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Holographic dark energy linearly interacting with dark matter
Luis P. Chimento,1, a) Mónica I. Forte,1, b) and Mart́ın G. Richarte1, c)

Departamento de F́ısica, Facultad de ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires,

Argentina

(Dated: 31 July 2012)

We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter
coupled to a modified holographic Ricci dark energy through a general interaction term linear in the energy
densities of dark matter and dark energy, the total energy density and its derivative1. Using the statistical
method of χ2-function for the Hubble data, we obtain H0 = 73.6km/sMpc, ωs = −0.842 for the asymptotic
equation of state and zacc = 0.89. The estimated values of Ωc0 which fulfill the current observational bounds
corresponds to a dark energy density varying in the range 0.25R < ρx < 0.27R.

PACS numbers: 04.

I. INTRODUCTION

Many different observational sources such as the Super-
novae Ia2-3, the large scale structure from the Sloan Dig-
ital Sky survey4 and the cosmic microwave background
anisotropies5 have corroborated that our universe is cur-
rently undergoing an accelerated phase. The cause of
this behavior has been attributed to a mysterious compo-
nent called dark energy and several candidates have been
proposed to fulfill this role. For example, a positive cos-
mological constant Λ, explains very well the accelerated
behavior but it has a deep mismatch with the theoretical
value predicted by the quantum field theory. Another is-
sue of debate refers to the coincidence problem, namely:
why the dark energy and dark matter energy densities
happen to be of the same order precisely today. In or-
der to overcome both problems, it has proposed a dy-
namical framework in which the dark energy varies with
the cosmic time. This proposal has led to a great vari-
ety of dark energy models such as quintessence6, exotic
quintessence7, N–quintom8 and the holographic dark en-
ergy (HDE) models9 based in an application of the holo-
graphic principle to the cosmology. According to this
principle, the entropy of a system does not scale with
its volume but with its surface area and so in cosmolog-
ical context will set an upper bound on the entropy of
the universe10. It has been suggested11 that in quantum
field theory a short distance cut-off is related to a long
distance cut-off (infra-red cut-off L) due to the limit set
by the formation of a black hole. Further, if the quan-
tum zero-point energy density caused by a short distance
cut-off is taken as the dark energy density in a region of
size L, it should not exceed black hole mass of the same
size, so ρΛ = 3c

2M2
PL

−2, where c is a numerical factor.
In the cosmological context, the size L is usually taken
as the large scale of the universe, thus Hubble horizon,
particle horizon, event horizon or generalized IR cutoff.
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Among all the interesting holographic dark energy mod-
els proposed so far, here we focus our attention on a
modified version of the well known Ricci scalar cutoff12.
Besides, there could be a hidden non-gravitational cou-
pling between the dark matter and dark energy without
violating current observational constraints and thus it is
interesting to develop ways of testing an interaction in the
dark sector. Interaction within the dark sector has been
studied mainly as a mechanism to solve the coincidence
problem. We will consider an exchange of energy or in-
teraction between dark matter and dark energy which is
a linear combination of the dark energy density ρx, total
energy density ρ, dark matter energy density ρc, and the
first derivate of the total energy density ρ′.13

II. THE INTERACTING MODEL

In a FRW background, the Einstein equation for a
model of cold dark matter of energy density ρc and modi-
fied holographic Ricci dark energy having energy density

ρx =
(
2Ḣ + 3αH2

)
/Δ, reads

3H2 = ρ = ρc + ρx, (1)

where α, β are constants and Δ = α− β.
In terms of the variable η = 3 ln(a/a0), the compati-
bility between the global conservation equation

ρ′ = dρ/dη = −ρc − (1 + ωx)ρx, (2)

and the equation deduced from the expression of the
modified holographic Ricci dark energy

ρ′ = −αρc − βρx, (3)

namely, (ρc + γxρx) = (αρc + βρx), gives a relation be-
tween the equation of state of the dark energy component
ωx = γx − 1 and the ratio r = ρc/ρx

ωx = (α− 1)r + β − 1. (4)

Solving the system of equations (1) and (3) we get ρc
and ρx in terms of ρ and ρ

′ as

ρc = −(βρ+ ρ
′)/Δ, ρx = (αρ+ ρ

′)/Δ. (5)
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The interaction between both dark components is in-
troduced through the term Q by splitting the Eq.(3) into
ρ′

c + αρc = −Q and ρ
′

x + βρx = Q. Then, differentiating
ρc or ρx in (5) and using the expression of Q we obtain
a second order differential equation for the total energy
density ρ13

ρ′′ + (α+ β)ρ′ + αβρ = QΔ. (6)

For a given interaction Q, solving Eq. (6) gives us the
total energy density ρ and the energy densities ρc and ρx
after using Eq. (5).

