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f(R) and f(T ) theories of modified gravity
Rafael Ferraro1, a)

Instituto de Astronomı́a y F́ısica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina,
and
Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

We briefly review f(R) theories, both in the metric and Palatini formulations, their scalar-tensor representa-
tions and the chameleon mechanism that could explain the absence of perceptible consequences in the Solar
System. We also review f(T ) theories, a different approach to modified gravity consisting in a deformation of
the teleparallel equivalent of General Relativity. We show some applications to cosmology and cosmic strings.
As f(R)’s, f(T ) theories are not exempted from additional degrees of freedom; we also discuss this still open
issue.

PACS numbers: 04.50.Kd
Keywords: Modified gravity, f(R) theories, f(T ) theories

I. INTRODUCTION

In the last five decades many theories of modified grav-
ity have been proposed in connection with different phys-
ical purposes. In the 60’s, Brans and Dicke coupled a
scalar field φ to the metric gμν to get a variable effective
gravitational constant.1 In Brans-Dicke theory, the scalar
field is a new degree of freedom of the gravitational field,
which is not directly coupled to the matter, but it ex-
erts influence by entering the dynamical equations that
govern the spacetime geometry. The gravitational Brans-
Dicke action contains a new constant ω that should be
dictated by the experiment:

SBD[gμν , φ] = − 1

2κ

∫
d4x
√−g

(
φR− ω

φ
gμν∂μφ∂νφ

)
,

(1)
where κ ≡ 8πG, and the signature +−−− was adopted.
Also in the 60’s, the Einstein-Hilbert Lagrangian was
added with terms quadratic in the curvature to tackle the
renormalization of the theory.2 In 1971 Lovelock3 consid-
ered terms of higher order in the curvature as well; but
he was driven by another motivation. While this kind
of Lagrangians leads, in general, to fourth order dynam-
ical equations because they contain second order deriva-
tives, Lovelock obtained the more general Lagrangian
polynomic in the curvature and leading to conserved sec-
ond order equations for the metric. Lovelock discovered
that the bigger the spacetime dimension is, the bigger is
the number of terms these Lagrangians can contain. For
instance, the Einstein-Lanczos Lagrangian,

L = − 1

2κ
(R+ 2Λ) + α(RλμνρR

λμνρ +R2 − 4RμνR
μν) ,

(2)
is the Lovelock Lagrangian for dimensions 5 or 6; it is
the Einstein-Hilbert Lagrangian with a cosmological con-
stant plus a quadratic term. If the dimension is 4, then
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the added quadratic term becomes a topological invari-
ant (Euler’s characteristic); so it does not contribute to
the variation of the action. Then we recover the Einstein
equations as the sole conserved second order equations
for the metric in four dimensions.
In 1970 Buchdahl proposed to replace the Einstein-

Hilbert scalar Lagrangian with a function of the scalar
curvature, and studied its cosmological consequences.4

This type of modified gravity is nowadays called a f(R)
theory. In 1983 Milgrom5 thought that the galactic ro-
tation curves were an evidence of the fail of Newtonian
gravity to describe gravitation in the weak field regime
(ag << ao ≈ 10−10ms−2). According to Milgrom, no
dark matter was needed to explain the data but a the-
ory of modified gravity. In the deep MOND (Modified
Newtonian Dynamics) regime of Milgrom’s theory, the
acceleration of gravity goes to ag =

√
ao agNewton

. In the

last decade Bekenstein6 developed a relativistic theory
of gravity named TeVeS, because it combines the metric
tensor, a vector field and a scalar field. TeVeS includes
Milgrom’s weakening of Newtonian gravity in the weak
field regime, and has also consequences for lensing phe-
nomena, cosmology, etc.
String theory has been also a source of inspiration for

theories of modified gravity. Just to mention a case,
DGP gravity7 describes the 4-dimensional universe as im-
mersed in a 5-dimensional manifold. Thus a “normal”
5D gravity can cause large scale effects in 4D, as the
accelerated expansion with no presence of dark energy.
These 4D consequences are driven by a scalar field named
galileon because of the symmetries it obeys.8,9

