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Abstract

Under normality, Flury and Schmid [Quadratic discriminant functions with constraints on the covariances
matrices: some asymptotic results, J. Multivariate Anal. 40 (1992) 244–261] investigated the asymptotic
properties of the quadratic discrimination procedure under hierarchical models for the scatter matrices, that
is: (i) arbitrary scatter matrices, (ii) common principal components, (iii) proportional scatter matrices and
(iv) identical matrices. In this paper, we study the properties of robust quadratic discrimination rules based
on robust estimates of the involved parameters. Our analysis is based on the partial influence functions of
the functionals related to these parameters and allows to derive the asymptotic variances of the estimated
coefficients under models (i)–(iv). From them, we conclude that the asymptotic variances verify the same
order relations as those obtained by Flury and Schmid [Quadratic discriminant functions with constraints on
the covariances matrices: some asymptotic results, J. Multivariate Anal. 40 (1992) 244–261] for the classical
estimators. We also perform a Monte Carlo study for different sample sizes and different hierarchies which
shows the advantage of using robust procedures over classical ones, when anomalous data are present. It
also confirms that better rates of misclassification can be achieved if a more parsimonious model among all
the correct ones is used instead of the standard quadratic discrimination.
© 2007 Elsevier Inc. All rights reserved.

AMS 2000 subject classification: primary 62F35; secondary 62H30

Keywords: Common principal components; Outliers; Partial influence functions; Plug–in methods; Proportional scatter
matrices; Quadratic discrimination; Robust estimation

∗ Corresponding author. Fax: +54 11 45763375.
E-mail addresses: abianco@dm.uba.ar (A. Bianco), gboente@dm.uba.ar (G. Boente), ana.pires@math.ist.utl.pt

(A.M. Pires), isabel.rodrigues@math.ist.utl.pt (I.M. Rodrigues).

0047-259X/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2007.08.008

http://www.elsevier.com/locate/jmva
mailto:abianco@dm.uba.ar
mailto:gboente@dm.uba.ar
mailto:ana.pires@math.ist.utl.pt
mailto:isabel.rodrigues@math.ist.utl.pt


A. Bianco et al. / Journal of Multivariate Analysis 99 (2008) 1332–1357 1333

1. Introduction

Assume that we are dealing with independent observations from two independent samples
in Rp with location parameter μi and dispersion/covariance matrix �i , i = 1, 2. It is usual in
multivariate analysis to treat the dispersion/covariance matrices �1 and �2 as unrelated if an
overall test of equality tells us that they are not identical. As mentioned in Flury [16] “In contrast
to the univariate situation, inequality is not just inequality—there are indeed many ways in which
covariance matrices can differ”. He considered the following general relations among scatter
matrices

• Level 1. �1 �= �2.
• Level 2. The matrices satisfy a common principal component (CPC) model, i.e., �i = ��i�

T,
i = 1, 2, where � = (

�1, . . . , �p

)
is the orthogonal matrix of the common eigenvectors and

�i = diag(�i1, . . . , �ip) are diagonal matrices containing the eigenvalues for each population.
• Level 3. The matrices are proportional to each other, i.e., �2 = �2�1, with �2 the proportion-

ality constant.
• Level 4. �1 = �2.

Without considering the location parameters, the number of parameters for each level is p(p + 1),
2p + p(p − 1)/2, 1 + p(p + 1)/2 and p(p + 1)/2, respectively. The difference between the
number of parameters in levels 1 and 4 is p(p+1)/2 which can be too large in practice, especially
when dealing with high dimensional data.

As most classical estimators, which are optimal under normality assumptions, the linear and
quadratic discriminant rules, i.e., the optimal classification rules under levels 4 and 1, respec-
tively, are not robust due to the lack of robustness of the sample covariance matrix and so the
misclassification rates can be affected by anomalous observations. To solve this problem robust
alternatives to the sample mean and covariance matrix were plugged into the classification rule,
see for instance, Campbell [8], Lachenbruch [22], Critchley and Vitiello [9], Fung [19], Fung [20],
Croux and Dehon [10] and Croux and Joossens [13]. The aim when seeking for robust estimators
of location and scatter is to estimate the location and the shape parameters, (μ, �), assuming
that the distribution F of x is approximately known. To be more precise, it is often assumed that
x = μ + �1/2z where the distribution G of z belongs to some neighborhood of a given distribu-
tion G0. When x has an elliptically symmetric distribution F, i.e, when the distributions of the
neighborhood are restricted to be spherically symmetric, the robust location functional equals
μ while the robust scatter functional is proportional to �. Usually, these scatter functionals are
calibrated so that under the central normal model they provide Fisher–consistent estimators of the
covariance matrix. A discussion regarding the estimation of multivariate location and scatter can
be found in Maronna, Martin and Yohai [24].

