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Dark matter and Ricci-like holographic dark energy

coupled through a quadratic interaction
Luis P. Chimento1, a) and Mart́ın G. Richarte1, b)

Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

(Dated: 30 July 2012)

We examine a spatially flat Friedmann-Robertson-Walker (FRW) universe filled with interacting dark matter
and a modified holographic Ricci dark energy (MHRDE). The interaction term is selected as a significant
rational function of the total energy density and its first derivative homogeneous of degree. We show that
the effective one-fluid obeys the equation of state of a relaxed Chaplygin gas, then the universe turns to be
dominated by pressureless dark matter at early times and undergoes an accelerated expansion in the far future
driven by a strong negative pressure. Performing a χ2-statistical analysis with the observational Hubble data
and the Union2 compilation of SNe Ia, we place some constraints on cosmological parameters analyzing the
feasibleness of the modified holographic Ricci ansatz. It turned that MHRDE gets the accelerated expansion
faster than the ΛCDM model. Finally, a new model with a component that does not exchange energy with
the interacting dark sector is presented for studying bounds on the dark energy at early times.
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I. INTRODUCTION

The existence of a mysterious fuel called dark energy
(DE) stems from astronomical observations which indi-
cate that the Universe is currently undergoing an ac-
celerating phase driven by an exotic component. This
tremendous fact has been confirmed by a plethora of ob-
servational tests such as high redshift Hubble diagram
of type Ia supernovae as standard candles1 and accurate
measurements of cosmic microwave background (CMB)
anisotropies2. Despite DE represents more than 70% of
the total energy of the Universe, the current dark en-
ergy density is about 120 order the magnitude smaller
than the energy scales at the end of inflation, so one of
the main challenge in the modern cosmology is to under-
stand this missmacth. One way to alleviate the aforesaid
problem is working within the context of dynamical dark
energy models, leaving aside the standard ΛCDM model.
Besides, the necessity of a dark matter component comes
from astrophysical evidences of colliding galaxies, gravi-
tational lensing of mass distribution or power spectrum of
clustered matter3,4. Moreover, the astrophysical obser-
vations from the galactic to the cosmological scales sus-
tain that dark matter represents nearly 25% of the total
energy-matter of the Universe; this substantial unvisible
and non-baryonic component is the major agent respon-
sible for the large-structure formation in the Universe3.
Another point of debate refers to the coincidence prob-
lem, namely, why dark energy and dark matter have en-
ergy densities of the same orders of magnitude despite
the fact that both densities dilutes at different rates?.
Motived to understand both problems one could consider
an exchange of energy between the dark components, i.e.,
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the dark matter not only can feel the presence of the dark
energy through a gravitational expansion of the Universe
but also can interact between them5. More precisely, a
coupling between dark energy and dark matter changes
the background evolution of the dark sector allowing us
to constrain a particular type of interaction and giving
us the possibility of studying the coincidence within the
context of interacting dark sector also.
The aim of present brief article is to examine the ex-
change of energy between dark matter and the dark en-
ergy being the interaction selected as a linear combina-
tion of the total dark energy density, its derivative plus
a non-linear term. The DE is associated with a modi-
fied holographic Ricci ansatz. We explicitly show that
the effective one-fluid obeys the equation of state of a re-
laxed Chaplygin gas. Later on, applying a χ2-statistical
method to the Hubble data and the Union2 compilation
of SNe Ia some constraints are placed on the cosmologi-
cal parameters. Using their best–fit values, we confront
our model with the standard ΛCDM. Besides, the issue
of dark energy at early times is also discussed when a
third component is added. At the end, we summarize
our findings.

II. THE MODEL

Considering the effective quantum field theory it has
been shown that the zero-point energy of a system with
size L should no exceed the mass of a black hole with
the same size, thus L3ρΛ ≤ LM2

P , where ρΛ corresponds

to the quantum zero-point energy density6 with M−2
P =

8πG. This relation gives a link between the ultraviolet
cutoff, define through ρΛ, and the infrared cutoff which
is encoded by the scale L. Taking into account this novel
principle within the cosmological context, one assumees
that the dark energy density of the universe ρx takes the
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same form of the vacuum energy, thus ρΛ = ρx. Using
the largest L as the one saturating the above inequality,
it turns out to be the holographic dark energy is given
by ρx = 3c