The general linear interaction Q13, linear in ρc, ρx, ρ,
and ρ′, can be written as

Q = c1
(γs − α)(γs − β)

Δ
ρ+ c2(γs − α)ρc (7)

−c3(γs − β)ρx − c4
(γs − α)(γs − β)

γsΔ
ρ′,

where γs is constant and the coefficients ci fulfill the con-
dition c1 + c2 + c3 + c4 = 1

13.

Now, using Eqs. (5) we rewrite the interaction (7) as
a linear combination of ρ and ρ′,

Q =
uρ+ γ−1

s [u− (γs − α)(γs − β)]ρ′

Δ
, (8)

where u = c1(γs−α)(γs−β)− c2β(γs−α)− c3α(γs−β).
Replacing the interaction (8) into the source equation
(6), we obtain

ρ′′ + (γs + γ
+)ρ′ + γsγ

+ρ = 0. (9)

where the roots of the characteristic polynomial associ-
ated with the second order linear differential equation (9)
are γs and γ

+ = (βα− u)/γs. In what follows, we adopt
γ+ = 1 for mimicking the dust-like behavior of the uni-
verse at early times. In that case, the general solution of
(9) is ρ = b1a

−3γs + b2a
−3 from which we obtain

ρc =
(γs − β)b1a

−3γs + (1− β)b2a
−3

Δ
, (10a)

ρx =
(α− γs)b1a

−3γs + (α− 1)b2a
−3

Δ
. (10b)

Interestingly, Eqs. (10) tell us that the interaction (8)
seems to be a good candidate for alleviating the cosmic
coincidence problem because the ratio Ωc/Ωx becomes
bounded for all times.

Q = (1− α)ρc

Let us consider the particular case in which the inter-
action Q is proportional to the energy density of the dark
matter ρc in such a way that ρ

′

c+ρc = ρ′

x+(1+ωx)ρx = 0.
That is, each fluid separately, satisfies an equation of con-
servation. Here the constants u and γs defined above,
correspond to u = β(α − 1) and γs = β with which
the expressions (10) for the energy densities of the dark
matter and dark energy are written as functions of the
redshift as

ρc =
(1− β)b2(1 + z)

3

Δ
, (11a)

ρx =
(α− β)b1(1 + z)

3β + (α− 1)b2(1 + z)
3

Δ
. (11b)

The ratio between both components r = ρc/ρx turns
out to be

r =
b2(1− β)(1 + z)3(1−β)

b1Δ+ b2(α− 1)(1 + z)3(1−β)
, (12)

and shows that in the early universe, both components
behave as dust. In the final stages the ratio tends to
zero and therefore it does not solve the problem of the
coincidence. This example of interaction, between non-
relativistic dark matter and the modified holographic
Ricci dark energy, is important because allows to show
that the holographic forms of the dark energy are always
interacting with the non-holographic component. This
behavior can be observed in the equation (11b) and is due
to the functional dependence of the holographic equation
of state with the ratio r of the energy densities,

ωx =
(β − 1)b1Δ

b1Δ+ b2(α− 1)(1 + z)3(1−β)
. (13)

each time α is different from 1.

III. OBSERVATIONAL CONSTRAINTS

The transition redshift zacc that satisfies the equation
Ḣ + H2 = 0 and the actual Hubble factor H0 allow us
to express the coefficients bi in equations (10) as b1 =
3H2

0−b2 and b2 = 3H
2
0 (2−3γs)/[2−3γs+(1+zacc)

3(1−γs)]
so that the Hubble function, reads

H(z) =
H0(1 + zacc)

3/2√
2− 3γs + (1 + zacc)3(1−γs)

× (14)

√
(1 + z)3γs

(1 + zacc)3γs
+ (2− 3γs)

(1 + z)3

(1 + zacc)3
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FIG. 1. Left panel: Three-dimensional regions of confidence 1σ and 2σ for H0, γs = 1 + ωs and zacc parameters. Right panel:
Parametric curve of cosmological time t(z) drawn in units of H−1

0 for the best values zacc = 0.89, H0 = 73.6km/sMpc and
γs = 0.158 from (17).