From now on, we will assume that
(
xij

)
1� j �ni ,1� i �2 are independent observations from

two independent samples in Rp, identically distributed within each sample, following a general
multivariate location–dispersion distribution Fi with location parameter μi and scatter matrix �i

that do not need to be equal to the population mean and covariance matrix, since we do not assume
the existence of second moments as in the classical setting. Let us denote by Xi = (

xi1, . . . , xini

)
,

N = n1 + n2 and �i = ni/N . As in the one–population setting, we want to include the situation
in which the distribution Fi of xi1 is only approximately known. To be more precise, let �i

be symmetric positive definite matrices. As discussed above, we will thus assume that xi1 =
μi + �1/2

i zi1 where the distribution Gi of zi1 belongs to a neighborhood of the central target
model G0 that is often taken as the multivariate standard normal distribution.
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As noted by Flury and Schmid [17], the reason for studying CPC discrimination and propor-
tional discrimination is that if one of the restricted levels 2–4 holds, estimating �i under suitable
constraints should improve the estimation, leading to more stable estimates than those obtained
under level 1. This suggests that better rates of misclassification can be achieved if the most
parsimonious among all the correct models is used for discrimination. It is expected that the
same lack of robustness observed for the linear and quadratic rules, will be inherited by CPC and
proportional discrimination. For these reasons, in this paper, we go further and we will deal with
robust discrimination involving levels 2 and 3.

This paper is organized as follows. In Section 2, we review different robust estimators leading
to the robust discrimination rules under levels 1–4. In Section 3, we derive the partial influence
functions of the coefficients under all the hierarchy levels, while in Section 4, we compute the
asymptotic variances of the coefficients and we compare them across all correct models in a given
situation. Finally, in Section 5 we present the results of a simulation study. Some proofs are given
in the Appendix while the others can be found in Bianco et al. [1].

2. Robust discrimination

When the two populations have a normal distribution, optimal classification of a new observa-
tion x into one of the two populations is based on the quadratic function Q(x) = xT�x+�Tx+�,

where � = (1/2)
(
�−1

2 − �−1
1

)
, � = �−1

1 μ1 − �−1
2 μ2 and � = (1/2) log (|�2|/|�1|) +

(1/2)
(
μT

2 �−1
2 μ2 − μT

1 �−1
1 μ1

)
. Future observations are classified in the first population ifQ(x) >

log (�2/�1) where �1 and �2 = 1−�1 are the known prior probabilities that an observation belongs
to group 1 or 2, respectively.

If the two populations have the same scatter matrix, the quadratic function becomes the Fisher’s
linear discrimination rule, which is optimal in the sense of minimizing the total probability of
misclassification.

In practical situations, the parameters of the two populations are unknown and must be esti-
mated, yielding to estimates of the quadratic, linear and constant coefficients �, � and �, respec-
tively. In this paper, we study some aspects of quadratic discrimination coefficients if �1 and
�2 are robustly estimated under the levels described above. In all four situations, the location
parameters are estimated through robust equivariant location estimators μ̂i , i = 1, 2.

Denote by Vi robust affine equivariant scatter estimators of �i , using only the observations
of the ith sample. From these initial scatter matrices estimators, one can construct parsimonious
robust estimators of �i , according to the assumed hierarchical model.

More precisely, under level 1, �, � and � are estimated through⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̂DIF = 1

2

(
V−1

2 − V−1
1

)
,

�̂DIF = V−1
1 μ̂1 − V−1

2 μ̂2,

�̂DIF = 1
2 log

( |V2|
|V1|

)
+ 1

2

(
μ̂T

2 V−1
2 μ̂2 − μ̂T

1 V−1
1 μ̂1

)
.

(1)

On the other hand, a basic common structure, described as level 2 in the Introduction, assumes
that the two scatter matrices have different eigenvalues but identical eigenvectors, i.e., �i =
��i�

T, i = 1, 2, where �i are diagonal matrices and � is the orthogonal matrix of the common

eigenvectors. Denote �̂CPC, and �̂CPC,i = diag
(̂
�

T
CPCVi �̂CPC

)
the robust plug–in estimators of the
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common directions and of the eigenvalue matrices �i related to the scatter estimates Vi , defined
in Boente and Orellana [3] and studied in Boente, Pires and Rodrigues [5]. In this setting, define

�̂CPC,i = �̂CPC�̂CPC,i �̂
T
CPC, then, �, � and � are estimated through⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�̂CPC = 1

2

(
�̂

−1
CPC,2 − �̂

−1
CPC,1

)
,

�̂CPC = �̂
−1
CPC,1μ̂1 − �̂

−1
CPC,2μ̂2,

�̂CPC = 1

2
log
( |�̂CPC,2|

|�̂CPC,1|
)

+ 1

2

(
μ̂T

2 �̂
−1
CPC,2μ̂2 − μ̂T

1 �̂
−1
CPC,1μ̂1

)
.