II. f(R) THEORIES

The simplest way of modifying Einstein’s General Rel-
ativity is to replace the scalar Lagrangian R with a func-
tion f(R) of the scalar curvature:4,10,11

S = − 1

2κ

∫
d4x

√−g f(R) . (3)
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By properly choosing the function f , one could gener-
ate “f(R)” theories departing from General Relativity
both at small and large scales. So, deformations at large
curvatures could be employed for smoothing singulari-
ties; while deformations at large scales could be useful to
geometrically explain the accelerated expansion without
resorting to dark energy. The weak field regime of the
deformed theory also opens a way to explain phenomena
otherwise attributed to dark matter. References 12–18
are comprehensive reviews on f(R) theories.
As it happens in General Relativity, there are two ways

of varying a metric theory of gravity. One can assume
the Levi-Civita connection to write the Ricci tensor; so
the metric is left as the sole dynamical variable. Al-
ternatively, one could regard the affine connection Γλ

μν

and the metric gμν as independent dynamical variables.
The first way of variation is called metric formalism; the
second one is the Palatini formalism.19 In General Rel-
ativity there is no difference between the results of met-
ric and Palatini formalisms, since the affine connection
making stationary the Einstein-Hilbert action is precisely
the Levi-Civita connection. Actually, the equivalence
between both formalisms is valid for all the Lovelock’s
Lagrangians.20 Instead, in f(R) theories both procedures
should be separately studied because they yield different
dynamics. Before choosing one of both formalisms, the
variation of the f(R) Lagrangian density can be written
as

δ
(
f(R)

√−g) = f ′(R)
√−g δR + f(R) δ

√−g
= f ′(R)

√−g gμν δRμν (4)

+
√−g

(
f ′(R) Rμν − 1

2
f(R) gμν

)
δgμν ,

where the formula δ ln(det[gμν ]) = −gμνδgμν , valid for
any matrix, was used to vary the determinant of the met-
ric. Besides, δRμν can be expressed in terms of variations
of the affine connection Γλ

μν (whatever Γ
λ
μν is; see for in-

stance Ref. 21):

δRμν = ∇λδΓ
λ
νμ −∇νδΓ

λ
λμ . (5)

Notice that the connection is not a tensor; but the differ-
ence δΓλ

μν between two different connections does trans-
form as a tensor.

III. METRIC FORMALISM FOR f(R) THEORIES

If the Levi-Civita connection is assumed, then second
derivatives of gμν are under variation in Eq. (5). As a con-
sequence, fourth-order Euler-Lagrange equations should
be expected as a result of the (double) integration by
parts induced by the variation (5). It is, however, re-
markable that gμν δRμν is, in this case, a four-divergence.
This is because the Levi-Civita connection is metric, so
the metric can enter the covariant derivative. This is
the reason why General Relativity (f ′(R) = 1) remains

as a theory governed by second order dynamical equa-
tions. Contrarily, f(R) theories in the metric formalism
are characterized by fourth-order dynamical equations:

f ′(R)Rμν−1
2
f(R) gμν−[∇μ∇ν − gμν �] f ′(R) = κTμν .

(6)
Notice that f ′(R) acts as renormalizing the gravitational
constant κ; so, only functions with f ′ > 0 should be
considered (besides, f ′′ > 0 to avoid instabilities22–24).
Differing from General Relativity, these equations link
the scalar curvature R and the trace T of the energy-
momentum tensor not algebraically but differentially. In
fact, the trace of Eq. (6) is

f ′(R)R− 2 f(R) + 3�f ′(R) = κT , (7)

which displays the propagation of a new degree of free-
dom associated with f ′(R) (this degree of freedom is ab-
sent in General Relativity since it is f ′(R) = 1).
A f(R) theory can be rephrased as a scalar-tensor the-

ory governed by second order dynamical equations.25–27

To show it, let us start from the following action contain-
ing a metric tensor gμν and a scalar field φ:

Sgrav[gμν , φ] = − 1

2κ

∫
d4x
√−g [φR− V (φ)] . (8)

