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We investigated the molecular basis of the activity of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against
Trypanosoma cruzi, the etiological agent of Chagas’ disease. We found that growth inhibition of T. cruzi epi-
mastigotes induced by this compound was associated with a reduction in the content of the parasite’s endog-
enous sterols due to a specific blockade of their de novo synthesis at the level of squalene synthase.

There is an urgent need for safer and more potent drugs for
the specific treatment of Chagas’ disease, the largest parasitic
disease burden in Latin America. Currently available drugs
have serious limitations due to limited efficacy, particularly in
the chronic stage of the disease, and frequent toxic side effects
(25). The etiological agent of Chagas’ disease, the kinetoplas-
tid protozoan Trypanosoma cruzi, has a complex life cycle with
proliferative and infective stages in both its insect (Reduviidae)
vectors and mammalian hosts, where the parasite develops
intracellularly, leading to tissue damage compounded by the
ensuing inflammatory response (2). There are 16 to 18 million
people already infected in Latin America. Most of them are
in the chronic stage of the disease, in which 30 to 40% will
develop serious, often lethal, cardiac and gastrointestinal tract
lesions (7, 25).

We have recently described the potent and selective in vitro
activity of 4-phenoxyphenoxy and aryloxyethyl derivatives
against both the extracellular epimastigote and the clinically
relevant intracellular amastigote forms of T. cruzi, but the
molecular mechanisms of these effects remained unclear (4, 8).
T. cruzi and related trypanosomatid parasites have a strict
requirement for specific endogenous sterols (ergosterol and
analogs) for survival and growth and cannot use the abundant
supply of cholesterol present in their mammalian hosts (14–
17). We have shown that ergosterol biosynthesis inhibitors with
potent in vitro activity and special pharmacokinetic properties
in mammals (large volumes of distribution and long half-lives)
can induce radical parasitological cure in animal models of
both acute and chronic experimental Chagas’ disease (14–18).
We decided to investigate the possible effect of 4-phenoxy-

phenoxyethylthiocyanate (WC-9), the most potent member of
this group of compounds, on the de novo sterol biosynthesis in
intact T. cruzi epimastigotes, because previous work indicated
interference by this type of compounds with steroid biogenesis
in mammals (22, 23).

WC-9 induced a dose-dependent effect on growth of the
epimastigote form of the EP strain of parasite (Fig. 1). When
the EP strain was grown in liver infusion tryptose (LIT) me-
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FIG. 1. Effects of compound WC-9 on the proliferation of T. cruzi
epimastigotes. Epimastigotes were cultured in LIT medium at 28°C
with strong aeration. An arrow indicates the time the drug was added at
the indicated concentrations. Cell densities were measured by turbidity at
560 nm and by direct counting with a hemocytometer. Experiments were
carried out in triplicate, and each bar represents 1 standard deviation.
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dium (6), the MIC for the organism (defined as the minimal
concentration required to inhibit growth by �99% after 96 h)
was 1 �M, in agreement with previous results with the Y strain
(4). We analyzed the free sterol contents of control and treated
cells by capillary gas-liquid chromatography coupled with mass
spectrometry (18–21). We found (Table 1) that the growth-
inhibitory effects of WC-9 were associated with a depletion of
the parasite’s endogenous sterols, ergosterol and its 24-ethyl
analog, and a concomitant increase in the relative proportion
of cholesterol, which is taken passively from the growth me-
dium by the epimastigotes (18–21). At the MIC, an almost

complete disappearance of the parasite’s sterols was observed,
with no accumulation of sterol intermediates (Table 1) (see
reference 21 for a detailed description of the sterol biosynthe-
sis pathway in T. cruzi epimastigotes) or precursors, such as
lanosterol or squalene (not shown). These facts indicated a
blockade of the biosynthetic pathway at a presqualene level
(18).

