N2b-Zn1-S3;	104.5 (6)	N2-Zn2-N1a	93.9 (3)
N1 <i>b</i> Zn1S3:	97.9 (5)	N2a—Zn2—N1a	77.2 (3)
S1-Zn1-S3;	120.5 (6)	O2w—Zn2—N1	167.1 (3)
S1-Zn1-S3Y	118.0(6)	Olw-Zn2-NI	88.5 (2)
O2w—Zn2—O1w	87.4 (3)	N2-Zn2-N1	76.7 (3)
02w-Zn2-N2	91.6(3)	N2a—Zn2—N1	95.9 (3)
Olw-Zn2-N2	96.0(2)	N1a—Zn2—N1	87.1 (3)

The structure was solved through a combination of direct methods and difference Fourier synthesis. Refinement was performed on F^2 using the whole data set. H atoms from coordinated water molecules were detected in a difference Fourier synthesis and subsequently refined with a rigid-body model. Those of the solvent water molecule could not be found. H atoms in the phen groups were included at their expected positions and allowed to ride on their host atoms. Fixed isotropic displacement parameters were used for all H atoms. One of the thiosulfate groups was found to be severely disordered and was refined as four different images of an idealized rigid group with occupancies constrained to sum to 1. The solvent water molecule was also found to be split in two positions. Lowering of the space-group symmetry did not result in a simpler model.

Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991). Cell refinement: P3/P4-PC Diffractometer Program. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990). Program(s) used to solve structure: XS in SHELXTL/PC. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP in SHELXTL/PC. Software used to prepare material for publication: CIFTAB in SHELXL93 and PARST (Nardelli, 1983).

The authors would like to thank Fundación Andes for the purchase of the single-crystal diffractometer currently operating at the Universidad de Chile.

Lists of structure factors, anisotropic displacement parameters, leastsquares-planes data, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1082). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Andreetti, G. D., Cavalca, L., Domiano, P. & Musatti, A. (1968). *Ric. Sci.* 38, 1100–1101.
- Baggio, R. & Baggio, S. (1973). J. Inorg. Nucl. Chem. 35, 3191–3200.Baggio, S., Baggio, R. & de Perazzo, P. (1974). Acta Cryst. B30, 2166–2172.
- Barton, J. K. (1989). Pure Appl. Chem. 61, 563-564.
- Bencini, A., Midollini, S. & Zanchini, C. (1989). Inorg. Chem. 28, 1963-1969.
- Costamagna, J. A. & Levitus, R. (1966). J. Inorg. Nucl. Chem. 28, 1116-1117.
- Hu, N. H. & Liu, Y. S. (1991). Acta Cryst. C47, 2324-2326.
- Jeffrey, G. A. & Lewis, L. (1978). Carbohydr. Res. 60, 179-182.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875-879.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 823-826

The Five-Coordinate Cadmium Halide Bis(diethyldithiocarbamate) Complexes [PPh₄][Cd(S₂CNEt₂)₂Cl] and [PPh₄][Cd(S₂CNEt₂)₂Br]

Ricardo Baggio,^{*a*} Maria Teresa Garland^{*b*} and Mireille Perec^c

^aDivisión Física del Sólido, Departamento de Física, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, 1429 Buenos Aires, Argentina, ^bDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile, and ^cDepartamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina. E-mail: baggio@cnea.edu.ar

(Received 6 June 1995; accepted 9 October 1995)

Abstract

The title compounds, tetraphenylphosphonium chlorobis(diethyldithiocarbamato-*S*,*S*)cadmium(II), ($C_{24}H_{20}P$)-[CdCl($C_5H_{10}NS_2$)₂], (1), and tetraphenylphosphonium bromobis(diethyldithiocarbamato-*S*,*S*)cadmium(II), (C_{24} - $H_{20}P$)[CdBr($C_5H_{10}NS_2$)₂], (2), are isomorphous. The compexes are mononuclear with coordination spheres of the types S₄Cl and S₄Br, respectively. The central Cd atom is linked to four S atoms and two bidentate dithiocarbamate ligands and to the halide atom. The resulting Cd-atom coordination geometry is halfway between trigonal bipyrimidal and square pyramidal. Principal dimensions include: Cd—S 2.573 (1)–2.682 (1) in (1) and 2.571 (3)–2.736 (2) Å in (2); Cd—Cl and Cd—Br 2.462 (1) and 2.626 (1) Å, respectively.