2M2
PL

−2 with c a numerical factor7,8. Many
different proposals for the cutoff L have been studied in
the literature9,10,11,12,13.
Our starting point is to consider an holographic cos-
mological model with an IR cutoff given by the modi-
fied Ricci’s radius so that L−2 is a linear combination of
Ḣ and H214,15,16. After that, the modified holographic
Ricci dark energy (MHRDE) becomes

ρx =
2

α− β

(
Ḣ +

3α

2
H2

)
. (1)

Here H = ȧ/a is the Hubble expansion rate, a is the scale
factor and α, β are free constants. Introducing the vari-
able η = ln(a/a0)

3, with a0 the present value of the scale
factor and ′ ≡ d/dη, the above MHRDE (1) becomes a
modified conservation equation (MCE) for the cold dark
matter ρc and the MHRDE

ρ′ = −αρc − βρx, (2)

after using the Friedmann equation,

3H2 = ρc + ρx, (3)

for a spatially flat FRW cosmology and ρ = ρc+ρx. The
MCE (2) looks as it were a conservation equation for
both dark components with constant equations of state.
In connection with observations on the large scale struc-
tures, which seems to indicate that the Universe must
have been dominated by nearly pressureless components,
we assume that ρc includes all these components and has
an equation of state pc = 0 while the MHRDE has a
barotropic index ωx = px/ρx, so that the whole conser-
vation equation (WCE) becomes

ρ′ = −ρc − (ωx + 1)ρx. (4)

The compatibility between the MCE (2) and the WCE
(4) yields a linear dependence of the equation of state of
the MHRDE

ωx = (α− 1)r + (β − 1), (5)

with the ratio of both dark components r = ρc/ρx.
Solving the linear algebraic system of equations (2) and
ρ = ρc+ρx we obtain both dark energy densities as func-
tions of ρ and ρ′

ρc = −
βρ+ ρ′

Δγ
, ρx =

αρ+ ρ′

Δγ
, (6)

with Δγ = α−β, while the total pressure is px = −ρ−ρ
′.

From now on we will use the MCE (4) instead of the WCE
with variable ωx because it is simpler, and introduce an
interaction between both dark components through the

term 3HQ into the MCE (4) with constant coefficients,
so

ρ′

c + αρc = −Q, (7)

ρ′

x + βρx = Q. (8)

Finally, from Eqs. (6) and (7), we obtain the source
equation5 for the energy density ρ

ρ′′ + (α+ β)ρ′ + αβρ = QΔγ. (9)

Now we consider cosmological models where the inter-
action Q between both dark components is nonlinear and
includes a set of terms which are homogeneous of degree
1 in the total energy density and its first derivative5,

Q =
(αβ − 1)

Δγ
ρ+
(α+ β − ν − 2)

Δγ
ρ′ −

νρ′2

ρΔγ
, (10)

where ν is a positive constant that parameterizes the in-
teraction term Q. Replacing (10) into (9) it turns into
a nonlinear second order differential equation for the en-
ergy density: ρρ′′ + (2 + ν)ρρ′ + νρ′2 + ρ2 = 0. Intro-
ducing the new variable y = ρ(1+ν) into the latter equa-
tion one gets a second order linear differential equation
y′′+(2+ ν)y′+(1+ ν)y = 0, whose solutions allow us to
write the energy density as

ρ =
[
ρ10a

−3 + ρ20a
−3(1+ν)

]1/(1+ν)
(11)

being ρ10 and ρ20 positive constants. From Eqs. (6)-(11)
and using that p = −ρ − ρ′, we have both dark energy
densities and the total pressure

ρc =
−ρ

α− β

[
β − 1 +

ν

(1 + ν)(1 + ρ20a−3ν/ρ10)

]
, (12)

ρx =
ρ

α− β

[
α− 1 +

ν

(1 + ν)(1 + ρ20a−3ν/ρ10)

]
,

(13)

p = −
νρ10
1 + ν

a−3

ρν
. (14)

From these equations we see that an initial model of in-
teracting dark matter and dark energy can be associ-
ated with an effective one-fluid description of an uni-
fied cosmological scenario where the effective one-fluid,
with energy density ρ = ρc + ρx and pressure (14),
obeys the equation of state of a relaxed Chaplygin gas
p = bρ + f(a)/ρν , where b is a constant5. The effective
barotropic index ω = p/ρ = ωxρx/ρ reads,

ω = −
νρ10

(1 + ν)(ρ10 + ρ20a−3ν)
. (15)