(2)

Under the proportional model described in level 3, the common eigenvalues, the proportionality
constant and the eigenvalues of the first population can be robustly estimated as described in Boente
and Orellana [4]. To be more precise, these authors extended to several populations the plug–in
approach for principal component analysis, studied in Croux and Haesbroeck [12]. The plug–in
procedure for the proportional model consists on solving a system of equations similar to that
leading to the maximum likelihood estimators, for normally distributed observations, but with
the sample covariance matrices replaced by robust scatter estimators. Denote �̂PR, �̂PR,1 and �̂2

the robust plug–in estimators of the parameters. Therefore, if we denote �̂PR,1 = �̂PR�̂PR,1�̂
T
PR and

�̂PR,2 = �̂2�̂PR,1, we have that �, � and � are estimated through⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�̂PR = 1

2

(
�̂

−1
PR,2 − �̂

−1
PR,1

)
,

�̂PR = �̂
−1
PR,1μ̂1 − �̂

−1
PR,2μ̂2,

�̂PR = 1

2
log

(
|�̂PR,2|
|�̂PR,1|

)
+ 1

2

(
μ̂T

2 �̂
−1
PR,2μ̂2 − μ̂T

1 �̂
−1
PR,1μ̂1

)
.

(3)

Finally, if the scatter matrices are assumed equal, the common scatter matrix can be estimated by
�̂EQ = �1V1 + �2V2 leading to⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̂EQ = 0,

�̂EQ = �̂
−1
EQ

(
μ̂1 − μ̂2

)
,

�̂EQ = 1

2

(
μ̂T

2 �̂
−1
EQ μ̂2 − μ̂T

1 �̂
−1
EQ μ̂1

)
.

(4)

A standard framework to derive the asymptotic behavior in robust principal component analysis
is to assume that the estimators of the scatter matrix are asymptotically normally distributed and
spherically invariant. For that reason, and since the samples of the two populations are independent,
we will assume, throughout this paper, that for i = 1, 2, the estimators, (μ̂i , Vi ), of (μi , �i ), are
independent and satisfy the following assumptions:

A1.
√

ni (Vi − �i )
D−→ Zi , where, when dealing with random matrices, Wn

D−→ W stands for

vec (Wn)
D−→ vec (W), Zi has a multivariate normal distribution with zero mean and covariance

matrix �i such that �i = �1
(
I + Kpp

)
(�i ⊗ �i ) + �2 vec (�i ) vec (�i )

T, with Kpp the p2 × p2

block matrix with the (l, m)−block equal to a p × p matrix with a 1 at entry (l, m) and 0
everywhere else.
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A2.
√

ni

(
μ̂i − μi

) D−→ zi where zi ∼ N(0, �3�i ). Moreover, we will assume that μ̂i is also
asymptotically independent of the scatter estimator Vi .

Remark 2.1. It is well known that, for elliptically distributed observations, M, S and �–estimators
are asymptotically normally distributed and spherically invariant. If the populations have ellip-
soidal distributions that only differ on their location and scatter matrix and if the same robust
location–scatter estimate is considered for each population, these estimators will satisfy A1 and
A2 (see, [29]). Explicit forms for the constants �1 and �2 are given in Tyler [29], for M−estimators,
and in Lopuhaä [23], for S and �−estimators.

It is worth noticing that A1 and A2 hold if the location and scatter estimates for both populations
are related to the same functionals and if the populations have the same elliptical distribution,
except for possible changes in the location and the scatter matrices. Thus, according to the discus-
sion given in the Introduction, these assumptions hold if xi1 = μi +�1/2

i zi1 where zi1 ∼ G ∈ G�
such that G� = {G = (1 − �)G0 + �H , where H is an spherical distribution in Rp}.

3. Partial influence functions

When dealing with one population, the influence function is a measure of robustness with
respect to modification of a single observation. It can be thought as the first derivative of the
functional version of the estimator. Pires and Branco [27] introduced partial influence functions
as an extension of this notion to the case in which the functional is related to more than one
population. This generalization ensures that the usual properties of the influence function for the
one population case are reached when dealing with several populations. Moreover, this definition
measures resistance towards pointwise contaminations at each population.

Denote by F the product measure, F = F1×F2. Partial influence functions of a functional T (F )

are then defined as PIFi (x, T , F ) = lim�→0
(
T (F�,x,i ) − T (F )

)
/�, i = 1, 2, where F�,x,1 =

F1,�,x × F2, F�,x,2 = F1 × F2,�,x and Fi,�,x = (1 − �)Fi + �	x, i = 1, 2.
In this section, we will derive the partial influence functions of the functionals related to

the discriminant coefficients defined in the previous section. Let mi (G) and �i (G) be Fisher–
consistent location and scatter functionals related to the estimates μ̂i and Vi considered in Section
2, such that mi (Fi) = μi and �i (Fi) = �i .

3.1. Level 1

Under level 1, the functionals related to the estimators of the coefficients �, � and � defined in
(1) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

DDIF(F ) = 1

2

(
�−1

2 (F2) − �−1
1 (F1)

)
,

aDIF(F ) = �−1
1 (F1)m1(F1) − �−1

2 (F2)m2(F2),

cDIF(F ) = 1

2
log

( |�2(F2)|
|�1(F1)|

)
+ 1

2

[
m2(F2)

T�−1
2 (F2)m2(F2)

−m1(F1)
T�−1

1 (F1)m1(F1)
]
.