Comment

The characterization of mononuclear five-coordinate cadmium(II) compounds with sulfur ligation is of current interest with respect to structural and spectroscopic models for cadmium binding sites in biological molecules, particularly in a number of metallothioneins and metallo-regulatory proteins (Reddy, Zhang, Schlemper & Schrauzer, 1992, and references therein).

The reactions of the sulfur-bridged cadmium bis-(diethyldithiocarbamate) dimer with potentially monodentate anionic ligands to give the 1:1 adducts $[Cd(S_2CNEt_2)_2X]^-$ (X = Cl, Br, I or NCS) have been reported recently (Baggio, Frigerio, Halac, Vega & Perec, 1992). The complexes were isolated as their $[NEt_4]^+$ or $[N^nBu_4]^+$ salts and characterized by elemental analysis and by spectroscopic techniques. In the case of $[NEt_4][Cd(S_2CNEt_2)_2NCS]$, single crystals were obtained and the structure was determined by X-ray crystallography. The adduct was found to be mononuclear with a distorted CdS₄N nuclear core. Based on vibrational data the cadmium complexes with X = Cl, Br and I also appeared to have five-coordinate mononuclear units, although on this basis alone the presence of sulfuror halide-bridged coordination to give the more usual hexacoordinate Cd^{II} complexes could not be excluded. Herein we report the isolation of single crystals of [PPh₄][Cd(S₂CNEt₂)₂Cl], (1), and [PPh₄][Cd(S₂CNEt₂)₂-Br], (2), and their structures as determined by X-ray crystallography.

The crystal data for (1) and (2) show that the complexes are isomorphous. Fig. 1 presents the structural diagram and the atomic numbering scheme for (1). Both anions have five-coordinate mononuclear CdS₄X units in which the metal atom is coordinated to four S atoms of two bidentate dithiocarbamate ligands and to the X atom of the halide ligand. Atoms S1, S4 and X (X = Cl1 or Br1) define the equatorial planes, and the Cd1 atoms are 0.0902 (4) in (1) and 0.0886 (6) Å in (2) below the corresponding planes pointing towards S3. The Cd1— S2 and Cd1—S3 axial bonds show average deviations of 20 (1) and 25 (1)° from the normal to the equatorial planes, which may be attributed to the acute bite angles of the spanning dithiocarbamate ligands [mean 67.85 (7) in (1) and 67.87 (6)° in (2)].

Fig. 1. View of $[Cd(S_2CNEt_2)_2Cl]^-$ in (1). H atoms have been omitted and displacement ellipsoids have been drawn at the 50% probability level.

The complexes exhibit a wide range of Cd—S bond lengths, with the equatorial Cd—S bonds significantly shorter than the axial bonds and with one bidentate ligand more asymmetrically bonded than the other [2.573 (1)–2.731 (1) and 2.615 (1)–2.682 (1) Å in (1) and 2.571 (3)–2.736 (2) and 2.617 (3)–2.685 (3) Å in (2), respectively]. The average (all bonds) Cd—S distance [2.65 (8) Å] is similar to the corresponding 'value in the related compound [NEt₄][Cd(S₂CNEt₂)₂NCS] [2.61 (4) Å]. It thus appears that the nature of the halide does not significantly alter the Cd—S bond lengths in these five-coordinate complexes.

The terminal Cd-Cl and Cd-Br bond lengths are 2.462 (1) and 2.626 (1) Å, respectively, and are within the reported ranges for all terminal Cd-Cl and Cd-Br bonds (Orpen et al., 1989). The dithiocarbamate ligands are almost planar with the small deviations being a twist about the S_2C —NR₂ bonds [2.5 (3) and 1.6 (3)° around C1-N1 and 1.1 (3) and 2.3 (3)° around C2-N2 for (1) and (2), respectively]. The distortion at the Cd atom may be conveniently described by the index parameter τ , defined as [(S2-Cd1-S3) - (S4-Cd1-S1)]/60 (Addison, Rao, Reedijk, Van Rijn & Vershoor, 1984). The calculated values of 0.50 for complexes (1) and (2) describe a type of structure which is 50% along the pathway of distortion from ideal square-pyramidal (τ = 0) towards ideal trigonal-bipyramidal geometry ($\tau =$ 1). The related compound $[NEt_4][Cd(S_2CNEt_2)_2NCS]$ shows a further distortion towards square-pyramidal geometry (τ = 0.27). The coordination flexibility of five-coordinate Cd¹¹ is well known (Bürgi, 1973) and undoubtedly reflects the d^{10} electron configuration of the metal ion, which rules out any ligand stabilizing effects in cadmium complexes.