The variation with respect to φ gives R = V ′(φ), so
linking the scalar field to the metric. This result also
implies that the Lagrangian in (8) is nothing but the
Legendre transform of the function V (φ); therefore, it
depends just on R. So we can call it f(R):

f(R) ≡ φR− V (φ) . (9)

By anti-transforming, one also gets

φ = f ′(R) . (10)

These results show that a f(R) theory in the metric for-
malism is dynamically equivalent to the action (8), where
f(R) and V (φ) are related through the Legendre trans-
formation (9). Notice that Sgrav[g, φ] in Eq. (8) resem-
bles a Brans-Dicke theory with ω = 0 (absence of kinetic
term).
The action (8) is written in the so called Jordan frame

representation of the theory. By transforming to the Ein-
stein frame representation we will obtain second order
dynamical equations. So let us define

φ → φ̃ =

√
3

2κ
lnφ

gμν → g̃μν = φ gμν ,
√−g = φ−2

√
−g̃ , (11)

where g̃μν is conformally related to gμν through the scalar
field φ. Then, one applies the relation for the scalar cur-
vatures of conformally related metrics,28

φ R̃ = R− 3

2
gμν ∂μ lnφ ∂ν lnφ− 3 � lnφ , (12)
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and throws out a surface term to write the action in the
form91

S′grav[g̃μν , φ̃]=−
∫

d4x
√
−g̃

[
R̃

2κ
− 1

2
g̃μν∂μφ̃ ∂ν φ̃+ U(φ̃)

]
(13)

where the potential is

U(φ̃) = − V (φ)

2κ φ2
=

f(R)−Rf ′(R)
2κ f ′(R)2

. (14)

As can be seen in Eq. (13), the action in the Einstein
frame gets a canonical form: it describes a “gravitational
field” g̃μν and a minimally coupled scalar field φ̃, gov-
erned by standard second order equations. So, we have
success in reducing the order of the equations (of course,
by widening the number of variables). An easy identifica-
tion of the degrees of freedom is now possible: 2 degrees
of freedom related to the tensor g̃μν plus 1 degree of free-

dom associated with the massive scalar field φ̃.

A. The chameleon effect

Because of the observations in the Solar System,
Brans-Dicke theory is constrained to values |ω| > 40000.
Despite that metric f(R) theories have ω = 0 in their
equivalent representation (9), they are not ruled out.
This is so because they contain a potential V (φ) (or

U(φ̃)) that is absent in Brans-Dicke theory. This poten-
tial could be useful to hide the scalar degree of freedom
within the Solar System. In other words, the observa-
tions in the Solar System could agree with metric f(R)
theories, whenever the scalar degree of freedom does not
appreciably distort the spherically symmetric outer static
Schwarzschild solution for a typical stellar object. Even
so, the scalar field could have physical effects at other
scales, as to be the cause of the accelerated cosmological
expansion, etc. This behavior, called the chameleon ef-
fect, has been proposed in Ref. 29 (cf. Refs. 16, 30–35),
and is strongly dependent on the choice of the potential
U .
The idea can be exemplified by considering solutions to

the dynamical equation (7) for φ = f ′(R). Alternatively,
this equation can be also obtained by adding the action
(13) with an action for matter minimally coupled to the

metric gμν = e(−
√

2κ/3 φ̃) g̃μν , and varying with respect

to φ̃. We are interested in static spherically symmetric
solutions. In such case, the resulting equation reduces to

∇2φ̃ =
1

r2
d

dr

(
r2

dφ̃

dr

)
= U ′(φ̃)−ρ

√
κ

6
exp

[
−
√
8κ

3
φ̃

]
,

(15)
where ρ ≡ Tmat

μ
μ > 0. Here we are momentarily ig-

noring the back-reaction on the metric, by choosing a
Minkowskian background g̃μν = ημν .
We will divide the space in two regions of constant

density: the region inner to a spherical star of radius R�

FIG. 1. Effective potentials in the inner and outer regions.
The (chosen) potential U is the dashed line. The correspond-
ing exponential terms in Eq. (16) are represented by the thin
lines.

and density ρc, and the outer region filled by a medium
of lower density ρo. For a constant energy density ρ, we
can define (in each region) the effective potential

