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An e�etive Bertini theorem and the number of rationalpoints of a normal omplete intersetion over a �nite �eldby
Antonio Cafure and Guillermo Matera (Buenos Aires)

1. Introdution. Let Fq be the �nite �eld of q elements and let Fqbe the algebrai losure of Fq. We denote the n-dimensional projetive anda�ne spaes de�ned over Fq and Fq by P
n(Fq), P

n := P
n(Fq), A

n(Fq) and
A

n := A
n(Fq) respetively. Let V be an a�ne or a projetive variety de�nedover Fq (an Fq-variety for short). Counting or estimating the number |V (Fq)|of q-rational points of V is a lassial problem. Here by a q-rational point of

V we mean a point of V with oordinates in Fq.In [19℄ (see also [15℄), S. Lang and A.Weil establish a �prototype� estimateon |V (Fq)| for absolutely irreduible Fq-varieties. They prove that for anabsolutely irreduible Fq-variety V ⊂ P
n of dimension r and degree δ,(1) ∣∣|V (Fq)| − pr

∣∣ ≤ (δ − 1)(δ − 2) qr−1/2 + C(n, r, δ) qr−1,where pr := qr + qr−1 + · · · + q + 1 = |Pr(Fq)| and C(n, r, δ) is a onstantindependent of q. We remark that [19℄ does not provide an expliit expressionfor C(n, r, δ).From the point of view of pratial appliations, it is usually neessaryto provide expliit expressions of the onstant C := C(n, r, δ) (see, e.g.,[14℄, [16℄, [24℄, [2℄). Further, partiular families of varieties for whih betterestimates hold are also of interest (see, e.g., [32℄, [33℄, [21℄, [25℄).S. Ghorpade and G. Lahaud ([10℄, [9℄) show that one an take C =
9 ·2s(sd+3)n+1 in (1), provided that the variety V is de�ned by s equationsof degree at most d. The proof of this result relies on the Grothendiek�Lefshetz trae formula and estimates of the Betti numbers of suitable spaesof étale ℓ-adi ohomology.2000 Mathematis Subjet Classi�ation: Primary 11G25, 14G05; Seondary 11G20,14M10.Key words and phrases: varieties over �nite �elds, rational points, normal ompleteintersetion, seond Bertini theorem.This researh was partially supported by the following grants: UBACyT X112, PIPCONICET 2461, UNGS 30/3005 and MTM2004-01167 (2004�2007).[19℄ © Instytut Matematyzny PAN, 2007



20 A. Cafure and G. MateraW. Shmidt ([27℄, [28℄) develops an alternative approah based on om-binatorial arguments and an e�etive version of the �rst Bertini theorem inorder to obtain for the �rst time an expliit value of C for an absolutely ir-reduible Fq-hypersurfae. The authors of this artile [3℄ ombine Shmidt'sapproah with tools of e�etive elimination theory and an improved e�e-tive version of the �rst Bertini theorem in order to prove that one an take
C = 5δ13/3 in (1), provided that the regularity ondition q > 2(r+1)δ2 holds.The estimate (1) holds for hypersurfaes without any regularity ondition.These two are the best general estimates known. Nevertheless, in manypartiular ases they are far from being sharp. In fat, in the presene ofbetter geometri onditions signi�ant improvements an be obtained, asshown by the work of P. Deligne [7℄, C. Hooley [13℄ and others. This artileis devoted to obtaining an estimate of type (1) for the number of q-rationalpoints of a normal omplete-intersetion Fq-variety V ⊂ P

n.This ase has already been onsidered in [10℄, [9℄. The authors provethat if V ⊂ P
n is a normal omplete-intersetion Fq-variety of degree δ andmultidegree d := (d1, . . . , dn−r), de�ned by n − r equations of maximumdegree d, then the following estimate holds:

(2)
∣∣|V (Fq)| − pr

∣∣ ≤ b′1(n − r + 1,d)qr−1/2 + 9 · 2n−r((n − r)d + 3)n+1qr−1.Here b′1(n − r + 1,d) is the �rst primitive Betti number of a nonsingularomplete intersetion urve in P
n−r+1 of multidegree d. As b′1(n−r+1,d) ≤

(δ − 1)(δ − 2), with equality if and only if V is a hypersurfae, we onludethat (2) improves (1) with C = 9 · 2s(sd + 3)n+1.Compared with the bound C ≤ 5δ13/3 obtained in [3℄ without using thenormality assumption, the bound C ≤ 9 · 2n−r((n − r)d + 3)n+1 does notseem to be good for low odimension varieties, in partiular for hypersur-faes, whih are very ommon in pratial situations (see, e.g., [14℄, [16℄, [24℄,[2℄, [25℄). Indeed, in the hypersurfae ase the bound for C obtained in [3℄exponentially improves that of [10℄, [9℄. In this diretion, using methods ofelimination theory we derive a further estimate of type (2) better adaptedto low odimensional situations. Our main result is the following (f. Theo-rem 6.1 and Corollary 6.2 below):
Theorem. Let q > 2(n−r)dδ +1 and let V ⊂ P

n be a normal omplete-intersetion Fq-variety of degree δ and multidegree d, de�ned by polynomialsof maximum degree d. Then(3) ∣∣|V (Fq)| − pr

∣∣ ≤ b′1(n − r + 1,d)qr−1/2 + 2(n − r)2d2δ2qr−1,where b′1(n−r+1,d) denotes the �rst primitive Betti number of a nonsingularomplete-intersetion urve in P
n−r+1 of multidegree d.As previously mentioned, our estimate, although valid under the regu-larity ondition q > 2(n − r)dδ + 1, learly improves (2) in the ase of a



An e�etive Bertini theorem 21hypersurfae. In fat, for a hypersurfae (2) beomes
∣∣|V (Fq)| − pn−1