Intermolecular distances in the reported complexes are larger than the corresponding sum of the van der Waals radii. Angles and other metric parameters of the ligands, as well as of the PPh[‡] cations, can be regarded as unexceptional.

Experimental

All commercially available reagents and chemicals were of analytical or reagent-grade purity and used as received. Microanalyses were performed at INQUIMAE (Instituto de Quimica de Materiales, Medio Ambiente y Energia) with a Carlo Erba 1108 microanalyzer. Cadmium was analyzed by atomic absorption spectroscopy at the Analytical Laboratory of the Inorganic Chemistry Department. For (1), to a solution of [PPh₄][Cl] (1.87 g, 0.005 mol) in acetone (200 cm³) was slowly added solid $[Cd(S_2CNEt_2)_2]$ (2.05 g, 0.005 mol) at room temperature with constant stirring. The resulting mixture was filtered after 2h and the filtrate evaporated in vacuo to ca 80 cm³. After addition of ca 40 cm³ of light petroleum (b.p. 308-333 K), the solution was allowed to stand overnight at room temperature. The product separated as colourless crystals. Recrystallization was from light petroleum/acetone (1:1) at room temperature. Yield: 3.13 g, 80%. Analysis: found C

52.05, H 5.20, N 3.55, S 16.45, Cd 14.35%; $C_{34}H_{40}CdClN_2PS_4$ requires C 52.10, H 5.15, N 3.60, S 16.35, Cd 14.35%. Com- pound (2) was synthesized in an analogous manner from [PPh ₄][Br] (2.10 g, 0.005 mol) and [Cd(S ₂ CNEt ₂) ₂] (2.05 g, 0.005 mol) in acetone-methylenechloride (3:1, 100 cm ³). After stirring for 2 h, a light-yellow solution formed. It was filtered to remove traces of solids and allowed to stand at room tempera- ture. After 24 h, light-yellow crystals were collected by vacuum filtration and dried under a nitrogen stream. Yield: 2.90 g, 70%. Analysis: found C 49 35 H 4.95 N 3.45 S 15.60 C d 13.70%.		S2 S3 S4 N1 C1 C2 C3 C4 C5 C6 C7	0.35353 (9) 0.15193 (10 0.26197 (10 0.4767 (3) 0.3928 (3) 0.2026 (3) 0.5107 (4) 0.4694 (5) 0.5381 (4) 0.6252 (5) 0.1428 (4)	$\begin{array}{c} 0.1565\\ 0) & 0.1984\\ 0) & 0.3360\\ 0.0164\\ 0.3722\\ 0.0602\\ 0.3092\\ -0.0675\\ -0.1547\\ 0.0445\\ 0.1001\\ 0.3562\end{array}$	\$ (9) \$ (8) \$ (10) (3) (3) (3) (3) (4) (5) (4) (5) (4) (5) (4)	0.79051 (7) 0.54630 (6) 0.63835 (6) 0.7662 (2) 0.7067 (2) 0.7453 (2) 0.5585 (2) 0.7294 (3) 0.7584 (4) 0.82084 (3) 0.8105 (4) 0.4386 (2)	0.0562 (3) 0.0516 (3) 0.0580 (4) 0.0611 (12) 0.0523 (11) 0.0482 (12) 0.0412 (11) 0.079 (2) 0.121 (3) 0.083 (2) 0.113 (3) 0.0614 (15)