We apply the χ2–statistical method to the Hubble
data14 for constraining the cosmological parameters of
the Hubble function (14). The three-dimensional con-
fidence regions 1σ and 2σ are shown in the left panel
of Fig.1 where the sphere indicates the best fit values
zacc = 0.89, H0 = 73.6km/sMpc and γs = 0.158 with a
minimum value of the χ2 function per degree of freedom
χ2
dof = 0.846.
Interesting in the sense that we now know the values

zacc and H0 of the current Hubble parameter predicted
by our model, nevertheless this information does not al-
low to determine the values of α and β best fitted to the
observational data. We must bear in mind that a feasi-
ble model of the dark sector has dark components with
positive definite energy densities, accelerated expansion
and non phantom dark energy. These requirements are
fulfilled when b1 and b2 are positive constants, which cor-
respond to α ≥ 1 and 0 ≤ β < 2/3. To determine the
most acceptable ranges of the parameters α and β we
note that this constants are involved in the expressions
of the partial energy densities ρc and ρx and so, we ap-
ply the χ2–statistical method as above but now using the
expressions

H2(z) = H2
0

(ωs − ω0)(1 + z)
3 + ω0(1 + z)

3γs

ωs
(15)

ω0 = αΩc0 + βΩx0 − 1, Ωi0 =
ρi0
3H2

0

, Ωc0 +Ωx0 = 1.

The results of this procedure, included in Table I, show
that the holographic case α = 4/3 and β = 1 has a
very poor statistical adjustment χ2

dof = 22.23, whereas

inversely, the models with α = 4/3 and β < 0.1, that is
0.25R < ρx < 0.27R, behave reasonably well leading to
χ2
dof = 0.761 < 1. The constants b1 and b2 have two sets

[α, β] Ωc0 ωs χ2
dof

[1.15, 0.01] 0.30 -0.84 0.761
[1.3, 0.01] 0.27 -0.84 0.761
[1.3, 0.1] 0.21 -0.84 0.761
[1.3, 0.2] 0.14 -0.84 0.761
[1.3, 0.3] 0.05 -0.84 0.761

[4/3, 0.01] 0.26 -0.84 0.761
[4/3, 0.1] 0.21 -0.84 0.761
[4/3, 0.2] 0.14 -0.84 0.761
[4/3, 0.3] 0.06 -0.84 0.761

[4/3, 1] 2.3× 10−9 -0.80 22.23
[1.4, 0.01] 0.25 -0.84 0.761
[1.4, 0.1] 0.19 -0.84 0.761
[1.4, 0.2] 0.13 -0.84 0.761
[1.4, 0.3] 0.05 -0.84 0.761

TABLE I. Best fit values of Ωc0 and ωs for a given pair of (α, β).

of expressions, as they are written in terms of zacc and
H0, used in (14), or in terms of the current parameters
of density Ωc0 and Ωx0, as used in (15). These sets allow
to express the constant ω0 as

ω0 =
ωs

1− (1 + 3ωs)(1 + zacc)3ωs
, (16)

and verify that the first line of the Table I gives the cor-
rect values of α and β. In the next subsections, we will
used these values α = 1.15, β = 0.01 and Ωc0 = 0.3 in
the figures and expressions for the partial densities and
their ratio.
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A. The crisis of the age

The age of the universe in units ofH−1
0 can be obtained

as a function of the redshift z with the expression

t(z) =

∫
∞

z

dν

(1 + ν)H(ν)
(17)

We depict this age-redshift relation in the right panel
of Fig.1. The parametric curve of cosmological time t(z)
is drawn from (17) in units of H−1

0 for the best values
zacc = 0.89, H0 = 73.6km/sMpc and γs = 0.158. Be-
cause the cosmological constraints with the Hubble data
only cover redshifts over the range 0 ≤ z < 2, the com-
parison with cosmic milestones will be trustworthy in this
range only, and for that reason we consider only two
old stellar sources such as the 4 Gyr old galaxy LBDS
53W069 at redshift z = 1.4315 and the 3.5 Gyr old galaxy
LBDS 53W091 at redshift z = 1.5516. We find that at
low redshift z < 2, the Ricci-like holographic dark en-
ergy model seems to be free from the cosmic-age prob-
lem, namely, the universe cannot be younger than its
constituents.

B. The magnitude-redshift relation

It is well known that observations of type Ia super-
nova(SNe Ia) have predicted and confirmed that our uni-
verse is passing through an accelerated phase of expan-
sion. Since then, the observational data coming from
these standard candles have been taken seriously. It is
commonly believed that measuring both, their redshifts
and apparent peak flux, gives a direct measurement of
their luminosity distances and thus SNe Ia data provides
the strongest constraint on the cosmological parameters.
The theoretical distance modulus is defined as

μ(z) = 5 log10DL + μ0 (18)

where μ0 = 43.028, and DL is the Hubble-free luminosity
distance, which for a spatially flat universe can be recast
as

DL(z) = (1 + z)H0

∫ z

0

dz′

H(z′)
(19)

Using the best fit values of ωs and zacc in Eqs.(14)-
(19) we get the theoretical distance modulus μ(z) that
we draw in the left panel of Fig.2 together with the obser-
vational data μobs(zi)

18 and their error bars. The theo-
retical distance modulus (18) will strongly depend on the
model used so taking into account a particular cosmology
and comparing its μ(z) with μobs(zi) one can judge the
plausibility of the cosmological model. As we see from
Fig.2 our model shares an excellent agreement with the
observational data in the zones corresponding to small
redshift [z ≤ 0.1] and large redshift [0.1 ≤ z ≤ 1.5].