The following theorem gives the values of the partial influence functions of these coefficients
which were derived in Croux and Joossens [13].
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Theorem 3.1. Let mi (G) and �i (G) be Fisher–consistent location and scatter functionals such
that mi (Fi) = μi and �i (Fi) = �i . Assume that the influence functions IF (x, mi , Fi) and
IF (x, �i , Fi) exist. Then, the partial influence functions of DDIF(F ), aDIF(F ) and cDIF(F ) are

PIFi (x, DDIF, F ) = (−1)i+1

2
�−1

i IF (x, �i , Fi) �−1
i , (5)

PIFi (x, aDIF, F ) = (−1)i+1
(
�−1

i IF (x, mi , Fi) − �−1
i IF (x, �i , Fi) �−1

i μi

)
, (6)

PIFi (x, cDIF, F ) = (−1)i

2

{
tr
(
�−1

i IF (x, �i , Fi)
)

+ 2μT
i �−1

i IF (x, mi , Fi)

− μT
i �−1

i IF (x, �i , Fi) �−1
i μi

}
. (7)

3.2. Level 2

Denote by �CPC(F ) and �CPC,ij the plug–in functionals related to the scatter functionals �(F ) =
(�1(F1), �2(F2)), i.e., the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

diag
{
�CPC(F )T�i (Fi)�CPC(F )

} = �CPC,i (F ),

�CPC,m(F )T

{
2∑

i=1
�i

�CPC,im(F )−�CPC,ij (F )

�CPC,im(F )�CPC,ij (F )
�i (Fi)

}
�CPC,j (F ) = 0 for m �= j,

�CPC,m(F )T�CPC,j (F ) = 	mj ,

(8)

where 	mj = 0 if j �= m and 	mj = 1 if j = m, while �CPC,j denotes the j th column of the matrix
�CPC. The coefficient functionals obtained under the CPC model are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

DCPC(F ) = 1

2

(
S−1
CPC,2(F ) − S−1

CPC,1(F )
)

,

aCPC(F ) = S−1
CPC,1(F )m1(F1) − S−1

CPC,2(F )m2(F2),

cCPC(F ) = 1

2
log

( |SCPC,2(F )|
|SCPC,1(F )|

)
+ 1

2

[
m2(F2)

TS−1
CPC,2(F )m2(F2)

− m1(F1)
TS−1

CPC,1(F )m1(F1)
]
,

(9)

where SCPC,i (F ) = �CPC(F )�CPC,i (F )�CPC(F )T. The following theorem gives the values of their
partial influence functions.

Theorem 3.2. Let mi (G) and �i (G) be Fisher–consistent location and scatter functionals such
that mi (Fi) = μi and �i (Fi) = �i . Denote by �1, . . . , �p and �i1, . . . , �ip the common eigenvec-
tors and the eigenvalues of �i . Assume that the influence functions IF (x, mi , Fi) and IF (x, �i , Fi)

exist and that �11 > . . . > �1p. Then, the partial influence functions of DCPC(F ), aCPC(F ) and
cCPC(F ) are given by

PIFi (x, DCPC, F ) = −1

2

(
�−1

2 PIFi (x, SCPC,2, F )�−1
2

− �−1
1 PIFi (x, SCPC,1, F )�−1

1

)
, (10)

PIFi (x, aCPC, F ) = (−1)i+1�−1
i IF(x, mi , Fi) + �−1

2 PIFi (x, SCPC,2, F )�−1
2 μ2

−�−1
1 PIFi (x, SCPC,1, F )�−1

1 μ1, (11)
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PIFi (x, cCPC, F ) = (−1)iμT
i �−1

i
IF(x, mi , Fi )

+ 1

2

{
tr
(
�−1

2 PIFi

(
x, SCPC,2, F

))− tr
(
�−1

1 PIFi

(
x, SCPC,1, F

))}
− 1

2

{
μT

2 �−1
2 PIFi (x, SCPC,2, F )�−1

2 μ2 − μT
1 �−1

1 PIFi (x, SCPC,1, F )�−1
1 μ1

}
, (12)

where PIFi (x, SCPC,�, F ) = ∑p

j=1 PIFi (x, �CPC,�j , F )�j�
T
j . Moreover, if � = Ip, then

PIFi (x, SCPC,�,jj , F ) = 	�iIF(x, �i,jj , Fi), (13)

PIFi (x, SCPC,�,js , F ) = �i

(
��j − ��s

) (�ij − �is

)
�ij�is


sj IF(x, �i,js , Fi), (14)

with SCPC,�,js the element (j, s) of the matrix SCPC,� and 
sj =
{∑2

�=1 ��

(
��s − ��j

)2
/
(
��s��j

)}−1
.