∣∣ ≤ (δ − 1)(δ − 2)qn−3/2 + 18(δ + 3)n+1qn−2.Our estimate also improves (2) in ases of low dimension (suh as 2r ≤ n−1)and low degree (suh as d ≤ 2(n−r)). Furthermore, we improve the (general)estimate C = 5δ13/3 of [3℄ and its regularity ondition q > 2(r + 1)δ2.The proof of our main result relies on arguments of elimination theory inthe spirit of [3℄ and an e�etive version of the seond Bertini theorem. Morepreisely, we express the variety V under onsideration as the disjoint unionof a suitable number, namely pr−1 := |Pr−1(Fq)|, of 1-dimensional linearsetions of V de�ned over Fq. Sine the dimension of the singular lous of Vis at most r − 2, a generi 1-dimensional linear setion of V is a nonsingularomplete-intersetion urve. A ritial point is to obtain an upper bound onthe number of 1-dimensional singular linear setions of V de�ned over Fq.For this purpose, we establish the following e�etive version of the seondBertini theorem (see Theorem 5.3):
Theorem. Let V ⊂ P

n be a normal omplete-intersetion of dimension rand degree δ, and let π : V → P
r−1 be a generi linear projetion. Then thereexists a variety W ⊂ P

r−1 of degree at most 2(n − r)2(d − 1)2δ suh that the�ber π−1(y) is a nonsingular urve of degree at most δ for every y /∈ W .The number of q-rational points of V lying in the nonsingular linear se-tions mentioned above is estimated using Deligne's estimate (see Setion 6),while the q-rational points lying in the remaining linear setions are on-trolled by means of elementary estimates and our e�etive seond Bertinitheorem.The paper is organized as follows. In Setion 3 we exhibit an upper boundon the number of q-rational points of an arbitrary projetive variety de�nedover Fq, whih illustrates the kind of arguments of elimination theory weuse. Setion 4 is devoted to obtaining an upper bound on the degree of thegeneriity ondition underlying the hoie of linear varieties Lr and Ln−r−1for whih the entral projetion from Ln−r−1 mapping V onto Lr is a �nitemorphism and the orresponding �eld extension is separable. In Setion 5 weobtain the e�etive version of the seond Bertini theorem mentioned above,whih is applied in Setion 6 to obtain (3). We �nish by brie�y ommentingon an appliation of (3) in the setting of ryptography.2. Notions and notations. We use standard notions and notations ofommutative algebra and algebrai geometry as an be found in, e.g., [17℄,[30℄, [22℄.Let K be any of the �elds Fq or Fq. We say that V ⊂ P
n (resp. V ⊂ A

n)is a projetive (resp. a�ne) K-variety if it is the set of all ommon zeros



22 A. Cafure and G. Materain Fq
n+1 (resp. Fq

n) of a family of homogeneous polynomials F1, . . . , Fm ∈
K[X0, . . . , Xn] (resp. of polynomials F1, . . . , Fm ∈ K[X1, . . . , Xn]). In thissetion, unless otherwise stated, all results referring to K-varieties in generalshould be understood as valid for both projetive and a�ne varieties.For a K-variety V in the n-dimensional (a�ne or projetive) spae, wedenote by I(V ) its de�ning ideal and by K[V ] its oordinate ring. The di-mension dimV of a K-variety V is the (Krull) dimension of the ring K[V ].The degree deg V of an irreduible K-variety V is the maximum number ofpoints lying in the intersetion of V with a generi linear spae L of odi-mension dim V , for whih V ∩ L is a �nite set (a zero-dimensional variety).More generally, if V = V1∪· · ·∪Vs is the deomposition of V into irreduible
K-omponents, we de�ne the degree of V as deg V :=

∑s
i=1 deg Vi (f. [11℄).We say that V has pure dimension r if every irreduible K-omponent of

V has dimension r. A K-variety V is absolutely irreduible if it is irreduibleas an Fq-variety.A K-variety V of dimension r in an n-dimensional spae is alled an(ideal-theoreti) omplete intersetion if its ideal I(V ) over K an be gener-ated by n−r polynomials. If V is a omplete intersetion in P
n of dimension rand degree δ and F1, . . . , Fn−r is a system of generators of I(V ), the degrees

d1, . . . , dn−r depend only on V and not on the system of generators. Arrang-ing the di in suh a way that d1 ≥ · · · ≥ dn−r, we all d := (d1, . . . , dn−r)the multidegree of the omplete intersetion V . In partiular, it follows that
δ =

∏n−r
i=1 di.An irreduible projetive K-variety V is normal if for every x ∈ V thereis an a�ne neighborhood U of x suh that the a�ne oordinate ring K[U ] isintegrally losed. Nonsingular varieties are normal, and when V is a urve,normality and nonsingularity are equivalent onditions. We reall Serre'sriterion for normality: A projetive omplete intersetion V is normal if andonly if V is regular in odimension 1. If V is a normal omplete-intersetionurve it is onneted and so absolutely irreduible.Let V and W be irreduible K-varieties of the same dimension and f :

V → W be a regular dominant map. The degree of the �eld extension
f∗(K(W )) ⊂ K(V ) is alled the degree of f . Suppose further that W isnormal and f is a �nite morphism. We say that f is unrami�ed at y ∈ W ifthe number of inverse images of y equals the degree of f .An important tool for our estimates is the following Bézout inequality(see [11℄ for the a�ne ase and [5℄ for the projetive ase; see also [8℄, [34℄):if V and W are K-varieties, then(4) deg(V ∩ W ) ≤ deg V deg W.We shall also make use of the following well-known identities relating thedegree of an a�ne K-variety V ⊂ A

n, the degree of its projetive losure



An e�etive Bertini theorem 23(with respet to the projetive Zariski K-topology) V ⊂ P
n and the degreeof the a�ne one Ṽ of V (see, e.g., [4, Proposition 1.11℄):(5) deg V = deg V = deg Ṽ .Finally, we have the following result onerning the behavior of the degreeunder linear maps.Lemma 2.1. Let φ : V → W be a regular linear map between K-varieties.Then deg φ(V ) ≤ deg V .Proof. From (5) we see that it is enough to prove the statement fora�ne varieties. But for a�ne varieties this is a well-known fat (see, e.g.,[11, Lemma 2℄).3. An elementary upper bound. Following the notations of the pre-eding setion, P