At early times and for ν > 0, the effective energy den-
sity behaves as ρ ≈ a−3, the effective barotropic index
(15) γ ≈ 1 and the effective fluid describes an Universe
dominated by nearly pressureless dark matter. However,
a late time accelerated Universe i.e., ω < −1/3 with pos-
itive dark energy densities require that ν > 1/2, β < 1
and α > 1. From now on we adopt the latter restrictions.
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III. OBSERVATIONAL CONSTRAINTS:HUBBLE DATA

VS. SNE IA

In what follows, we will provide a full estimation of
the cosmological paramaters by constraining them with
the Hubble data17-18 and the 557 SNe Ia data from the
Union2 compilation22. In the former case, the statistical
analysis is based on the χ2–function of the Hubble data
which is constructed as (e.g.19)

χ2(θ) =

12∑
k=1

[H(θ, zk)−Hobs(zk)]
2

σ(zk)2
, (16)

where θ stands for cosmological parameters, Hobs(zk) is
the observational H(z) data at the redshift zk, σ(zk) is
the corresponding 1σ uncertainty, and the summation
is over the 12 observational H(z) data. It should be
stressed that one of the main reason in using the Hubble
data is related to the fact that the Hubble function is not
integrated over. Further, the function H(z) is directly
related with the properties of the dark energy, since its
value comes from the cosmological observations. Using
the absolute ages of passively evolving galaxies observed
at different redshifts, one obtains the differential ages
dz/dt and the function H(z) can be measured through
the relation H(z) = −(1 + z)−1dz/dt17,18. The data
Hobs(zi) andHobs(zk) are uncorrelated because they were
obtained from the observations of galaxies at different
redshifts. Since we are mostly interested in obtaining
the bounds for the model parameters, we will adopt as
prior H0 = 72.2± 3.6 km s

−1Mpc−120 as it needed. The
Hubble expansion of the model becomes:

H(θ; z) = H0

{
B(1 + z)3 + (1−B)(1 + z)3(ν+1)

} 1
2(ν+1)

(17)

B[θ] =
ν + 1

ν
[α(Ωx0 − 1) + (1− βΩx0)] (18)

where θ = {α, β,Ωx0, ν} and we have used that ρ02/ρ01 =
(B−1)/B. The two independent parameters α and β will
be fixed along the statistic analysis. Then, for a given
pair of (αf , βf ), we are going to perform the statistic
analysis by minimizing the χ2 function to obtain the best
fit values of the random variables θc = {ν,Ωx0} that
correspond to a maximum of Eq.(16). More precisely, the
best–fit parameters θc are those values where χ

2
min(θc)

leads to the local minimum of the χ2(θ) distribution. If
χ2
dof = χ2

min(θc)/(N − n) ≤ 1 the fit is good and the

data are consistent with the considered model H(z; θ).
Here, N is the number of data and n is the number of
parameters19. The variable χ2 is a random variable that
depends on N and its probability distribution is a χ2

distribution for N − n degrees of freedom.
Besides, 68.3% confidence contours in the (ν,Ωx0)
plane are made of the random data sets that satisfy the
inequality Δχ2 = χ2(θ) − χ2

min(θc) ≤ 2.30. The lat-
ter equation defines a bounded region by a closed area

around θc in the two-dimensional parameter plane, thus
the 1σ error bar can be identified with the distance from
the θc point to the boundary of the two-dimensional
parameter plane. It can be shown that 95.4% confi-
dence contours with a 2σ error bar in the samples sat-
isfy Δχ2 ≤ 6.17 while the data within 99.73% confidence
contours with a 3σ error bar are accommodated in the
domain defined by Δχ2 ≤ 11.8. After performing this
analysis we are in position to get confidence contours in
the (ν,Ωx0) plane, thus using the χ

2(αf , βf , ν,Ωx0) dis-
tribution one can find the 68.3%, 95.4%, and 99.73% con-
fidence contours respectively. We have taken the point of
reference (αf , βf ) = (1.01, 0.15) but it is possible to show
a wide set of admissible values for α and β which leads to
a good fit [see Table(I) ]. Thus, from this analysis we get
the best fit at θc = (ν,Ωx0) = (1.19 ± 0.12; 0.61 ± 0.02).
It corresponds to a local minimum χ2

min = 7.86 leading
to a good fit with χ2

dof = 0.786 per degree of freedom.