C. The deceleration parameter, equations of states and

density parameters

There are magnitudes that do not depend explicitly
on the pair of constants (α, β) which selects one par-
ticular form for the energy density of the dark energy
ρx = (2Ḣ + 3αH

2)/(α − β), but on the linear combi-
nation ω0 defined in (15). These are: the total energy
ρ, the deceleration parameter q and the global equation
of state ω, whose explicit expressions can be written in
terms of the transition redshift zacc and the asymptotic
equation of state ωs, by (14) and the functions

q(z) = −1 +
3

2

(ωs − ω0) + ω0(1 + ωs)(1 + z)
3ωs

(ωs − ω0) + ω0(1 + z)3ωs
, (20)

ω(z) =
2q(z)− 1

3
(21)

with ω0 given by (16). In the right panel of Fig.2 the de-
celeration parameters for all our like-holographic models
with ω0 = −0.65 and ωs = −0.84, q(z) (solid line), are
compared with the deceleration parameter of the ΛCDM
model qΛCDM (z) (dashed line) that holds Ωc = 0.3.
There we can see that the deceleration parameter of our
models vanishes near zacc = 0.84, so these universes en-
ter in the accelerated phase more earlier than the ΛCDM
model with actual density parameters Ωc0 = 0.3 and
Ωx0 = 0.7. The effective equation of state ω, is plotted in
the right panel of Fig.3 and looking there, we conclude
that our models have −1 < ω(z) < 0 in the interval
z ≥ 0. More precisely, ω(z) begins like non-relativistic
matter, decreases rapidly around z = 2 and ends with
the asymptotic value ωs = −0.84.
Instead, the density parameters Ωc = ρc/3H

2 and
Ωx = ρx/3H

2, their ratio r = Ωc/Ωx, the equation of
state for the dark energy ωx of Eq.(4) and also the inter-
action used Q of Eq.(8), are described explicitly in terms
of α and β by the expressions

Ωc(z) =
(1− β)(ωs − ω0) + ω0(ωs + 1− β)(1 + z)3ωs

Δ[(ωs − ω0) + ω0(1 + z)3ωs ]
(22)

Ωx(z) =
(α− 1)(ωs − ω0) + ω0(α− 1− ωs)(1 + z)

3ωs

Δ[(ωs − ω0) + ω0(1 + z)3ωs ]
(23)

r =
ω0(β − ωs − 1)(1 + z)

3ωs + (1− β)(ω0 − ωs)

ω0(ωs + 1− α)(1 + z)3ωs + (α− 1)(ω0 − ωs)
, (24)

ωx(z) = (α− 1)r(z) + β − 1, (25)

Q =
(αβ − 1− ωs)ρ+ (α+ β − 2− ωs)ρ

′

α− β
(26)
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The density parameters Ωc and Ωx and their ratio r(z)
are plotted in the left panel of Fig.3 for the best values
α = 1.15, β = 0.01, ω0 = −0.65 and ωs = −0.84, where
we can see that the general linear interaction Q helps
to alleviate the coincidence problem. The later is drawn
in the right panel of Fig.3 together with the dark en-
ergy equation of state ωx which has −1 < ωx(z) < 0 for
z ≥ 0. The linear interaction Q of Eq.(26) corresponds
to the choice u = αβ− 1−ωs in the Eq.(8) and its curve
is always negative satisfying the second law of thermo-
dynamics that requires the energy flow goes from dark
energy to dark matter17.

IV. CONCLUSIONS

We have examined a modified holographic Ricci dark
energy coupled with cold dark matter and found that
this scenario describes satisfactorily the behavior of the
energy densities of both dark components alleviating the
problem of the cosmic coincidence. We have shown that
the compatibility between the modified and the global
conservation equations restricts the equation of state of
the dark energy component relating it to the ratio of
energy densities. This constrain makes the holographic
density always interacts with the non-holographic com-
ponent except in the unlikely event that α = 1, which
is forbidden for positive energy densities. From the ob-
servational point of view we have obtained the best fit
values of the cosmological parameters zacc = 0.89, H0 =
73.6km/sMpc and γs = 0.158 with a χ

2
dof = 0.761 < 1
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per degree of freedom. TheH0 value is in agreement with
the reported in the literature18 and the critical redshift
zacc = 0.89 is consistent with BAO and CMB data

19. We
have found that in the redshift interval where is trustwor-
thy compared with old stellar sources the model is free
from the cosmic-age problem.
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