n and A
n stand for P

n(Fq) and A
n(Fq) respetively. For agiven variety V , we denote by V (Fq) the set of q-rational points of V and by

|V (Fq)| its ardinality.In this setion we obtain an elementary upper bound on |V (Fq)|. Notiethat in some ases it is possible to determine the exat value of |V (Fq)|. Forinstane, the number of points pn of P
n(Fq) is given by pn := |Pn(Fq)| =

qn + qn−1 + · · · + q + 1.For an a�ne variety V of dimension r and degree δ we have the followingupper bound on the number of q-rational points of V [3, Lemma 2.1℄:(6) |V (Fq)| ≤ δqr.The orresponding upper bound for a projetive hypersurfae is lassi-al ([28℄, [20℄). Our next result extends this bound to arbitrary projetivevarieties:Proposition 3.1. Let V be a projetive variety of dimension r and de-gree δ. Then
|V (Fq)| ≤ δpr.Proof. The proof is by indution on r. If r = 0 then it is lear that

|V (Fq)| ≤ δ. Hene we may assume that r ≥ 1. Suppose now that V isirreduible. After a linear hange of oordinates we may assume that thehyperplane at in�nity {X0 = 0} does not ontain V .Then Vaff := V ∩ {X0 = 1} is an a�ne r-dimensional variety withprojetive losure V . Therefore, deg Vaff = δ by (5) and thus (6) implies
|Vaff(Fq)| ≤ δqr.On the other hand, by assumption, V∞ := V ∩ {X0 = 0} = V \ Vaff is aprojetive variety of dimension at most r− 1 and degree at most δ. Then bythe indution hypothesis we have |V∞(Fq)| ≤ δpr−1.



24 A. Cafure and G. MateraIn onlusion,
|V (Fq)| = |Vaff(Fq)| + |V∞(Fq)| ≤ δqr + δpr−1 = δpr.This ompletes the indutive step when V is irreduible. Next, for an arbi-trary projetive variety V , let V = V1 ∪ · · · ∪ Vs be its deomposition intoirreduible projetive varieties. Then dimVi ≤ r and δ =

∑s
i=1 δi, where

δi := deg Vi for 1 ≤ i ≤ s. Therefore
|V (Fq)| ≤

s∑

i=1

|Vi(Fq)| ≤
s∑

i=1

δipr ≤ δpr.This �nishes the proof of the proposition.A somewhat di�erent proof is given in [10, Proposition 12.1℄ (see also[18, Proposition 2.3℄). Nevertheless, we have inluded our proof beause itillustrates the kind of arguments of elimination theory we use. We also ob-serve that in the ase of an Fq-hypersurfae H ⊂ P
n of degree δ ≤ q + 1we have the upper bound |H(Fq)| ≤ δqn−1 + pn−2 due to J.-P. Serre [29℄.Unfortunately, the hypersurfaes we onsider in the next setions are not ingeneral de�ned over Fq, and thus Serre's bound annot be applied.4. On the existene of good linear projetions. In this setion weestablish some results whih are ruial to obtaining our e�etive version ofthe seond Bertini theorem of Setion 5.Let V ⊂ P

n be an absolutely irreduible omplete-intersetion Fq-varietyof dimension r and degree δ. Let F1, . . . , Fn−r ∈ Fq[X0, . . . , Xn] be homoge-neous polynomials whih form a regular sequene and generate the ideal ofthe variety V . We denote by di the degree of Fi for 1 ≤ i ≤ n − r, and weset d := max1≤i≤n−r di.Sine V has pure dimension r, for a generi hoie of linear varieties Lrand Ln−r−1 of P
n of dimension r and n − r − 1 respetively, we have

Lr ∩ Ln−r−1 = ∅, V ∩ Ln−r−1 = ∅.Furthermore, V is mapped onto Lr by the entral projetion πr from Ln−r−1,and �nitely many points of V lie over any point of Lr under this projetion.Finally, if Y0, . . . , Yr are linear forms on Fq[X0, . . . , Xn] whose zero set de�nesthe linear variety Ln−r−1, and πr is de�ned by
πr : V → Lr, x 7→ (Y0(x) : · · · : Yr(x)),then πr is a �nite morphism. Our �rst result yields a suitable hoie for thelinear variety Ln−r−1:Lemma 4.1. There exist indies 0 ≤ ir+1 < · · · < in ≤ n suh that ,if we de�ne Yj := Xij for r + 1 ≤ j ≤ n, then Yr+1, . . . , Yn are Fq-linearly



An e�etive Bertini theorem 25independent and U := {x ∈ V : (∂Fi/∂Yr+j)1≤i,j≤n−r(x) 6= 0} is a nonemptyZariski open subset of V .Proof. Sine V is absolutely irreduible, from, e.g., [28, Chapter 6, Corol-lary 6.C℄, we onlude that there exist linear forms Y0, . . . , Yr ∈ Fq[X0, . . . , Xn]suh thatFq(Y0, . . . , Yr) →֒ Fq(V ) is an algebrai separable �eld extension. Fur-ther, these linear forms anbe hosen in suh away that the projetionmapping
πr : V → P

r de�ned by πr(x) := (Y0(x) : · · · : Yr(x)) is a �nite morphism, asasserted above. For the sake of the argument, �x arbitrarily suh linear formsand denote by λ ∈ Fq
(r+1)×(n+1) the matrix whose rows are the oe�ients ofthese forms.From, e.g., [31, II.6.3, Theorem 4℄, we see that there exists y ∈ P

r suhthat π−1
r (y) is an unrami�ed �ber of πr, i.e., the number of inverse images of

y equals the degree of the �eld extension Fq(Y0, . . . , Yr) →֒ Fq(V ). Fix arbi-trarily x ∈ π−1
r (y). The unrami�edness of πr at x means that the di�erential

dxπr : TxV → TyP
r between the tangent spaes is injetive (see [6, �5, 5.2℄).This in turns means that the following (n+1)×(n+1) matrix is nonsingular:
Dr(x) :=




λ0, 0 . . . λ0, n... ...
λr, 0 . . . λr, n

∂F1
∂X0

(x) . . . ∂F1
∂Xn

(x)... ...
∂Fn−r

∂X0
(x) . . . ∂Fn−r

∂Xn
(x)




.