Ueff ≡ U(φ̃) +
ρ

4
exp

[
−
√
8κ

3
φ̃

]
. (16)

We have to choose a potential U allowing the chameleon
effect to become apparent. In Figure 1, U has been cho-
sen in such a way that Ueff has a minimum in both

regions (we call them φ̃o and φ̃c). We will search for a

solution varying between φ̃c at the center of the star and
φ̃o at infinity (grey strip in Figure 1). Outside the star,

we expand Ueff at the minimum φ̃o:

Ueff � m2(φ̃− φ̃o)
2/2 + constant , (17)

where m is the mass of the field in this approach. Thus,
the outer solution is

φ̃ � φ̃o +
C

r
exp[−m (r −R�)] . (18)

Inside the star, we assume that the exponential term Ueff

dominates on U . Then

∇2φ̃ ≈ −ρc
√

κ

6
exp

[
−
√
8κ

3
φ̃

]
≈ −ρc

√
κ

6
, (19)

if
√
8κ/3 |φ̃| << 1. So, the inner solution is

φ̃ � φ̃c − ρc

√
κ

24
R2

s

(
r2

3R2
s

+
2Rs

3 r
− 1

)
. (20)

Notice that the integration constant Rs fulfills

φ̃(Rs) = φ̃c , φ̃′(Rs) = 0 . (21)

So, one can take Eq. (20) to be the inner solution for

Rs < r < R�, and extended it as the constant φ̃ = φ̃c
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to r = 0 (in fact, U ′eff (φ̃c) = 0). Thus, Rs in Eq. (20)

and C in Eq. (18) remain as two integration constants
to be determined by the continuity of the solution (20)
and (18) and its derivative at r = R�. By assuming that
mR� << 1, one obtains the following two equations for
Rs and C: √

3

2κ

[
1−

(
Rs

R�

)2
]
� ε , (22)

C �
√

2

3κ
ΦN R�

[
1−

(
Rs

R�

)3
]

, (23)

where ΦN = κ ρc R
2
�/6 is the Newtonian potential on the

surface of the star, and

ε ≡ √κ
φ̃c − φ̃o

ΦN
. (24)

The chameleon effect happens when the potential U is
such that ε << 1. In fact, in such case it is

√
κ C ≈ ε ΦN R� << κM� , (25)

so the effect of the potential φ̃ around the star is negligi-
ble compared with Newtonian gravity.92 Besides,

R� −Rs

R�
≈ ε√

6
<< 1 , (26)

then the inner solution differs from φ̃c just in a thin-shell
near the surface.
The back-reaction on the metric has been considered

in Ref. 32; it is proved that the PPN parameter charac-
terizing the departure from the Schwarzschild metric is
γ � 1 +

√
2/3 ε. The Cassini tracking constrains ε to

be ε � 10−5 in the Solar System. Since the Newtonian
potential on the Sun surface is ΦSun ∼ 10−6, one obtains

√
κ (φ̃Sun − φ̃o) � 10−11 . (27)

The viable f(R) theories are those having a potential
U accomplishing this relation. A typical f(R) used to
model the accelerated expansion is:32,34,36,37

f(R) = R +
μ2(n+1)

Rn
, (28)

because the R−n term dominates at low curvature. By
replacing the potential U of Eq. (14) in Eq. (16), one gets

Ueff (φ̃) = − (n+ 1)μ2

2κφ2

(
1− φ

n

) n
n+1

+
ρ

4φ2
, (29)

where φ = exp[
√
2κ/3 φ̃]. If ρκ >> μ2, the minima of

Ueff in each region are

√
2κ/3 φ̃o,c � −n

(
μ2

ρo,cκ

)n+1

, (30)

FIG. 2. Potential U(φ̃) in the model f(R) = R + α R2.