The Ricci’s cutoff (α, β) = (4/3, 1) does not guarantee
the convergence of the minimization process. However,
the values of (ν,Ωx0) obtained from an holographic dark
energy ρx ∝ R, namely (4/3, β), fulfills the goodness con-
dition χ2

dof < 1. The values of Ωx0, which varies from,
0.58 to 0.69, do not deviate significantly from the obser-
vational limits provided by the WMAP-7 project21 with
Ωx0 = 0.73 [see Table (I)]. Comparing the Ricci model
with the one arising from MHRDE for (α = 1.01, β =
0.15), the former gives (ν,Ωx0) = (1.19, 0.69), whereas
the latter yields (ν,Ωx0) = (1.19, 0.61), so the Ricci
model seems to be statistically favored by H(z) data
showing a Ωx0 closer to the observational bound reported
by the WMAP-7 project21.

We estimate the best value of H0 and Ωx0 for the
ΛCDM model using the Hubble data as well as the
Union2 data for SNe Ia22. The former dataset leads to
H0 = 73.60±3.18 km s

−1Mpc−1 and Ωx0 = 0.730±0.04
with χ2

dof = 0.770 whereas the latter one gives H0 =

70 km s−1Mpc−1 and Ωx0 = 0.73 along with χ
2
dof =

0.978. Now, in oder to make possible a comparison with
the ΛCDM model we need to estimate the same types
of parameters so we take as priors ν = 1.19, α = 1.01,
and β = 0.15 but we allow H0 and Ωx0 as free param-
eters to be found under the minimization process. It
turns out that H0 = 73.011 ± 2.97 km s

−1Mpc−1 and
Ωx0 = 0.617± 0.001 with χ

2
dof = 0.779 < 1 [see Fig.(1)],

then both models give cosmological bounds of the pair
(H0,Ω0x) very consistent with the those reported in

21.

In order to compare the Hubble data (12 points) with
the Union2 compilation of 557 SNe–Ia22 we proceed as
follows; thus, we took as priorsH0 = 72.2 km s

−1Mpc−1,
α = 1.01 and β = 0.15 in both cosmological data. We
found the best–fit values of ν and Ωx0 for both sets, focus-
ing on the existence of some tighter constraints coming
from the SNe Ia data. For the Hubble data we obtained
α = 1.19 and Ωx0 = 0.61 with χ

2
dof = 0.786 whereas

the SNe Ia data lead to ν = 1.5 and Ωx0 = 0.70 with
χ2
dof = 0.812 < 1; in broad terms the tighter constraints
seems to be found with the Hubble data. Of course, these
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results can vary according to the parameter regions taken
into account in the minimization process.

(α, β) (Ω0x ± σ, ν ± σ) χ2
dof

(1.01,0.05) (0.58± 0.20, 1.19± 1.13) 0.786
(1.01,0.1) (0.58± 0.23, 1.19± 1.13) 0.786

(1.01, 0.15) (0.61± 0.02, 1.19± 1.13) 0.786
(1.2,-0.1) (0.55± 0.16, 1.19± 1.13) 0.786

(1.2,-0.05) (0.57± 0.17, 1.19± 1.13) 0.786
(4/3,-0.1) (0.59± 0.15, 1.19± 1.13) 0.786
(4/3,0.1) (0.69± 0.17, 1.19± 1.13) 0.786

TABLE I. We show the observational bounds for the pair
(Ωx0, ν) varying (α, β) with a given prior of H0 = 72.2 ±
3.6 km s−1 Mpc−1

Α�1.01, Β�0.15, Ν�1.19 Χmin
2
�7.79

H0
km s�1 Mpc�1

�73.01

�0 x�0.61

65 70 75 80

0.55

0.60

0.65

H0�km s�1Mpc�1�

�x0

FIG. 1. We show the confidence contour in the H0 − Ωx0

plane for the MHRDE model considering as priors ν = 1.19,
α = 1.01 and β = 0.15. The best fit value of (H0,Ωx0) is used
to compare with the ΛCDM model.