Considering the Laplae expansion of the determinant of Dr(x), we on-lude that there exist two disjoint sets of indies 0 ≤ i0 < i1 < · · · < ir ≤ nand 0 ≤ ir+1 < · · · < in ≤ n suh that both the square Jaobian matries
(∂Yi/∂Xij )0≤i,j≤r and ((∂Fi/∂Xir+j

)(x))1≤i,j≤n−r are nonsingular.From the nonsingularity of (∂Yi/∂Xij )0≤i,j≤r we onlude that thelinear forms Y0, . . . , Yr, Xir+1 , . . . , Xin are Fq-linearly independent. Fur-thermore, de�ning Yj := Xij for r + 1 ≤ j ≤ n, we see that the matrix
((∂Fi/∂Yr+j)(x))1≤i,j≤n−r is nonsingular, whih implies that U := {x ∈ V :
(∂Fi/∂Yr+j)1≤i,j≤n−r(x) 6= 0} is a nonempty Zariski open subset of V .From now on we �x linear forms Yr+1, . . . , Yn satisfying the statementof Lemma 4.1. Our next result yields an upper bound on the degree of thegeneriity ondition underlying the hoie of the linear variety Lr. Beforestating it, we introdue some notations. Let Λ := (Λi, j)0≤i≤r, 0≤j≤n be amatrix of indeterminates and let Λ(i) denote the ith row of Λ for 0 ≤ i ≤ r.Set X := (X0, . . . , Xn) and Ỹ := (Ỹ0, . . . , Ỹr) := ΛX.



26 A. Cafure and G. MateraProposition 4.2. There exists a nonzero polynomial A ∈ Fq[Λ] of de-gree at most 2δ + 1 in eah group of variables Λ(i) for 0 ≤ i ≤ r with thefollowing property. For any λ ∈ Fq
(r+1)(n+1) with A(λ) 6= 0, the linear forms

(Y0, . . . , Yr) := λX satisfy the following onditions:(i) the map πr : V → P
r de�ned by Y0, . . . , Yr is a �nite morphism,(ii) Fq(Y0, . . . , Yr) →֒ Fq(V ) is a separable �eld extension,(iii) if Yr+1, . . . ,Yn denote the linear forms of Lemma 4.1, then Y0, . . . , Ynare Fq-linearly independent.Proof. Let Λ(r+1) be a vetor of n+1 new indeterminates and let Ỹr+1 :=

Λ(r+1)X. Let PV ∈ Fq[Λ, Λ(r+1), Ỹ0, . . . , Ỹr+1] be the Chow form of V (f.[26℄, [12℄). It is a well-known fat that PV is an irreduible polynomialin Fq[Λ, Λ(r+1), Ỹ0, . . . , Ỹr+1] whih is separable in eah of the variables
Ỹ0, . . . , Ỹr+1 and homogeneous in Ỹ0, . . . , Ỹr+1 and in eah group of vari-ables Λ(i) for 0 ≤ i ≤ r + 1. Furthermore, PV satis�es the following degreeestimates:

• deg
Ỹ
PV = deg

Ỹr+1
PV = δ,

• degΛ(i)PV ≤ δ for 0 ≤ i ≤ r + 1.Considering the expansion of PV in powers of Ỹr+1, let Ã1 ∈ Fq[Λ, Λ(r+1)]be the nonzero polynomial whih arises as the oe�ient of the monomial
Ỹ δ

r+1 in PV , and let Ã2 ∈ Fq[Λ, Λ(r+1), Ỹ0, . . . , Ỹr] be the oe�ient of a mono-mial Ỹ j0
r+1, with j0 not divisible by the harateristi of Fq. Let A1, A2 ∈ Fq[Λ]be nonzero oe�ients of Ã1 and Ã2, respetively, where we onsider Ã1 asan element of Fq[Λ][Λ(r+1)] and Ã2 as an element of Fq[Λ][Λ(r+1), Ỹ0, . . . , Ỹr].The above estimates imply that both A1 and A2 have degree at most δ ineah group of variables Λ(i) for 0 ≤ i ≤ r + 1.Let λ ∈ Fq

(r+1)(n+1) be any point for whih A1(λ) 6= 0 and A2(λ) 6= 0,and de�ne the r + 1 linear forms (Y0, . . . , Yr) := λX. Sine Ã1(λ, Λ(r+1))and Ã2(λ, Λ(r+1), Y0, . . . , Yr) are nonzero polynomials, we dedue the ex-istene of Fq-linearly independent vetors w0, . . . , wn ∈ Fq
n+1 suh that