Remark 3.1. The expression given in Theorem 3.2 for PIFi (x, SCPC,�, F ) allows to derive the
partial influence functions of the discriminant coefficients, when using projection–pursuit esti-
mates of the common directions and their size instead of plug–in estimators. The partial influence
functions of the projection–pursuit functionals of the common eigenvectors and the eigenvalues
of each population can be found in Boente et al. [5,7].

Note that if both scatter matrices are equal PIFi (x, DCPC,js , F ) = 0, for j �= s, and so, as in
Croux et al. [11], a second order analysis is necessary.

3.3. Level 3

Denote by �PR(F ), �PR,j and �PR,2 the plug–in functionals related to the estimates of the com-
mon directions, the eigenvalues of the first population and the proportionality constant, under a
proportional model, i.e., the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p

∑p

j=1
�PR,j (F )T�2(F2)�PR,j (F )

�PR,j (F )
= �PR,2(F ),

2∑
i=1

�i

�PR,i (F )
�PR,j (F )T�i (Fi)�PR,j (F ) = �PR,j (F ), 1�j �p,

�PR,m(F )T

[
2∑

i=1

�i

�PR,i (F )
�i (Fi)

]
�PR,j (F ) = 0, m �= j,

�PR,m(F )T�PR,j (F ) = 	mj ,

(15)

where �PR,1(F ) = 1 and �PR,j denotes the j th column of the matrix �PR. The coefficient functionals
obtained under a proportional model are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

DPR(F ) = 1

2

(
S−1
PR,2(F ) − S−1

PR,1(F )
)

,

aPR(F ) = S−1
PR,1(F )m1(F1) − S−1

PR,2(F )m2(F2),

cPR(F ) = 1

2
log
( |SPR,2(F )|

|SPR,1(F )|
)

+1

2

[
m2(F2)

TS−1
PR,2(F )m2(F2) − m1(F1)

TS−1
PR,1(F )m1(F1)

]
,

(16)
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with SPR,1(F ) = �PR(F )�PR,1(F )�PR(F )T, �PR,1(F ) = diag
(
�PR,1, . . . , �PR,p

)
and SPR,2(F ) =

�PR,2(F )SPR,1(F ). Theorem 3.3 gives the values of their partial influence functions.

Theorem 3.3. Let mi (G) and �i (G) be Fisher–consistent location and scatter functionals such
that mi (Fi) = μi and �i (Fi) = �i = �i�1, �1 = 1. Denote by �1, . . . , �p and �1, . . . , �p the
common eigenvectors and the eigenvalues of �1. Assume that the influence functions IF (x, mi , Fi)

and IF (x, �i , Fi) exist and that �1 > . . . > �p. Then, the partial influence functions of DPR(F ),
aPR(F ) and cPR(F ) are given by

PIFi (x, DPR , F ) = −1

2

(
�−1

2 PIFi (x, SPR,2, F )�−1
2 − �−1

1 PIFi (x, SPR,1, F )�−1
1

)
, (17)

PIFi (x, aPR, F ) = (−1)i+1�−1
i IF(x, mi , Fi) + �−1

2 PIFi (x, SPR,2, F )�−1
2 μ2,

−�−1
1 PIFi (x, SPR,1, F )�−1

1 μ1, (18)

PIFi (x, cPR, F ) = (−1)iμT
i �−1

i IF(x, mi , Fi)

+1

2

{
tr
(
�−1

2 PIFi

(
x, SPR,2, F

))− tr
(
�−1

1 PIFi

(
x, SPR,1, F

))}
−1

2

{
μT

2 �−1
2 PIFi (x, SPR,2, F )�−1

2 μ2

−μT
1 �−1

1 PIFi (x, SPR,1, F )�−1
1 μ1

}
, (19)

where PIFi (x, SPR,1, F ) = ∑p

j=1 PIFi (x, �PR,j , F )�j�
T
j and PIFi (x, SPR,2, F ) =

PIFi (x, �PR,2, F )�1 + �2PIFi (x, SPR,1, F ). Moreover, if � = Ip, then

PIFi (x, SPR,1,jj , F ) = �i

�i

IF(x, �i,jj , Fi) − �i

�i

�jAi + �jA1	i1, (20)

PIFi (x, SPR,1,js , F ) = �i

�i

IF(x, �i,js , Fi), (21)

PIFi (x, SPR,2, F ) = (A2	i2 − �2A1	i1
)
�1 + �2PIFi (x, SPR,1, F ), (22)

with Ai = (1/p)
∑p

j=1 IF(x, �i,jj , Fi)/�j .

As in level 2, if �1 = �2, PIFi (x, DPR,js , F ) = 0, for j �= s, and so a second order analysis is
again necessary. Note also that, if the proportional model holds and �1 = diag(�1, . . . , �p), then
PIFi (x, SCPC,�,js , F ) = PIFi (x, SPR,�,js , F ), for � = 1, 2.