$C_{34}H_{40}BrCdN_2PS_4$ requires C 4 Cd 13.60%.	49.30, H 4.90, N 3.40, S 15.50,	C8 C9 C10 P1	0.0395 (4) 0.2406 (4) 0.3428 (4) 0.76323 (8)	0.3921 0.4672 0.4704 0.15951	(4) (4) (5)	0.4374 (3) 0.5147 (3) 0.4922 (3) 0.55021 (6)	0.075 (2) 0.069 (2) 0.095 (2) 0.0373 (3)
Compound (1)		CII	0.6347 (3)	0.1724	(3)	0.5290 (2)	0.0402(11)
Crustal data		C12	0.5969 (4)	0.1950	(4)	0.4621 (3)	0.0620 (15)
Crystal aata		C13	0.4976 (4)	0.2123	(5)	0.4505 (3)	0.081 (2)
$(C_{24}H_{20}P)[CdCl(C_5H_{10}NS_2)_2]$	Mo $K\alpha$ radiation	C14	0.4381 (4)	0.2058	(4)	0.5044 (4)	0.078 (2)
$M_r = 783.74$	$\lambda = 0.71073 \text{ Å}$	C15	0.4742 (4)	0.1812	(4)	0.5698 (3)	0.079 (2)
Monoclinic	Cell parameters from 25	C16	0.5723 (4)	0.1634	(4)	0.5826 (3)	0.0634 (14)
P_{2}/c	reflections	C21	0.8283(3) 0.8231(4)	0.1447	(3)	0.4/32(2)	0.0417 (12)
		C22	0.8331(4) 0.8822(4)	0.2204	(4)	0.4271(3)	0.0390 (14)
a = 13.7460 (10) A	$\theta = 7.5 - 12.5^{\circ}$	C24	0.9284(4)	0 1282	(6)	0.3008(3)	0.077(2)
b = 14.137(2) A	$\mu = 0.959 \text{ mm}^{-1}$	C25	0.9256 (4)	0.0546	(5)	0.3987 (3)	0.078(2)
c = 19.039(3) Å	T = 293 (2) K	C26	0.8750(3)	0.0607	(4)	0.4588 (3)	0.0557 (14)
$\beta = 94.100 (10)^{\circ}$	Prismatic	C31	0.7810(3)	0.0596	(3)	0.6071 (2)	0.0397 (11)
V = 3690.3(8)Å ³	$0.28 \times 0.24 \times 0.22$ mm	C32	0.7384 (4)	-0.0261	(4)	0.5878 (3)	0.0605 (14)
7 – <i>A</i>	Colourless	C33	0.7521 (4)	-0.1048	(4)	0.6292 (3)	0.069 (2)
$D = 1.411 \text{ Mg m}^{-3}$	0010011000	C34	0.8112(4)	-0.0983	(4)	0.6908 (3)	0.068 (2)
$D_x = 1.411$ Wig m		C35 C36	0.8554 (4)	-0.01401	(4)	0.7110(3)	0.06/(2)
		C41	0.8087(3)	0.2638 ((3)	0.5089(3)	0.0358 (11)
Data collection		C42	0.7476 (4)	0.3275	(3)	0.6247 (2)	0.0541 (13)
Siemens R3m diffractometer	$R_{\rm int} = 0.0217$	C43	0.7868 (5)	0.4044 ((4)	0.6615 (3)	0.066 (2)
$\theta/2\theta$ scans	$\theta_{\rm max} = 22.54^{\circ}$	C44	0.8861 (5)	0.4184 (4)	0.6686 (3)	0.0609 (15)