PV (λ, wj, Y0, . . . , Yr, Ỹr+1) ∈ Fq[Y0, . . . , Yr][Ỹr+1] is a nonzero, moni (up toelements of Fq) and separable polynomial, for every 0 ≤ j ≤ n.If we de�ne ℓj := wjX for 0 ≤ j ≤ n, it turns out that the polynomial
PV (λ, wj, Y0, . . . , Yr, ℓj) yields an integral dependene equation for the oor-dinate funtion indued by ℓj in the ring extension Fq[Y0, . . . , Yr] →֒ Fq[V ].On the other hand, PV (λ, wj , Y0, . . . , Yr, ℓj) also yields a separable equationfor ℓj in the �eld extension Fq(Y0, . . . , Yr) →֒ Fq(V ). Sine Fq[ℓ0, ℓ1, . . . , ℓn] =
Fq[X0, . . . , Xn], we onlude that onditions (i) and (ii) are satis�ed.Finally, to prove (iii), let A3 ∈ Fq[Λ] be the nonzero determinant of thematrix de�ned by the vetors of the oe�ients of the linear forms Ỹ0, . . . , Ỹr,
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Yr+1, . . . , Yn, where Yr+1, . . . , Yn are the linear forms of the statement ofLemma 4.1. It is lear that if A3(λ) 6= 0 and we de�ne (Y0, . . . , Yr) := λX,then ondition (iii) will be satis�ed. Observe that degΛ(i) A3≤1 for 0≤ i≤r.De�ne A := A1A2A3; our previous arguments show that A satis�es therequirements of the statement of the proposition.From Lemma 4.1 and Proposition 4.2 we dedue the main result of thissetion:Corollary 4.3. Let q > 2(n − r)dδ + 1. Then there exist linear forms
Y0, . . . , Yr ∈ Fq[X0, . . . , Xn] satisfying the following onditions:(i) the map πr : V → P

r de�ned by Y0, . . . , Yr is a �nite morphism,(ii) the map πr−1 : V \ U → P
r−1 de�ned by Y0, . . . , Yr−1 is a �nitemorphism,(iii) Fq(Y0, . . . , Yr) →֒ Fq(V ) is a separable �eld extension,(iv) Fq(Y0, . . . , Yr−1) →֒ Fq(C) is a separable �eld extension for every ab-solutely irreduible omponent C of V \ U ,(v) the linear forms Y0, . . . , Yr, Yr+1, . . . , Yn are Fq-linearly independent.Proof. From Proposition 4.2 it follows that there exists a nonzero poly-nomial A ∈ Fq[Λ] of degree at most 2δ + 1 in eah group of variables Λ(i) for

0 ≤ i ≤ r + 1 suh that, for every λ ∈ Fq
(r+1)(n+1) with A(λ) 6= 0, de�ning

(Y0, . . . , Yr) := λX, we see that onditions (i), (iii) and (v) are satis�ed.Let V \ U =
⋃s

j=1 Cj be the deomposition of V \ U into absolutelyirreduible omponents. We have dim Cj = r − 1 for 1 ≤ j ≤ s. From theproof of Proposition 4.2 we onlude that for 1 ≤ j ≤ s there exists a nonzeropolynomial A(j) ∈ Fq[Λ] of degree at most 2 deg Cj in eah group of variables
Λ(i) suh that for every λ ∈ Fq

(r+1)(n+1) with A(j)(λ) 6= 0, the linear forms
(Y0, . . . , Yr) := λX satisfy onditions (ii) and (iv) for Cj .Sine ∑s

j=1 deg Cj = deg(V \ U) ≤ (n− r)(d− 1)δ, we onlude that thepolynomial A∗ := A·A(1) · · ·A(s) has degree at most 2δ+1+2(n−r)(d−1)δ ≤
2(n− r)dδ + 1 in eah group of variables Λ(i), and for every λ ∈ Fq

(r+1)(n+1)with A∗(λ) 6=0, the linear forms (Y0, . . . , Yr) :=λX satisfy onditions (i)�(v).Let a(0) ∈ Fq[Λ
(0)] be a nonzero oe�ient of A∗, onsidering A∗ as apolynomial in Fq[Λ
(0)][Λ(1), . . . , Λ(r)]. By (6) it follows that a(0) has at most

(2(n − r)dδ + 1)qn zeros in F
n+1
q . Sine q > 2(n − r)dδ + 1, we onludethat there exists λ(0) ∈ F

n+1
q suh that A∗(λ(0), Λ(1), . . . , Λ(r)) is a nonzeropolynomial. Arguing in a similar way, we suessively dedue the existeneof λ(1), . . . , λ(r) ∈ F

n+1
q suh that A∗(λ) 6= 0 for λ := (λ(0), . . . , λ(r)). Thelinear forms (Y0, . . . , Yr) := λX satisfy the onditions of the orollary.We remark that, from the proof of Corollary 4.3, we dedue that thereexist linear forms Y0, . . . , Yr ∈ Fq[X] suh that the map πr : V → P

r de�ned



28 A. Cafure and G. Materaby Y0, . . . , Yr is a �nite morphism for q > δ − 1. This is also proved in [18,Proposition 2.3℄.5. An e�etive seond Bertini theorem. This setion is devoted toestablishing an e�etive version of the seond Bertini theorem suitable forour requirements. The seond Bertini theorem (see, e.g., [31, II.6.2, The-orem 2℄) asserts that, given a dominant morphism of irreduible varieties
f : V1 → V2 de�ned over a �eld of harateristi zero with V1 nonsingular,there exists a dense open set U of V2 suh that the �ber f−1(y) is nonsingularfor every y ∈ U . Our e�etive version holds without any restrition on theharateristi of the ground �eld and gives an upper bound on the degree ofthe subvariety of points of V2 de�ning singular �bers. An e�etive version ofa weak form of the Bertini theorem is given in [1℄. Nevertheless, the boundgiven there is exponentially higher than ours and therefore is not suitablefor our purposes.Let notations and assumptions be as in Setion 4. Assume that q >
2(n− r)dδ +1, and let Y0, . . . , Yn ∈ Fq[X0, . . . , Xn] be linear forms satisfyingonditions (i)�(v) of Corollary 4.3. Consider the linear mappings πr : V →
P

r and πr−1 : V → P
r−1 de�ned by πr(x) := (Y0(x) : · · · : Yr(x)) and

πr−1(x) := (Y0(x) : · · · : Yr−1(x)). Then πr is a well-de�ned �nite morphism,
πr−1 is well-de�ned outside (the 0-dimensional subvariety) π−1

r (0 : · · · : 0 : 1),and the hoie of the linear forms Y0, . . . , Yr−1 implies that π−1
r−1(y) is a puredimensional urve on V for every y ∈ P