3.4. Level 4

The coefficient functionals obtained under equality of the scatter matrices are given by⎧⎨⎩ aEQ(F ) = S−1
EQ (F ) [m1(F1) − m2(F2)] ,

cEQ(F ) = 1

2

[
m2(F2)

TS−1
EQ (F )m2(F2) − m1(F1)

TS−1
EQ (F )m1(F1)

]
,

(23)

with SEQ = �1�1(F1) + �2�2(F2). The following result states the partial influence functions of
the linear coefficient when using the robustified linear discrimination function and its proof can
be found in Pires and Branco [27].
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Theorem 3.4. Let mi (G) and �i (G) be Fisher–consistent location and scatter functionals such
that mi (Fi) = μi and �i (Fi) = �i = �. Assume that the influence functions IF (x, mi , Fi) and
IF (x, �i , Fi) exist. Then, the partial influence function of aEQ(F ) and cEQ(F ) are given by

PIFi (x, aEQ, F ) = (−1)i+1�−1IF(x, mi , Fi) + �i�
−1IF(x, �i , Fi)�

−1 (μ2 − μ1
)
, (24)

PIFi (x, cEQ, F ) = (−1)iμT
i �−1IF(x, mi , Fi)

−1

2
�i

(
μ2 − μ1

)T �−1IF(x, �i , Fi)�
−1 (μ2 + μ1

)
. (25)

Remark 3.2. Croux and Joossens [13] studied how observations in the training sample affect
the misclassification probability of the quadratic discriminant rule assuming level 1. Proposition
2 therein gives the partial influence functions of the total misclassification probability that is
used to construct a diagnostic tool for detecting influential observations. Using it together with
Theorems 3.2–3.4, one can derive an expression for the partial influence functions of the total
misclassification probability under the restricted models described in levels 2–4, respectively.

Remark 3.3. Our approach based on partial influence functions assumes that prior probabilities
are known. If �i are unknown, they can be estimated by the empirical frequency of observations
in the training data belonging to group i, for i = 1, 2 which makes it possible to attain the Bayes
error rate asymptotically. In this case, influence functions can be derived as it was done by Croux,
Filzmoser and Joossens [11] for the linear discriminant rule.

Figs. 1 and 2 give the plots of the partial influence function PIF1 of the quadratic coefficients
functionals D11(F ) and D12(F ). The behavior of D22(F ) is similar to that of D11(F ) except
for a rotation. On the other hand, Fig. 3 shows the partial influence function PIF1 of the norm
of the linear coefficient functionals, a(F ). In all figures, we have p = 2, F = F1 × F2 with
F1 = N2 (0, diag(2, 1)) and F2 = N2

(
μ2, 4 diag(2, 1)

)
with μ2 = (4, 0)T. The partial influence

functions of �(F ) behave as the precedent ones and so we omit their graphs here. We have
considered as scatter matrices estimators the sample covariance matrix, the S-estimator using as
� function biweight Tukey’s function calibrated to attain 25% breakdown point and the Donoho

[14]–Stahel [28] estimator with weight function the Huber’s function with constant
√

�2
2(0.95) =

2.4477. For the last estimator, the univariate location and scale functionals are the median and
the MAD (median of the absolute deviations with respect to the median). Expressions for the
influence function of the Donoho–Stahel and the S-scatter functionals can be found in Gervini
[21] and in Lopuhäa [30], respectively. Similar plots to those given by Croux and Joossens [13]
assuming level 1, can be constructed for the total misclassification probability under levels 2–4,
by using Proposition 2 therein and our results (see Remark 3.2).

In all cases, the shape of the partial influence functions of the robust estimates is comparable
to that of their classical relatives at the center of the distribution. Besides, the influence at points
further away is downweighted for the robust estimates, while it is much larger for the classical
ones. However, it should be noticed that the robust functionals related to the Donoho–Stahel have
a discontinuity at 0, due to the discontinuity of the influence function of the Donoho–Stahel scatter
functional. On the other hand, the partial influence function of each robust functional follows the
same behavior as the score function used to define them. To be more precise, in all cases, for the
robust functionals, the partial influence function of D12(F ) is largest along the bisectors while
that of D11(F ) attains large values only for smaller values of x2 combined with moderate values
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Fig. 1. (a) PIF1(x, DDIF,11, F ), (b) PIF1(x, DCPC,11, F ), and (c) PIF1(x, DPR,11, F ) at F = F1 × F2 with
F1 = N (0, diag(2, 1)) and F2 = N

(
μ2, 4diag(2, 1)

)
.

of x1. Finally, the norm of PIF1(x, a, F ) has different shapes according to the model used for
discrimination. When level 1 holds, it has a hat shape with the wings parallel to the axis x1. Under
level 2, the partial influence functions of each robust functionals show three modes while, under
level 3, only two parallel bumps are present.