Absorption correction	$h = -14 \longrightarrow 14$	C45	0.9466 (4)	0.3566 (3)	0.6383 (3)	0.0575 (14)
which concerning the scan (YEMP in	$k = 0 \rightarrow 15$	C46	0.9086 (4)	0.2790 (3)	0.6015 (2)	0.0507 (13)
ψ scall (<i>XLM</i>) III SUEL <i>XTL</i> (<i>DC</i>) Shaldwish	$k = 0 \rightarrow 15$						
SHELAT LIFC, SHEIUTICK, 1001)	$l = 0 \rightarrow 20$	Table	2. Selected	l geometri	c parar	neters (Å,	°) for (1)
1991)	2 standard reflections	Cdl_Cll		2 4610 (12)	5 0		1719 (5)
$T_{\min} = 0.729, T_{\max} =$	monitored every 98	Cd1-S1		2 5734 (13)	S3_C2		1.718(3) 1.722(4)
0.768	reflections	Cd1—S4		2.6155 (14)	S4C2		1.716 (4)
5096 measured reflections	intensity decay: none	Cd1		2.6823 (13)	NICI		1.343 (6)
4857 independent reflections		Cd1—S2		2.7313 (13)	N2—C2	2	1.327 (5)
3509 observed reflections		S1—C1		1.719 (5)			
$[I > 2\sigma(I)]$		Cl1Cd1-	-S1	120.00 (4)	C1—S1	Cd1	88.8 (2)
		CI1Cd1-		115.55 (4)	C1—S2	—Cd1	83.8 (2)
Refinement		S1-Cd1-	-S4	124.08 (5)	C2-S3	-Cd1	85.5 (2)
			-53	104.62 (4)	C2—S4		87.7 (2)
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$	S4_Cd1_	-33	67.92 (4)		-52	120.7 (4)
$R[F^2 > 2\sigma(F^2)] = 0.0358$	$\Delta \rho_{\rm max} = 0.243 \ {\rm e} \ {\rm A}^{-3}$	Cl1-Cd1-		101.04(4)	S2-C1	SI	120.3(4) 1189(3)
$wR(F^2) = 0.0804$	$\Delta \rho_{\rm min} = -0.249 \ {\rm e} \ {\rm \AA}^{-3}$	S1-Cd1-	-S2	67.78 (4)	N2-C2	2—S4	120.7 (3)
S = 1.036	Extinction correction: none	S4Cd1	-S2	96.41 (4)	N2—C2	2—S3	120.5 (3)
4855 reflections	Atomic scattering factors	S3—Cd1—	-S2	153.84 (4)	S4-C2	— \$3	118.8 (3)
388 parameters	from International Tables						
H atoms riding C H -	for Crystallography (1002	Compou	ind (2)				
n = 0.06 Å	V_{0} C Table 4269 - 1	Current	(-)				
0.90 A $m = 1/(-2/(E^2)) + (0.0221 \text{ D})^2$	vol. C, Tables $4.2.0.8$ and	Crystal a	iata				
$w = 1/[\sigma^{-}(F_{o}) + (0.0331P)^{2}$	6.1.1.4)	(C24H20F	?)[CdBr(C₅I	10NS2)21	Μο <i>Κι</i>	α radiation	
+ 0.9797 <i>P</i>]		$M_{\star} = 829$	8.2	.0	$\lambda = 0$	71073 Å	
where $P = (F_o^2 + 2F_c^2)/3$		Monoclin	nic			arametero f	rom 25
		$p_{1}/2$	inc		Con p	and the stick of t	10111 2.3
Table 1. Fractional atomic coordinates and equivalent		Γ21/C	50 (0) ?				
in norma dia dia dia seconda	(\$2) 6 (1)	a = 13.8	58 (2) A		$\sigma = 1.3$	J-12.3	