r−1. We shall prove that there existsa proper subvariety W of P
r−1 suh that π−1

r−1(y) is nonsingular for every
y /∈ W , and we shall provide an upper bound for the degree of W .For a given x ∈ V and y := πr−1(x) ∈ P

r−1, we denote by TxV and
TyP

r−1 the respetive tangent spaes. Further, we denote by dxπr−1 : TxV
→ TyP

r−1 the di�erential of πr−1 at x and for any y ∈ P
n−1 we set Vy

:= π−1
r−1(y). We start with the following lemma, whih yields a su�ientondition for the nonsingularity of the �ber Vy.Lemma 5.1. Let y be a point of P

r−1 suh that for any point x ∈ Vy thefollowing onditions are satis�ed :(i) x is a regular point of V ,(ii) dxπr−1 is surjetive.Then Vy is a nonsingular urve.Proof. Let x be an arbitrary point of Vy. Sine the omposite of TxVy →֒
TxV with dxπr−1 is the zero map, the tangent spae TxVy is ontained in thekernel of dxπr−1. By the surjetivity of dxπr−1 the dimension of the imageof dxπr−1 equals r − 1. Hene

dimTxVy ≤ dim Ker dxπr−1 = dim TxV − dim TyP
r−1 = 1,



An e�etive Bertini theorem 29where the last equality follows from the fat that x is a nonsingular pointof V . Sine Vy is of pure dimension 1, we onlude that dimTxVy = 1 andtherefore x is regular point of Vy. This shows that Vy is nonsingular.Next we give a su�ient ondition for the surjetivity of dxπr−1.Lemma 5.2. Let U = {x ∈ V : det(∂Fi/∂Yr+j)1≤i,j≤n−r(x) 6= 0} be thenonempty Zariski open subset of V of Lemma 4.1. Then dxπr−1 is surjetivefor every x ∈ U \ π−1
r (0 : · · · : 0 : 1).Proof. Let x be an arbitrary point of U . Then x is a regular pointof V , whih implies that TxV has dimension r. Therefore, from the iden-tity dimKer dxπr−1 = r − dim Im dxπr−1, we onlude that the surjetivityof dxπr−1 is equivalent to the ondition dimKer dxπr−1 = 1. Supposewithout loss of generality that Y0(x) 6= 0. Then we may assume that we arein an a�ne situation, and πr−1 is loally de�ned by πr−1(x) := (Y1(x),

. . . , Yr−1(x)). Now Ker dxπr−1 is the a�ne linear spae de�ned by the equa-tions ∑n
j=1(∂Fi/∂Yj)(x)(Yj − Yj(x)) = 0 (1 ≤ i ≤ n − r), Yk − Yk(x) = 0

(1 ≤ k ≤ r − 1). From the de�nition of U we see that these equations are
Fq-linearly independent, whih proves that Ker dxπr−1 has dimension 1. Thisompletes the proof.Now we are ready to state our e�etive version of the seond Bertinitheorem.Theorem 5.3. There exists a proper subvariety W ⊂ P

r−1 of degree atmost 2(n−r)2(d−1)2δ suh that the �ber Vy is a nonsingular urve of degreeat most δ for every y /∈ W .Proof. Let Z be the proper losed subset of V onsisting of the pointsof V where dxπr−1 is not surjetive, and let Vreg and Vsing denote the sets ofregular and singular points of V , respetively. Then Z an be expressed as
Z = (Z ∩ Vreg) ∪ (Z ∩ Vsing) = Z ∩ Vreg ∪ (Z ∩ Vsing),where Z ∩ Vreg denotes the Zariski losure of Z ∩ Vreg. From Lemma 5.2 weonlude that Z ⊂ V \ U , i.e.,

Z ⊂ {x ∈ V : F1(x) = · · · = Fn−r(x) = det(∂Fi/∂Yr+j)1≤i,j≤n−r(x)=0}.Sine V is a normal variety, the set of singular points Vsing has odimensionat least two in V .Claim 1. There exists a losed subset Zsing ⊂ V of odimension twoin V and degree bounded by (n − r)2(d − 1)2δ suh that Vsing ⊂ Zsing.Proof of Claim 1. The Jaobian matrix (∂Fi/∂Xj)1≤i≤n−r,1≤j≤n+1 has
Nr :=

(n+1
n−r

) maximal minors M1, . . . , MNr
. If x ∈ V is a regular point, atleast one of these minors is not zero at x. As a onsequene we may hoose

γ1, . . . , γNr
∈ Fq suh that ∑Nr

j=1 γjMj(x) 6= 0. Setting G :=
∑n

j=1 γjMj ,



30 A. Cafure and G. Materafrom the Jaobian riterion we see that Vsing ⊂ V ∩{G = 0} ⊂ V . Moreover,the absolute irreduibility of V implies that V ∩ {G = 0} is an equidimen-sional projetive variety of dimension r − 1.Consider now the deomposition V ∩ {G = 0} =
⋃s

i=1 Ci into absolutelyirreduible omponents. Sine Vsing has dimension at most r − 2, it followsthat Ci∩Vreg is nonempty for 1 ≤ i ≤ s. Hene, arguing as above, we onludethat there exist xi ∈ Vreg ∩Ci for 1 ≤ i ≤ s and γ̃1, . . . , γ̃Nr
∈ Fq suh that no

xi is a zero of the polynomial H :=
∑Nr

j=1 γ̃jMj . Observe that both G and
H have degree at most (n − r)(d − 1).We de�ne Zsing := V ∩ {G = 0, H = 0}. By onstrution, Vsing ⊂ Zsing