4. Asymptotic variances

Asymptotic variances can be derived heuristically, using partial influence functions. Let FN

denote the empirical distribution of the k independent samples xij , 1�j �ni , 1� i�k and TN =
T (FN). In Pires and Branco [27], it is shown that if N1/2 {TN − T (F )} = ∑k

i=1 (�i ni)
−1/2∑ni

j=1 PIFi

(
xij , T , F

)+op(1), then the asymptotic variance of the estimates can be evaluated as

ASVAR (TN) = ASVAR (TN, F ) =
k∑

i=1

�i
−1EFi

{
PIFi (xi1, T , F ) PIFi (xi1, T , F )T

}
. (26)

Theorems 4.1–4.3 give the asymptotic variance of the quadratic, linear and constant coefficient
estimators when the quadratic discriminant rule is used, under levels 1–3, respectively.
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Fig. 2. (a) PIF1(x, DDIF,12, F ), (b) PIF1(x, DCPC,12, F ), and (c) PIF1(x, DPR,12, F ) at F = F1 × F2 with
F1 = N2 (0, diag(2, 1)) and F2 = N2

(
μ2, 4 diag(2, 1)

)
.

Theorem 4.1. Let mi (G) and �i (G) be Fisher-consistent location and scatter functionals such
that mi (Fi) = μi , mi (Fni

) = μ̂i , �i (Fi) = �i and �i (Fni
) = Vi , with Fni

the empirical
distribution function of the ith population. Assume that the influence functions IF (x, mi , Fi) and
IF (x, �i , Fi) exist and that A1 and A2 hold. Then, when �i = �i = diag

(
�i1, . . . , �ip

)
, i.e.,

when the CPC model holds with � = Ip, the asymptotic variances of the estimators �̂DIF �̂DIF and
�̂DIF defined in (1) are given by

ASVAR(�̂DIF,js) = 1

4

(
�1 + [�1 + �2]	js

) 2∑
i=1

1

�i

1

�ij�is

, (27)

ASVAR(̂�DIF,j ) =
2∑

i=1

1

�i�ij

[
�3 + μ2

ij

�ij

(�1 + �2) + �1

p∑
s=1

μ2
is

�is

]
, (28)

ASVAR(̂�DIF) =
2∑

i=1

1

�i

(
vi1 + 1

4
vi2 + vi3

)
, (29)

with vi1 = �3
∑p

s=1 μ2
is/�is , vi2 = �2

[∑p

s=1

(
1 − μ2

is/�is

)]2 + 2�1
∑p

s=1

(
1 − μ2

is/�is

)2
and

vi3 = �1
∑

j<s μ2
isμ

2
ij /
(
�is�ij

)
.
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Fig. 3. (a) ‖PIF1(x, aDIF, F )‖, (b) ‖PIF1(x, aCPC, F )‖, and (c) ‖PIF1(x, aPR, F )‖ at F = F1 × F2 with
F1 = N2 (0, diag(2, 1)) and F2 = N2

(
μ2, 4 diag(2, 1)

)
.

Theorem 4.2. Let mi (G) and �i (G) be Fisher-consistent location and scatter functionals such
that mi (Fi) = μi , mi (Fni

) = μ̂i , �i (Fi) = �i and �i (Fni
) = Vi , with Fni

the empirical dis-
tribution function of the ith population. Moreover, assume that �i = �i = diag

(
�i1, . . . , �ip

)
,

i.e., the common principal components model holds with � = Ip. Assume that the influence
functions IF (x, mi , Fi) and IF (x, �i , Fi) exist, that �11 > · · · > �1p and that A1 and A2
hold. Then, the asymptotic variances of the estimators �̂CPC, �̂CPC and �̂CPC defined in
(2) are

ASVAR(�̂CPC,js) = (1−	js

) �1

4

sj

[
2∑

i=1

(−1)i
�ij−�is

�ij�is

]2

+	js

2�1+�2

4

2∑
i=1

1

�i�
2
ij

, (30)

ASVAR(̂�CPC,j ) =
2∑

i=1

1

�i�ij

[
�3 + μ2

ij

�ij

(2�1 + �2)

]

+�1

p∑
s=1


sj

[
2∑

i=1

(−1)i+1 μis

(
�ij − �is

)
�ij�is

]2

, (31)
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ASVAR(̂�CPC) =
2∑

i=1

1

�i

(
vi1 + 1

4
vi2 + �2

i vi4

)
, (32)

where 
sj =
{∑2

�=1 ��

(
��s − ��j

)2
/
(
��s��j

)}−1
, vi1 and vi2 are defined in Theorem 4.1 and

vi4 = �1
∑

j<s 
2
sj

[∑2
k=1(−1)kμksμkj

(
�kj − �ks

)
/
(
�kj�ks

)]2 (
�ij − �is

)2
/
(
�ij�is

)
.