which are very near to zero as required by Eq. (27). This
also means that there is no sensitive difference between
metrics gμν and g̃μν (see Eq. (11)). In the Solar Sys-
tem, the density ρo outside the Sun should be replaced
by the mean density of the barionic matter in the galaxy
(ρgalaxyκ is around 105 times the squared Hubble con-
stant). Since ρgalaxy << ρSun , the Eq. (27) becomes

n

(
μ2

ρgalaxyκ

)n+1

� 10−11 , (31)

in order that the model (28) be acceptable. The above
used condition mR� << 1 can be accomplished too; in
fact

m2 = U ′′eff (φ̃o) ∼ ρgalaxyκ

(
ρgalaxyκ

μ2

)n+1

. (32)

B. Metric f(R) theories in cosmology

Within the framework of a FRW universe, it has been
shown that the field φ̃ is attracted to the minimum of
the potential (29), and then adiabatically evolves follow-
ing the Eq. (30) with ρ = ρuniverse(t). Using the usual
approximations, it is obtained that the net effect of the
presence of φ̃ is the adding of a constant to the den-
sity of matter.32,38 In such case, the cosmological effects
resulting from the model (28) would be undistinguish-
able from a mere cosmological constant (“vanilla dark
energy”). The growing of inhomogeneities are, however,
a more promising arena to distinguish among f(R) the-
ories and the ΛCDM model.39–41

f(R) theories have also be applied to modify the high
curvature regime. The simplest example is

f(R) = R + α R2 , (33)

which produces inflation, with φ̃ playing the role of
inflaton.42,43 Figure 2 shows that the potential U(φ̃) is

nearly flat for large values of φ̃, as required to get infla-
tion.
Other cosmological effects, such as lensing due to over-

densities of matter, have also been considered in the
framework of metric f(R) theories.44

106



IV. PALATINI FORMALISM FOR f(R) THEORIES

In Palatini formalism19,45 the connection Γλ
μν and the

metric gμν are regarded as dynamical variables to be in-
dependently varied. Thus, ∇ in Eq. (5) is just the co-
variant derivative for an arbitrary connection Γλ

μν . The
variation of the action with respect to the connection in-
volves the integration by parts of the first term in the
Eq. (4); what results is not a dynamical equation but a
constraint for the connection:30,46,47

Γλ
μν =

gλσ

2 f ′(R)

[
∂μ (f

′(R) gνσ) + ∂ν (f
′(R) gμσ)

− ∂σ (f
′(R) gμν)

]
(34)

(this is the result when torsion is neglected48,49). General
Relativity is a special case, in the sense that the connec-
tion (34) is the Levi-Civita connection when f(R) = R;
so, no difference exists between metric and Palatini for-
malisms in General Relativity. But, in a general case,
the connection (34) is not metric for gμν , but for the
conformal metric g̃μν = f ′(R) gμν .
On the other hand, the variation of the action with

respect to the metric in Eq. (4) does yield dynamical
equations:

f ′(R)Rμν − 1

2
f(R) gμν = κTμν , (35)

where Rμν and R are built with the connection (34).
Here Tμν is the usual energy-momentum tensor, when-
ever the action for matter does not contain covariant
derivatives. As a remarkable difference compared with
the metric formalism, the trace of Eq. (35) does not gov-
ern the propagation of a scalar degree of freedom but it
is a mere algebraic relation between the curvature R and
the matter distribution:

f ′(R)R − 2 f(R) = κT , (36)

so suggesting that Palatini formalism does not harbor
additional degrees of freedom, as confirmed by means of
the Einstein frame representation of Palatini dynamics.15

However, the relation R = R(T ) in Eq. (36) implies
that the connection (34) depends on first derivatives of
T . Therefore, Eq. (35) involves second derivatives of
T , which is a very unlike coupling between geometry
and matter. This feature is the source of several trou-
bles: juncture conditions on the surface of spherically
symmetric bodies leading to curvature divergences even
for reasonable state equations of matter52,53 (however,
see Ref. 54), incompatibilities with the stability of mi-
croscopic systems55–57 and non-well formulated Cauchy
problem unless the trace T is constant.58

V. f(T ) THEORIES

General Relativity can be reformulated in a teleparallel
framework by taking the field of orthonormal frames or

tetrads as the dynamical variable instead of the metric
tensor.59 The tetrad is a basis {ea(x)}, a = 0, 1, 2, 3, of
vectors in the spacetime. Each vector ea can be decom-
posed in a coordinate basis, so giving the components eμa ;
thus, the orthonormality condition reads:

