of CONICET.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1002). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baggio, R., Garland, M. T. \& Perec, M. (1996). J. Chem. Soc. Dalton Trans. pp. 2747-2753.
Boman, C.-E. (1974). Acta Chem. Scand. Ser. A, 28, 119-121.
Boman, C.-E. (1977a). Acta Cryst. B33, 834-838.
Boman, C.-E. (1977b). Acta Cryst. B33, 838-843.
Boman, C.-E. (1977c). Acta Cryst. B33, 1529-1533.
Bruker (2000). SAINT-NT (Version 6.02a) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART-NT. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Grirrane, A., Pastor, A., Ienco, A., Mealli, C. \& Galindo, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3771-3777.
Hatfield, W. E., Helms, J. H., Rohrs, B. R., Singh, P., Wasson, J. R. \& Weller, R. R. (1987). Proc. Indian Acad. Sci. Chem. Sci. 98, 23-31.

Prince, R. H. (1987). Comprehensive Coordination Chemistry, edited by G. Wilkinson, Vol. 5, pp. 925-1022. Oxford: Pergamon.

[^0]: Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $-x,-y, 2-z$; (iv)

