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Abstract. The motion of a single vortex originates chaos in the quantum fluid defined in Bohm's 
interpretation of quantum mechanics. Here we analize this situation in a very simple case: one single 
vortex in a rectangular billiard. 
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In the 1950's the physicist David Bohm presented a controversial formulation of 
quantum mechanics(dBB) [1] with the purpose of solving some of the fundamental 
interpretational difficulties existing in the standard version. This theory is based on 
quantum trajectories (QT) "piloted" by the de Broglie's wave, and constitutes a true 
theory of quantum motion [2]. On the practical side, dBB has made possible very nice 
interpretations of physical phenomena such as diffraction [3], or tunneling [4], and also 
systematic quantum dynamical calculations in systems with many degrees of freedom 
[5]. Recently, it has also been used to attack other fundamental problems in physics 
(than those for which it was originally developed). Namely, Valentini and Westman 
[6] and Dtirr et al. [7] made some start to remove the status of postulate to Born's 
probability rule: p = | yr\2. In these works, probabilities have a dynamical origin, similar 
to thermal probabilities in ordinary statistical mechanics, and it was shown [6] that the 
standard distribution is obtained as the time evolution towards the equilibrium of initial 
non-equilibrium states, p ^ \yf\2, this taking place with a (exponential) decrease in the 
associated coarse-grained /f-function. 

Underlying the above ideas is the assumption that it exists an effective chaotic dynam­
ics in the QTs, something that has been frequently taken for granted [8], and/or used in 
a poorly justified way to make claims about the important topic of "quantum chaos". 
The main difficulty with this kind of approaches is the fact that trajectories in the de 
Broglie-Bohm (dBB) theory are non-local, and the flux is more similar to a hydrody-
namical flow. Taking this into account, the authors have recently shown how the vortices 
of the pilot wave function are at heart of complexity of QT in dBB theory, by proving [9] 
that the motion of a single vortex is enough to create chaos in QT (using an isotropic 2D 
harmonic oscillator for a numerical illustration), being this a robust effect (numerically 
illustrated in a rectangular billiard) [10]. 

In this paper, we will consider the problem of a single vortex in a 2D square billiard, 
and give indications on how the study can be extended progressively. 

In the dBB theory the state of the system is described by a wave function, \f/(r,t) = 
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R(r,t) e's(r^ (E=\ throughout the paper), and the position of the particles, r [7]. The 
dynamical evolution of this two quantities (for spinless particles) is given by the time-
dependent Schrodinger equation and the guidance equation, respectively: 

. VS i \ifV\if*-\if*V\if 
v = r = — = w~ ——,—FT , (!) 

m 2m |i//]z 

where m is the mass of the particle. QTs can be obtained by numerical integration of 
this equation. The velocity field (1), guiding these trajectories, presents singularities 
(at points where the wave functions vanishes) giving rise to vortices in quantum fluid. 
As a model we use a particle of mass m = 1/2 enclosed in a 2D squared billiard with 
unit side length. The corresponding classical dynamics is totally regular, so that any 
indication of the existence of chaos is solely due to quantum effects. The corresponding 

1/2 

eigenfunctions are: (j>nx,ny{x,y) = 2sm(nxnx) sin(nyny), with wave numbers: k = E„^„ = 
n{n2 + n2)1!2. The initial pilot wave is constructed as a linear combination of the first 
three eigenstates in the following way: 

i//-(x,><) = 001,1+ £e'ai</)ij2 + ce'a2</)2ji, a,b,c,ai,GC2eR, (2) 

with a2 + b2 + c2 = 1 (normalization condition). Phases are chosen as: a\ = 0,0C2 = n/2. 
As can be easily demonstrated, this state generates a time-dependent velocity field 

with only one vortex, moving according to equation: 

asin(a2 — eo)t —asin(a2 — eo)t\ 
„, . . ^-,arccos-——r T > (3) 
2osin(ai — 0C2) 2csin(ai — 0C2) ) 

with co = £2,1 —Ei,i- The corresponding vortex trajectories for different values of the 
parameters are shown in Fig. 1(a). As can be seen, they are approximately circular 
for the combination of lower values of a and larger b = c, and distort to a more 
squared shape as the opposite happens. Due to the periodic character of the vortex 
motion, QTs (moving under the influence of the corresponding velocity field) can be 
best monitored in phase space by computing a "stroboscopic" surface of section (SOS) 
at times multiple of the fundamental frequency: t = 2/(3n). Let us recall that SOS, first 
described by Poincare, are a fundamental tool in nonlinear science [11], so that much 
understanding of a dynamical system like our can be expected from their consideration. 
The corresponding results, for the same set of parameters used before, are shown in 
Fig. 1(b). In it, a transition to chaos takes place from regularity at a/b = 0 to chaos 
when a/b > 0, as a result of a pitchfork bifurcation. More interesting, the SOS shows all 
characteristics exhibited by ordinary generic autonomous systems. Namely, the portion 
or chaotic motion, or destroyed tori grows with the perturbation parameter a/b, giving 
the velocity of the vortex, and characteristics chains of islands are apparent for a/b > 0. 
This is not surprising, since according to Ref [9] the dynamics of the system in the 
vortex vicinity corresponds to that of a non-autonomous system of 1.5D. 

The next natural step in our research is to consider situations in which the number 
of vortices is progressively incremented. For these cases, interaction among vortices 
will exist, with the possibility of pair destruction maintaining the overall vorticity. The 

(xv(0 J-V(O) = 
1 
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FIGURE 1. (a) Trajectories for the vortex generated by wave function (2) for a = 0, b = c = 
0.707106781 (central point), a = 0.175, b = c = 0.696195016 (full line), a = 0.35, b = c = 0.662382065 
(dashed), a = 0.525, b = c = 0.601820156 (dot-dashed), and a = 0.7, b = c = 0.504975247 (dotted). 
(b)-(f) Composite stroboscopic Poincare surfaces of section for QT's with the same conditions as in (a). 

limit of many vortices originated by pilot wave functions of increasing complexity 
has been already numerically explored from a statistical point of view [10]. Now, it 
seems interesting to examine in detail the case of two vortices, which can be done 
with a generalization of the same technique used here, and this will be the subject of 
a future publication. The main idea is to transform the original non-autonomous flux 
into a dynamical system of n + 1/2 dimensions, being n the number of fundamental 
frequencies existing in the pilot wave function, and examine the corresponding phase 
space with surrogates of the associated Poincare surface of section. 
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