Now, using the best–fit model parameters θc =
(ν,Ωx0) = (1.19 ± 1.13, 0.61 ± 0.02) we would like to
compare the model having a MHRDE with the stan-
dard ΛCDM scheme composed of baryonic matter and
a constant dark energy Ω0x = 0.73 ± 0.04. As −1 ≤
ω(z), ωx(z) ≤ 0, the equations of state of the effective
fluid and dark energy do not cross the phantom line, at
least for the best–fit model parameters used previously
[see Fig.(2)]. The expression of ωx at present

ωx0 = −
ν(α− β)B

(α− 1)(1 + ν) + νB
, (19)

becomes ωx0 = −0.88 when evaluating at the best–fit val-
ues θc = (ν,Ωx0, α, β) = (1.19, 0.61, 1.01, 0.15). It is close
to the value reported by WMAP-7, ωx0 = −0.93, when
the joint analysis of the WMAP+BAO+H0+SN data

21

for constraining the present-day value of the equation of
state for dark energy is made.

�1 0 1 2 3 4

�1.0

�0.5

0.0

0.5

1.0

z

q	CDM

qMHRDE

Ωx

Ω	CDM

ΩMHRDE

FIG. 2. We show the equations of state for the effective fluid
ω(z), the dark energy ωx(z), and the deceleration parameter
q(z).

Fig. (2) shows the evolution of the decelerating param-
eter q = −ä/aH2 with the redshift z for the MHRDE and
ΛCDM models. It takes the form

q0 =
1 + ν(1− 3B)

2(1 + ν)
, (20)

at z = 0 for the former model. Using the best–fit values
θc = (ν,Ωx0, α, β) = (1.19, 0.61, 1.01, 0.15) in Eq. (20),
one gets q0 = −0.27 while for the Λ-CDM model one
obtains q0 = −0.59. The critical redshift where the ac-
celeration starts,

zacc = −1 +
[ (2ν − 1)B

(1 + ν)(1−B)

]1/3ν
, (21)

turns to be zacc = 1.06 for the best–fit values θc, then
our model enters the accelerated regime earlier than the
ΛCDM one with zacc = 0.75.
In Fig.(3) we plot the density parameters Ωc, Ωx, its
ratio r(z) and find the present-day values of Ωx0 = 0.61,
Ωc0 = 0.39 and r = 0.62. It shows that the model with a
MHRDE seems to be appropriated for resolving the coin-
cidence problem. Regarding the modified Ricci coupling
function, one can show that Q ≤ 0 and the coupling de-
creases its strength with the redshift and goes to zero in
the far future, z → −1 [see Fig.(3)].
As a closing comment, we would like to address a dis-
cussion concerning the values of α and β taken into ac-
count through this section. Here we have focused on the
transition of the Universe between a stage dominated by
dark matter followed by an era dominated by the holo-
graphic dark energy that makes the Universe exhibt an
accelerated expansion (present-day scenario) and, in both
stages a nonlinear interaction in the dark sector has been
taken into account. In order to estimate the parameter
ν and Ωx0 we have used the values of α and β which are
consistent with the χ2-statistical analysis because they
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FIG. 3. The density parameters (Ωx, Ωc), the ratio r =
Ωc/Ωx, and H−2

0 Q are shown versus the redshift z.

fulfill the condition χ2
dof < 1. Now, we are going to ex-

plore a modification on the aforesaid model by adding a
third component, say ρm, which does not interact with
ρc and ρx. The total energy density reads as ρt = ρm+ρ
with ρ = ρc + ρx and the MCE is split as

ρ′ + αρ− (α− β)ρx = 0, (22)

ρ′

m + αρm = 0 (23)

so (22) is equal (2) while (23) shows that the third com-
ponent does not transfer energy to the interacting dark
sector. From (23) one finds that ρm = ρm0a

−3α whereas
the behavior of dark matter and dark energy with the
scale factor can be obtained from (12) and (13), respec-
tively. Using (12), (13) and (23) one gets the Hubble
parameter in term of the redshift x = 1 + z and the rel-
evant cosmological parameters

H(z)

H0
=

[
(1−Ωm0)

(
Bx3+(1−B)x3(ν+1)

) 1
(ν+1)+Ωm0x

3α
]1/2

(24)

B[θ] =
ν + 1

ν

[ α− β

1 + 1−Ωx0−Ωm0

Ωx0

+ (1− α)
]

(25)

where the flatness condition 1 = Ωx0 + Ωc0 + Ωm0 has
been used. In what follows we would to examine two
traits of the model. First, we fix α = 4/3 to get a
radiation contribution in the total density because it
will address the problem of the dark energy at early
times; thus, as is well known the fraction of dark energy
in the radiation era should fulfill the stringent bound
Ωx(z � 1100) < 0.1 in order for the model be consis-
tent with the big bang nucleosynthesis (BBN) data. For
the priors (H0 = 72.2, ν = 1.19,Ωx0 = 0.7, α = 4/3)
the Hubble data give as the best–fit values β = 0.1 and