ηab = gμν e
μ
a e

ν
b , (37)

where ηab = diag(1,−1,−1,−1). This relation can be
inverted with the help of the co-frame {ea}, defined as

eμa ebμ = δba , (38)

to obtain the metric starting from the tetrad:

gμν = ηab eaμ e
b
ν ⇒ √−g = det[eaμ] ≡ e . (39)

The Teleparallel Equivalent of General Relativity
(TEGR) is a theory for the tetrad, whose dynamical
equations are equivalent to Einstein equations whenever
the tetrad is related to the metric through the Eq. (39).
The TEGR Lagrangian does not contains second deriva-
tives because it is quadratic in the tensor

Tμ
νρ = eμa (∂νe

a
ρ − ∂ρe

a
ν) , (40)

which is reminiscent of the electromagnetic field tensor
(in fact, it is built of the set of four exact 2-forms T a ≡
dea). The tensor (40) can be regarded as the torsion of
the Weitzenböck connection,

Γ μ
ρν ≡ eμa ∂νe

a
ρ = −eaρ ∂νe

μ
a . (41)

Weitzenböck spacetime has torsion but it is flat, be-
cause the Riemann tensor associated with the connec-
tion (41) is identically null. The connection (41) has
the nice property that a vector is parallel-transported iff
its projections on the tetrad remain constant; in fact,
∇νV

μ = eμa ∂ν(e
a
λ V

λ). Moreover, Weitzenböck connec-
tion is metric compatible since ∇νe

μ
a ≡ 0. Weitzenböck

connection could be compared with Levi-Civita connec-
tion by using Eq. (39). It results that they differ in a
tensor named contorsion. The contorsion takes part in
the TEGR Lagrangian, since the TEGR action is:60,61

ST [e
a] =

1

2κ

∫
d4x e S μν

ρ T ρ
μν ≡

1

2κ

∫
d4x e S·T ,

(42)
where

2S μν
ρ ≡ 1

2
(T μν

ρ − Tμν
ρ + T νμ

ρ)︸ ︷︷ ︸
contorsion Kμν

ρ

+T λμ
λ δνρ − T λν

λ δμρ .

(43)
The equivalence between TEGR action and Einstein-
Hilbert action comes from the fact that their Lagrangians
differ in a four-divergence:

−e R[ea] = e S · T − 2 ∂ρ(e T
μ ρ
μ ) , (44)
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where R[ea] is the scalar curvature for the Levi-Civita
connection, with the metric replaced with (39). In par-
ticular, the four-divergence encapsulates all the second
derivatives contained in the Einstein-Hilbert Lagrangian.
In the same spirit than a f(R) theory, a f(T ) theory

consists in a deformation of the TEGR Lagrangian:62–66

ST =
1

2κ

∫
d4x e S·T −→ S =

1

2κ

∫
d4x e f(S·T) .

(45)
But, differing from f(R) theories, the dynamical equa-
tions in f(T ) theories are always second order because
the Lagrangian does not contain second derivatives. For
matter coupled to the metric in the usual way, they are

4
[
e−1 ∂μ(e S μν

a ) + eλa T ρ
μλ S μν

ρ

]
f ′(S · T)

+ 4 S μν
a ∂μ(S · T) f ′′(S · T) − eνa f(S · T)

= −2κ eλa T ν
λ , (46)

where T ν
λ is the energy-momentum tensor.

A. Cosmology

The first f(T ) model was proposed to avoid the Big-
Bang singularity and obtain inflation without resorting
to an inflaton.62 But most of the cosmological applica-
tions concentrated in the late accelerated expansion of
the universe.64,65,67–71 A flat FRW universe is described
by

eaμ = diag[1, a(t), a(t), a(t)] in comoving coordinates,

S · T = −6 H2 , (47)

where H ≡ ȧ/a is the Hubble parameter. Thus, the
dynamical equations (46) become

12 H2 f ′(−6H2) + f(−6H2) = 2κ ρ , (48)

−4H
�
f ′(−6H2) + 48H2 H

�
f ′′(−6H2) = 2κ (ρ+ p) ,

where ρ and p are the energy density and pressure of the
fluid of matter (the conservation law ρ̇ = −3H(ρ+ p) is
guaranteed by Eq. (48)).
In Ref. 62 a high curvature deformation, f(T ) =