b = 14.159 (3) Å

c = 19.250 (3) Å

 $V = 3768.5 (11) \text{ Å}^3$

 $D_x = 1.460 \text{ Mg m}^{-3}$

 $\beta = 93.87^{\circ}$

Z = 4

tomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Cd1	0.21426 (2)	0.16757 (2)	0.68108(2)	0.04625 (12)
CII	0.06421 (8)	0.15949 (9)	0.74410(6)	0.0524 (3)
SI	0.32262 (10)	0.02007 (9)	0.67306(7)	0.0573 (4)

 $\theta = 7.5 - 12.5^{\circ}$ $\mu = 1.929 \text{ mm}^{-1}$ T = 293 (2) K Polyhedron $0.22 \times 0.18 \times 0.14$ mm Light yellow

$(C_{24}H_{20}P)[CdCl(C_5H_{10}NS_2)_2]$ AND $(C_{24}H_{20}P)[CdBr(C_5H_{10}NS_2)_2]$

Data collection Siemens R3m diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (XEMP in SHELXTL/PC: Sheldrick	$R_{int} = 0.0397$ $\theta_{max} = 22.55^{\circ}$ $h = -14 \rightarrow 14$ $k = -1 \rightarrow 15$ $l = 0 \rightarrow 20$	C41 C42 C43 C44 C45 C46	0.8090 (6) 0.7488 (7) 0.7877 (9) 0.8872 (9) 0.9464 (8) 0.9065 (7)	0.2620 (0.3247 (0.4023 (0.4155 (0.3548 (0.2771 (6) 0.5925 (4) 7) 0.6245 (5) 7) 0.6606 (5) 7) 0.6660 (5) 7) 0.6660 (5) 7) 0.6352 (5) 6) 0.5976 (5)	0.038 (2) 0.056 (2) 0.068 (3) 0.063 (3) 0.063 (3) 0.056 (3)
1991)	2 standard reflections	Table 4	4. Selecte	d geometrie	c parameters (Å,	°) for (2)
$T_{\min} = 0.677, T_{\max} = 0.791$ 5646 measured reflections 4944 independent reflections 3337 observed reflections $[I > 2\sigma(I)]$	monitored every 98 reflections intensity decay: none	Cd1—S1 Cd1—S4 Cd1—Br1 Cd1—S3 Cd1—S2 S1—C1 S1—Cd1—S	S4	2.571 (3) 2.617 (3) 2.6260 (13) 2.685 (3) 2.736 (2) 1.734 (9) 124.90 (9)	S2—C1 S3—C2 S4—C2 N1—C1 N2—C2 C1—S1—Cd1	1.717 (9) 1.721 (9) 1.735 (9) 1.323 (11) 1.306 (11) 89.1 (3)
Refinement		S1—Cd1—I S4—Cd1—I	Brl Brl	119.87 (7) 114.89 (7)	C1—S2—Cd1 C2—S3—Cd1	84.1 (3) 86.0 (3)
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0567$ $wR(F^2) = 0.1508$ S = 1.072	$(\Delta/\sigma)_{\text{max}} = -0.001$ $\Delta\rho_{\text{max}} = 0.533 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -1.060 \text{ e } \text{\AA}^{-3}$ Extinction correction: none	S1Cd1	S3 · S3 -S3 S2 S2 S2	103.46 (8) 67.93 (7) 103.78 (6) 67.81 (8) 97.01 (8)	C2-S4-Cd1 N1-C1-S2 N1-C1-S1 S2-C1-S1 N2-C2-S3	87.9 (3) 121.6 (7) 120.1 (7) 118.3 (5) 121.6 (7)
4944 reflections 388 parameters H atoms riding CH	Atomic scattering factors from International Tables for Crystallography (1992,	Systemati	-82 82 ic absence:	100.85(7) 154.85(9) s (0k0 , $k = 2$	$x_{2} = x_{2} = x_{4}$ $x_{3} = -x_{2} = x_{4}$ $x_{2n}; h0l, l = 2n)$ ind	120.3(7) 118.1(5) licated $P2_1/$
0.96 Å	Vol. C. Tables 4.2.6.8 and as the space group for both compounds.					17

0.96 Å $w = 1/[\sigma^2(F_o^2) + (0.0594P)^2]$ + 11.2259P]

where
$$P = (F_o^2 + 2F_c^2)/3$$

ł

C36

0.8337 (7)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (2)

6.1.1.4

0.0653(7)

0.6671 (5)

0.059 (3)

For both compounds, data collection: P3/P4-PC Diffractometer Program (Siemens, 1991); cell refinement: P3/P4-PC Diffractometer Program; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1991); program(s) used to solve structures: XS in SHELXTL/PC; program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: XP in SHELXTL/PC; software used to prepare material for publication: CIFTAB in SHELXL93 and PARST (Nardelli, 1983).

The authors thank Fundación Andes for the purchase of the single-crystal diffractometer currently operating at the Universidad de Chile. MP is a member of CONICET.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1103). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
- Baggio, R. F., Frigerio, A., Halac, E. B., Vega, D. & Perec, M. (1992). J. Chem. Soc. Dalton Trans. pp. 549-554.
- Bürgi, H.-B. (1973). Inorg. Chem. 12, 2321-2325.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S19.
- Reddy, H. K., Zhang, C., Schlemper, E. O. & Schrauzer, G. N. (1992). Inorg. Chem. 31, 1673-1677.
- Sheldrick, G. M. (1991). SHELXTUPC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

826