⊂ V and Zsing is an equidimensional projetive variety of dimension r − 2.Furthermore, from the Bézout inequality (4) we onlude that deg Zsing ≤
δ deg Gdeg H ≤ (n − r)2(d − 1)2δ. This �nishes the proof of our laim.Claim 2. There exists a proper losed subset Zreg ⊂ V of degree boundedby (n − r)2(d − 1)2δ suh that Z ∩ Vreg ⊂ Zreg and πr−1(Zreg) is a properlosed subset of P

r−1.Proof of Claim 2. We onsider separately the ases dimZ ∩ Vreg = r − 1and dimZ ∩ Vreg < r − 1.First, suppose that Z ∩ Vreg has dimension r−1. Let Z ∩ Vreg =
⋃t

i=1 Dibe the deomposition into absolutely irreduible omponents. We are goingto prove that the image of eah Di under πr−1 is a proper losed subsetof P
r−1. For omponents having dimension less than r−1 this is lear, henewe only have to deal with omponents of dimension r − 1.Assume that there exists an irreduible omponent Di of Z ∩ Vreg ofdimension r−1 for whih πr−1(Di) = P

r−1. Sine Di ⊂ Z ⊂ V \U , and V \Uhas dimension r−1, it follows that Di is an absolutely irreduible omponentof V \U , and Corollary 4.3 implies that the �eld extension Fq(Y0, . . . , Yr−1) →֒
Fq(Di) is separable. Applying, e.g., [31, II.6.2, Lemma 2℄, we onlude thatthere exists a nonempty Zariski open subset Oi ⊂ Di suh that dxπr−1 issurjetive for every x ∈ Oi, ontrary to Di ⊂ Z. This shows that πr−1(Di)is a proper losed subset of P

r−1 for every 1 ≤ i ≤ t.Let M(x) denote the Jaobian matrix of F1, . . . , Fn−r, Y0, . . . , Yr−1 withrespet to the variables X0, . . . , Xn evaluated at x. A point x ∈ Vreg be-longs to Z if and only if M(x) does not have full rank n. If x ∈ Vreg is apoint for whih dxπr−1 is surjetive (for instane, x an be hosen in thenonempty open set U of Lemma 5.2), the matrix M(x) has full rank n, andhene it has at least one nonzero n×n minor. Denoting by M (1), . . . , M (n+1)the maximal minors of M , we de�ne the polynomial G̃ :=
∑n+1

j=1 ηjM
(j),where η1, . . . , ηn+1 are elements of Fq suh that G̃(x) 6= 0. It follows that

V ∩ {G̃ = 0} is an equidimensional projetive variety of dimension r − 1.



An e�etive Bertini theorem 31Furthermore, by our haraterization of the points of Z ∩ Vreg we easilyonlude that Z ∩ Vreg ⊂ V ∩ {G̃ = 0} and so Z ∩ Vreg ⊂ V ∩ {G̃ = 0}.Let V ∩ {G̃ = 0} =
⋃t′

i=1 Ei be the deomposition into absolutely ir-reduible omponents. As before, given that dimVsing ≤ r − 2 and thateah Ei has dimension r − 1, the intersetion Ei ∩ Vreg is nonempty for eah
1 ≤ i ≤ t′. Assume that E1, . . . , Et′′ are all the omponents ontained in
Z ∩ Vreg for ertain t′′ ≤ t′. This means that for t′′ + 1 ≤ i ≤ t′ there existsa point xi ∈ Ei ∩ (Vreg \ Z). Hene, arguing as for Claim 1 we onlude thatthere exist η̃1, . . . , η̃n+1 ∈ Fq suh that no xi is a root of the polynomial
H̃ :=

∑n+1
j=1 η̃jMj .We onsider the variety Zreg := V ∩ {G̃ = 0, H̃ = 0}. By onstrution,

Z ∩ Vreg ⊂ Zreg ⊂ V and Zreg is a projetive variety of dimension r − 1.Furthermore, Zreg an be expressed as Zreg =
⋃t′′

i=1 Ei∪Z̃ with dim Z̃ ≤ r−2and dimπr−1(Ei) ≤ r − 2 for 1 ≤ i ≤ t′′, whih proves that πr−1(Zreg)is stritly ontained in P
r−1. Finally, from the Bézout inequality (4) weonlude that deg Zreg ≤ δ deg G̃ deg H̃ ≤ (n−r)2(d−1)2δ. This �nishes theproof of our laim in the ase dimZ ∩ Vreg = r − 1.The analysis of the ase dim Z ∩ Vreg < r − 1 is simpler sine we do nothave to deal with omponents of Z ∩ Vreg of dimension r − 1. Therefore,hoosing the polynomials G̃, H̃ as above guarantees that dim πr−1(Zreg) ≤

r − 2. This �nishes the proof of Claim 2.From the laims above we know that Z ∪Vsing ⊂ Zsing ∪Zreg and Zsing ∪
Zreg is a proper subvariety of V of dimension r − 1 and degree at most
2(n−r)2(d−1)2δ. Furthermore, W := πr−1(Zreg∪Zsing) is a proper subvarietyof P

r−1 whih, by Lemma 2.1, has degree at most 2(n − r)2(d − 1)2δ. For
y ∈ P

r−1 \W every x ∈ Vy is a regular point of V not belonging to Z. ThenLemma 5.1 shows that Vy is a nonsingular urve of V , whih by (4) hasdegree at most δ. This �nishes the proof of the theorem.Sine the urve Vy is a nonsingular projetive omplete intersetion for
y /∈ W , Hartshorne's onnetedness theorem (see, e.g., [17, VI, Theorem 4.2℄)shows that Vy is onneted, whih implies that Vy is absolutely irreduible.6. The estimate. In this setion we obtain an estimate on the numberof q-rational points of a normal omplete-intersetion Fq-variety V ⊂ P

n ofdimension r, degree δ and multidegree d := (d1, . . . , dn−r). Our estimaterelies on the following estimate, due to P. Deligne ([7℄), on the number of
q-rational points of a nonsingular omplete-intersetion Fq-urve C ⊂ P

n ofdegree δ and multidegree d:(7) ∣∣|C(Fq)| − p1

∣∣ ≤ b′1(n,d)q1/2,



32 A. Cafure and G. Materawhere b′1(n,d) denotes the �rst primitive Betti number of any nonsingularomplete intersetion C ⊂ P
n of dimension 1 and multidegree d. We have