λ(
√
1 + 2T/λ−1), was proposed to correct the evolution

near the Big-Bang (more precisely, when |T | is of the or-
der of λ). It was found that the Big-Bang is removed
and replaced with an exponential expansion (H(t) goes

to
√

λ/12 when t→ −∞) for any state equation p = w ρ
with w > −1. As a consequence, the particle horizon
diverges and the whole universe turns out to be causally
connected.
Other no less important issues, such as the growth

of fluctuations,72–74 the observational constraints75–77 or
the variation of the universal constants,78,79 have also
been studied in f(T ) cosmology.

B. Cosmic strings

Static circular80 or spherically81,82 symmetric solutions
are also analyzed in the f(T ) literature. In particular, it
has been shown that the Schwarzschild geometry remains
as a solution of f(T ) theories.83 The issue of remov-
ing singularities in stationary configurations was stud-
ied in a slightly different framework of modified TEGR,
by using a Lagrangian density inspired in Born-Infeld
electrodynamics:84

L = − λ

2κ

[√
det[gμν − 2λ−1Fμν ]−

√−g
]

−−−−→
λ→∞

1

2κ

√−g Tr(F ) , (49)

(gμν is that of Eq. (39)). TEGR is recovered in the limit
λ → ∞ if Tr(F ) = S · T. A possible choice, but not the
only one, is Fμν = Sμλρ T

λρ
ν ; then

L =
e

2κ

[
S · T − λ−1

2
(S · T)2 + λ−1 F ν

μ F μ
ν

]
+O(λ−2) .

(50)
This expression shows that the theory (49) modifies Gen-
eral Relativity at high curvatures and differs from a mere
f(T ) theory. These features make it potentially able of
avoiding the singular Schwarzschild solution or any other
solution having S · T = 0.63,83

The Lagrangian (49) was used in Ref. 84 to heal the
singular behavior of a cosmic string:

ds2 = d(t+4J θ)2−Y 2(ρ) dρ2−ρ2 M2 dθ2−dz2 . (51)

In General Relativity it is Y = 1. In particular, if the di-
mension is reduced toD = 2+1 (z is removed), the Y = 1
case is a solution of Einstein equations for T 00 = μ δ(x, y)
and T 0i = (J/2) εij ∂jδ(x, y), where μ ≡ (1 −M)/4. So
the solution (51) looks like the geometry associated with
a particle of mass μ and spin J (a cosmon).85 However, no
gravitational field surrounds the cosmon since the metric
is manifestly flat (in terms of the Levi-Civita curvature).
Instead, the presence of a cosmon only produces topo-
logical effects: the deficit angle 8πμ (conical singularity),
and the existence of closed timelike curves (CTC) of con-
stant (t, ρ, z) when ρ < ρo ≡ 4J/M :

ds2 = −
(
ρ2 − 16J2

M2

)
M2 dθ2 . (52)

When the geometry (51) is treated within the modified
gravity framework ruled by the Lagrangian (49), then Y
becomes a J-depending function of ρ. Y (ρ) goes to 1 for
ρ >> 4J/M (GR limit) but diverges for ρ→ 4J/M .84,86

Besides, the solution J = 0 coincides with the respective
GR solution. While J in General Relativity has no local
effects (J could be locally absorbed through the coordi-
nate change t′ = t+ 4J θ), now the integration constant
J is a physically relevant degree of freedom that fixes the
scale ruling the GR limit. The curved geometry that re-
places the GR cosmic string has remarkable features: i)
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the Levi-Civita curvature is well behaved at ρo = 4J/M
(R, RμνR

μν and RλμνρR
λμνρ vanish at ρo), ii) an infinite

proper time is required to reach ρo, and iii) no CTC’s are
left. So, the theory (49) successfully smoothes the GR
cosmic string.