Ωm0 = 1.7× 10
6 along with χ2

dof = 0.78 < 1 with a frac-

tion of dark energy Ωx(z � 1100) = 0.2 nearly close to
the BBN’s bound. Second, employing the Hubble data
for (24) we estimate the best–fit value of Ωm0 and α. Tak-
ing as priors (H0 = 72.2, ν = 1.19,Ωx0 = 0.61, β = 0.15)
the χ2–analysis yields as the best–fit values α = 1.01 and
Ωm0 = 9.9×10

−5 together with a χ2
dof = 0.79 < 1. More-

over, the latter case leads to an early dark energy Ωx(z �
1100) = 0.01 < 0.1 which is consistent with the bounds
reported in23 or with the future constraints achievable by
Planck and CMBPol experiments24. Therefore, taking
the third component as the radiation term or a nearly
radiation contribution, has helped to validate the first
model, indicating that the value of the cosmological pa-
rameters selected are consistent with BBN constraints.

IV. CONCLUSION

We have explored an interacting dark sector with a
MHRDE, where the IR cutoff is provided by the modified
Ricci scalar. We have introduced an interaction between
the dark matter and dark energy densities, homogeneous
of degree 1 in the variables ρ and ρ′, and solved the source
equation for the total energy density of the mix. Further,
the equation of state of the effective fluid is that of the
relaxed Chaplygin gas, interpolating between a matter
dominated phase at early times and an accelerated ex-
panding phase dominated by the MHRDE at late times.
We have used the observational Hubble data to con-
strain the cosmological parameters of the model and to
compare with the ΛCDM model. Taking as a refer-
ence point (αf , βf ) = (1.01, 0.15) we get the best fit at
θc = (ν,Ωx0) = (1.19, 0.61) with χ

2
min = 7.86 leading to

a good fit with χ2
dof = 0.786 < 1 per degree of freedom.

We have established that a model with a holographic
dark energy ρx ∝ R leads to 0.59 < Ωx0 < 0.69 which
is close to the bounds Ωx0 = 0.73 provided by WMAP-
721. For β = 0.1, we have shown that the Ricci cutoff
(α = 4/3) is consistent with other values of α because it
fulfills the goodness condition (χ2

dof < 1). In addition,

we have obtained the allowed range of (ν,Ωx0) when one
varies α and β [see Table.(I)]. Properly estimating the
H0 and Ωx0 with the Hubble data we have confronted the
ΛCDM with the MHRDE model; thus, both models give
some bounds of the pair (H0,Ωx0) consistent the those
reported in21. Besides, we have taken into account the
SNe Ia with the Union2 data for calculating the best–fit
values of ν and Ωx0. It led to ν = 1.5 and Ωx0 = 0.70 with
χ2
dof = 0.812 < 1 while the Hubble data gave ν = 1.19

and Ωx0 = 0.61 with χ
2
dof = 0.786.

We have found that the equations of state of the dark
energy equation and the unified fluid, at the best–fit val-
ues θc, do not cross the phantom divide line [see Fig.(2)]
while the present value of the equation of state for the
dark energy is ωx0 = −0.88.
From the deceleration parameter [see Fig.(2)] and the
best fit values θc, we have obtained that the acceleration
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starts at zacc = 1.06 hence, the model with a MHRDE en-
ters the accelerated regime earlier than the ΛCDM with
zacc = 0.75. We have shown that the density parame-
ters Ωc, Ωx, and its ratio r(z) in Fig.(3) seem to alleviate
the coincidence problem. It is related to the decreasing
behavior of the interaction with the redshift and its van-
ishing limit in the far future [see Fig.(3)].
In order to examine if the value of the parameters
obtained through the Hubble and/or SNe Ia data are
consistent with the physic at primordial eras such re-
combination one (z � 1100), we have included a non-
interacting component for studying the behavior of dark
energy at early times. Interestingly enough, we have
found that our model is consistent with the stringent
bounds Ωx(z � 1100) < 0.1 − 0.2 reported in the litera-
ture, further it turned that the aforesaid model together
with the cosmological constraints obtained with the Hub-
ble data are in agreement with the future constraints
achievable by Planck and CMBPol experiments24.
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