To test this hypothesis, we investigated the effects of com-
pound WC-9 on two key enzymes of the poly-isoprenoid bio-
synthetic pathway: farnesyl diphosphate synthase (FPPS [EC
5.3.3.2]) and squalene synthase (SQS [EC 2.5.1.1]). The prod-

TABLE 1. Free sterols and precursors present in T. cruzi epimastigotes (EP stock) grown
in the presence or absence of WC-9a

Sterol or precursor Structure Retention time
(min)

Mass %

Control
WC-9 concn

0.1 �M 0.3 �M 1 �M

Exogenous

Cholesterol 24.7 32.4 31.0 57.1 83.7

Endogenous

24-Methyl-5,7,22-cholesta-trien-3�-ol (ergosterol) 26.9 32.1 31.5 17.4 16.3

24-Ethyl-5,7,22-cholesta-trien-3�-ol 29.6 13.5 13.2 15.8 �1

Ergosta-5,7,24(24�)-trien-3�-ol 28.4 9.6 12.0 4.3 �1

Ergosta-5,7-dien-3�-ol 28.7 8.7 9.6 3.1 �1

Ergosta-7,24(24�)-dien-3�-ol 28.9 3.7 2.7 2.3 �1

a Sterols were extracted from T. cruzi epimastigotes cultured in LIT medium for 120 h in the presence or absence of the indicated concentrations of WC-9; they were
separated from polar lipids by silicic acid column chromatography and analyzed by quantitative capillary gas-liquid chromatography and mass spectrometry (18–21).
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uct of the reaction catalyzed by FPPS, farnesyl pyrophosphate
(FPP), is the main branching point of the poly-isoprenoid
pathway, while SQS catalyzes the first committed step in sterol
biosynthesis, in which a reductive dimerization of two mole-
cules of FPP yields squalene. Using a recombinant T. cruzi
FPPS expressed in Escherichia coli as previously described
(10), we found that WC-9 was essentially inactive against this
enzyme (9% inhibition at 4 �M and 13% inhibition at 40 �M).
Turning to SQS, we used as an enzyme source highly purified
glycosomes and mitochondrial membrane vesicles obtained
from T. cruzi epimastigotes gently broken by abrasion with
silicon carbide and fractionated by differential and isopycnic
centrifugation (5, 18). SQS was assayed by a radioactive spot
wash assay (12). The results (Fig. 2) indicated that WC-9 is a
potent inhibitor of both glycosomal and mitochondrial T. cruzi
SQS, with 50% inhibitory concentrations (IC50) of 88 and 129
nM, respectively, at saturating concentrations of the enzyme
substrates (25 �M FPP and 1 mM NADPH). The inhibitory
activities of WC-9 on purified SQS can readily explain the
effects of this compound on the free sterol composition (Table
1) and growth (Fig. 1) of whole epimastigotes and strongly

suggest a causal relationship between the latter two phenom-
ena. The dose-response curves for the activity of WC-9 against
T. cruzi SQS (Fig. 2) were consistent with noncompetitive
inhibition, with Ki � IC50; these Ki values are 2 to 3 orders of
magnitude lower than the Km of the substrates (18). This sug-
gested that WC-9, with its electrophilic sulfur center linked to
the relatively nonpolar (hydrophobic) 4-phenoxyphenoxyethyl
moiety, could act by mimicking the carbocationic transition
state of the reaction, leading to formation of the cyclopropyl-
carbinyl intermediate presqualene diphosphate (1, 9, 11). A
similar rationale has been advanced to explain the potent anti-
SQS activity of aryl-quinuclidine derivatives against both mam-
malian SQS and T. cruzi SQS (3, 13, 18, 24). Based on this
hypothesis, it should be possible to design new and more po-
tent SQS inhibitors, using WC-9 as lead structure (i.e., by in-
creasing the electrophilic character of the 4-phenoxyphenoxy-
ethyl substituent).

In conclusion, our results indicate that a primary mechanism
of the antiproliferative effects of WC-9 against T. cruzi is the
depletion of essential endogenous sterols by a specific block-
ade of their de novo biosynthesis at the level of SQS. This is the
first explanation at a molecular level of the mechanism of
action of 4-phenoxyphenoxy derivatives against this parasite,
and it suggests that this and related compounds could repre-
sent a new class of SQS inhibitors with potential antiparasitic
and cholesterol-lowering activity in humans.
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