C. Degrees of freedom in f(T ) theories

f(T ) gravity is structurally simpler than metric f(R)
theories, because it always produces second order dynam-
ical equations. However, this nice feature does not pre-
vent f(T ) gravity from displaying additional degrees of
freedom. The circular symmetric solution of the previ-
ous section, obtained in the context of an extension of
f(T ) gravity, exhibits a local degree of freedom associ-
ated with the integration constant J that is only globally
apparent in the corresponding GR solution. Since f(T )
is a theory not for the metric but for the tetrad, it con-
tains more degrees of freedom than GR. In fact, many
different tetrads lead to the same metric, since the rela-
tion (39) is invariant under local Lorentz transformation
of the tetrad field. In order that a theory for tetrads has
the same degrees of freedom than a theory for the met-
ric, its action should be invariant under local Lorentz
transformation of tetrads in the tangent space. TEGR is
a particular case accomplishing this condition: although
S ·T does vary under local Lorentz transformation of the
tetrad field, the variation is located in the divergence
term of Eq. (44); therefore the dynamics does not vary.
But in a f(T ) theory, the variation affects the dynamics
because the divergence term remains encapsulated in the
function f . Only a global Lorentz invariance survives in
such case. Because of this reason, a f(T ) theory globally
determines the field of tetrads; it provides the spacetime
with a global frame that fixes its metric and endows it
with a parallelization. A local Lorentz transformation
would destroy the parallelization (consider, for instance,
a Cartesian grid in Minkowski spacetime). As was proven
in Ref. 87, the local Lorentz invariance cannot be restored
by adding the action with a spin connection. The issue
of counting the number of degrees of freedom in a f(T )
theory could be tackled by reformulating the f(T ) action
in a Brans-Dicke-like form.88 Nevertheless, the counting
the first and second class constraints in the Hamiltonian
formulation shows that f(T ) theories in four dimensions
have five degrees of freedom.89

Summarizing, in passing from TEGR to f(T ) gravity,
we are replacing a local symmetry with a global one; in
return, we would be converting global degrees of freedom
(like the topological J in the cosmic string) into local
degrees of freedom. These new local degrees of freedom
could be essential to heal singularities. As a last remark,
it should be realized that, even if the geometry is highly
symmetric, it could be very hard to exploit the symmetry
to anticipate aspects of the tetrad field parallelizing such
a geometry. This causes that the naive diagonal choice
we used in Eq. (47) does not work for open and closed

FRW universes.90

VI. CONCLUSIONS

f(R) and f(T ) theories are alternative ways to mod-
ify General Relativity. Like metric f(R) theories, f(T )
gravity contains additional degrees of freedom. However,
these additional degrees of freedom do not appear as a
consequence of the higher order of the dynamical equa-
tions, since f(T ) gravity always leads to second order
equations. They appear because f(T ) gravity provides
the spacetime not only with a metric but with a global
parallelization. An extension of f(T ) gravity –the one
governed by the determinantal Lagrangian of Eq. (49)–
shows that the extra degrees of freedom can play a fun-
damental role in smoothing singularities. In the case of
the cosmic string, a global (topological) property of the
GR solution, encoded in the constant J , becomes a local
degree of freedom entering the metric tensor. This gen-
erates a family of geometries parametrized by J , which
includes a GR solution as a particular case (the J = 0
case).

ACKNOWLEDGMENTS

The author wishes to thank the organizers of I Cosmo-
Sul. This work was supported by Consejo Nacional de
Investigaciones Cient́ıficas y Técnicas (CONICET) and
Universidad de Buenos Aires.

1C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); P.
Jordan, Z. Phys. 157, 112-121 (1959).

2R. Utiyama and B. S. DeWitt, J. Math. Phys. 3, 608 (1962).
3D. Lovelock, J. Math. Phys. 12, 498 (1971).
4H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970).
5M. Milgrom, Astrophys. J. 270, 365 (1983).
6J. Bekenstein, Phys. Rev. D 70, 083509 (2004).
7G. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 485, 208
(2000).

8A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D 79,
064036 (2009).

9C. Deffayet, G. Esposito-Farèse and A. Vikman, Phys. Rev. D
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