b′1(n,d) ≤ (δ − 1)(δ − 2), with equality if and only if n = 2.Set d := max1≤i≤n−r di and assume that q > 2(n − r)dδ + 1. Thenthere exist linear forms Y0, . . . , Yn ∈ Fq[X0, . . . , Xn] satisfying onditions(i)�(v) of Corollary 4.3. We reall that the hoie of Y0, . . . , Yr−1 impliesthat Vy := π−1
r−1(y) is a pure dimensional urve on V for every y ∈ P

r−1.Denote by Ny the number of q-rational points of Vy for any y ∈ P
r−1(Fq).We are going to estimate |V (Fq)| in terms of the quantities Ny. For thispurpose, we apply our e�etive version of the seond Bertini theorem (The-orem 5.3), whih asserts that there exists a variety W ⊂ P

r−1 of dimensionat most r − 2 suh that for every y ∈ P
r−1 \W the �ber Vy is a nonsingularomplete intersetion of degree at most δ. Sine Vy is an Fq-urve for every

y ∈ P
r−1(Fq), for eah y in (Pr−1 \ W )(Fq) we an estimate Ny by means of(7). We have the following result:Theorem 6.1. Let V ⊂ P

n be a normal omplete-intersetion Fq-varietyof dimension r, degree δ ≥ 2 and multidegree d. For q > 2(n − r)dδ + 1,
∣∣|V (Fq)| − pr

∣∣ ≤ b′1(n− r +1,d)qr−1/2 +(b′1(n− r +1,d)+ δ deg W +2)qr−1,where W ⊂ P
r−1 is the variety of the statement of Theorem 5.3.Proof. We begin by expressing |V (Fq)| in terms of the numbers Ny with

y ∈ P
r−1(Fq):(8) |V (Fq)| =

∑

y∈Pr−1(Fq)

Ny + e,

where e is the number of q-rational points of π−1
r (0 : · · · : 0 : 1). Sine πr isa �nite morphism and P

r is a normal variety, the ardinality of every �berof πr is upper bounded by δ. In partiular, e ≤ δ.Subtrating pr from both sides of (8) and using the identity pr = p1pr−1−
qpr−2, we obtain:(9) ∣∣|V (Fq)| − pr

∣∣ ≤
∑

y∈Pr−1(Fq)

|Ny − p1| + qpr−2 + δ.

We deompose the �rst summand of the right-hand side of (9) as
∑

y∈Pr−1(Fq)

|Ny − p1| =
∑

y/∈W (Fq)

|Ny − p1| +
∑

y∈W (Fq)

|Ny − p1|.Thus, we have to estimate the quantities |Ny − p1| in two di�erent ases: for
y belonging to W (Fq) and for y belonging to (Pr−1 \ W )(Fq).For any y in W (Fq), the number Ny is less than or equal to δp1. Hene,taking into aount that δ ≥ 2, we obtain |Ny − p1| ≤ (δ − 1)p1. From



An e�etive Bertini theorem 33Proposition 3.1 we have |W (Fq)| ≤ deg Wpr−2, and thus(10) ∑

y∈W (Fq)

|Ny − p1| ≤ (δ − 1)p1 · deg Wpr−2 ≤ δ deg Wqr−1.

On the other hand, if y ∈ (Pr−1 \ W )(Fq), Theorem 5.3 shows that the�ber Vy is a nonsingular omplete-intersetion Fq-urve in P
n−r+1 of degree atmost δ and multidegree at most d. By (7) we obtain the estimate |Ny−p1| ≤

b′1(n−r+1,d)q1/2, where b′1(n−r+1,d) is the orresponding Betti number.Hene, writing b′1 := b′1(n − r + 1,d), we have(11) ∑

y/∈W (Fq)

|Ny − p1| ≤ b′1q
r−1/2 + b′1pr−2q

1/2 ≤ b′1q
r−1/2 + b′1q

r−1.

Combining (9)�(11) and taking into aount that qpr−2 + δ ≤ 2qr−1, weeasily dedue the statement of the theorem.Taking into aount the upper bound deg W ≤ 2(n − r)2(d − 1)2δ ofTheorem 5.3, we dedue the following orollary:Corollary 6.2. With notations and assumptions as in Theorem 6.1,we have:
∣∣|V (Fq)| − pr

∣∣ ≤ (δ − 1)(δ − 2)qr−1/2 + 2(n − r)2d2δ2qr−1.In order to illustrate the omparison between the result of Corollary 6.2and (2) we brie�y omment on an appliation of this kind of estimates inthe setting of ryptography.Boolean funtions f : F2m → F2m are used in ryptography in order todesign algorithms for blok iphering. It is important for suh funtions topossess a high resistane to di�erential ryptanalysis. In order to analyze theresistane of suh funtions to di�erential attaks, Nyberg [23℄ has introduedthe notion of almost perfet nonlinearity (APN).Let q := 2m. In [25, Corollaire 3.1℄, F. Rodier shows that, if a givenfuntion f : Fq → Fq is APN, then a ertain absolutely irreduible nonsingularprojetive Fq-surfae Vf of degree δ assoiated to f has at most 3((δ−3)q+1)
q-rational points. Then, as a onsequene of [9, Corollary 7.3℄, he shows thatfor m ≥ 6 and δ < q1/6 + 3.9 the funtion f is not APN [25, Théorème 4.1℄.By means of our estimates we may strengthen this onlusion. Indeed,from Corollary 6.2 we dedue that, for q > 2δ2 + 1,

|Vf (Fq)| ≥ p2 − (δ − 1)(δ − 2)q3/2 − 2δ4q.Therefore, from [25, Corollaire 3.1℄ it follows that if q > 2δ2 + 1 and
p2 − (δ − 1)(δ − 2)q3/2 − 2δ4q > 3((δ − 3)q + 1),then f is not APN. As a onsequene, we see that for q ≥ 4δ4, the funtion

f is not APN, whih signi�antly improves [25, Théorème 4.1℄.
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