Theorem 4.3. Let mi (G) and �i (G) be Fisher-consistent location and scatter functionals such
that mi (Fi) = μi , mi (Fni

) = μ̂i , �i (Fi) = �i = �i�1, �1 = 1 and �i (Fni
) = Vi , with Fni

the empirical distribution function of the ith population. Moreover, assume that �1 = �1 =
diag

(
�1, . . . , �p

)
, i.e., the proportional model holds with � = Ip. Assume that the influence

functions IF (x, mi , Fi) and IF (x, �i , Fi) exist, �1 > · · · > �p and that A1 and A2 hold. Then,
the asymptotic variances of the estimators �̂PR, �̂PR and �̂PR defined in (3) are given by

ASVAR(�̂PR,js)

= 1

4�s�j

{(
1 − 	js

)
�1�2 + 	js

1

p

[
2(p − 1)�1�2 + (2�1 + p�2)

2∑
i=1

1

�2
i �i

]}
, (33)

ASVAR(̂�PR,j )

=
2∑

i=1

1

�i�i�j

[
�3 + μ2

ij (2�1 + p�2)

p�i�j

]
+ �1

[
p − 2

p�2
j

j +
p∑

s=1

1

�j�s

s

]
, (34)

ASVAR(̂�PR) =
2∑

i=1

1

�i

(
vi1 + 1

4
vi5 + �2

i vi4

)
, (35)

where �2 =
(
�−1

2 − 1
)2

and s =
(
μ2s�

−1
2 − μ1s

)2
, vi1 is defined in Theorem 4.1, vi4 defined

in Theorem 4.2 equals �1
∑

s<j �−1
j �−1

s

(∑2
i=1(−1)iμisμij /�i

)2
and

vi5 = 2�1

p∑
j=1

[
(−1)i �i

(
μ2

1j

�j

− μ2
2j

�2 �j

)
+ 1 − �1

�2 p

p∑
s=1

μ2
2s

�s

− �2

p

p∑
s=1

μ2
1s

�s

]2

+ �2

⎡⎣ p∑
j=1

(
1 − μ2

ij

�i �j

)⎤⎦2

.

Note that if �1 = �2, ASVAR(�̂PR,js) = 0, for j �= s, and so a higher order expansion is needed.
Theorem 4.4 states the asymptotic variance of the linear and constant coefficient estimators

when using the robustified discrimination function.

Theorem 4.4. Let mi (G) and �i (G) be Fisher-consistent location and scatter functionals such
that mi (Fi) = μi , mi (Fni

) = μ̂i , �i (Fi) = �i and �i (Fni
) = Vi , with Fni

the empirical distri-
bution function of the ith population. Moreover, assume that �2 = �1 = �1 = diag

(
�1, . . . , �p

)
,



A. Bianco et al. / Journal of Multivariate Analysis 99 (2008) 1332–1357 1345

i.e., level 4 holds with � = Ip. Assume that the influence functions IF (x, mi , Fi) and IF (x, �i , Fi)

exist and that A1 and A2 hold. Then, the asymptotic variances of the estimators �̂EQ and �̂EQ defined
in (4) are given by

ASVAR(̂�EQ,j ) = �3

2∑
i=1

1

�i�j

+ �1

p∑
s=1

1

�j�s

s + (�1 + �2)
1

�2
j

j , (36)

ASVAR(̂�EQ) =
2∑

i=1

1

�i

(
vi1 + 1

4
vi6 + �2

i vi4

)
, (37)

where s = [
μ2s − μ1s

]2, vi1 is defined in Theorem 4.1, vi4 are defined in Theorem 4.2 and vi6 =
�2
i

{
2�1

∑p

j=1

(
μ2

1j /�j − μ2
2j /�j

)2 + �2

[∑p

j=1

(
μ2

1j − μ2
2j

)
/�j

]2
}

.

4.1. Variance comparisons across the different levels

In this section we compare the asymptotic variances of the estimated coefficients under the
different hierarchies considered. Without loss of generality, we will assume that μ1 = 0.

When the CPC model holds, Theorems 4.1 and 4.2 entail that

• ASVAR(�̂DIF,jj ) = ASVAR(�̂CPC,jj ): As with the classical rule, the gain achieved by using the
CPC instead of ordinary quadratic discrimination may not be large, at least in the two sample
case.

• ASVAR(�̂DIF,js)�ASVAR(�̂CPC,js), j �= s: Moreover, as noted by Flury and Schmid [17] for the
classical estimators, equality holds for the robust quadratic coefficients if �1s −�1j = �2s −�2j .
On the other hand, as in the classical case, if �−1

1s − �−1
1j = �−1

2s − �−1
2j , the coefficient �̂CPC,js

obtained under a CPC model tends to zero at a rate faster than n−1/2.
• ASVAR(̂�DIF,j )�ASVAR(̂�CPC,j ) and ASVAR(̂�DIF)�ASVAR(̂�CPC): In both cases equality is attained

if μ2s = 0, for s �= j .

For the classical estimators, Flury and Schmid [17] noticed that in the particular case of the O’Neill
[25] model, only the off-diagonal quadratic coefficients �̂js have smaller asymptotic variances
under the CPC model, while identical results are obtained for the linear coefficients. This property
also holds for our robust proposals.

When the underlying model is a proportional one, from Theorems 4.1 to 4.3 we have that

• ASVAR(�̂DIF,jj ) = ASVAR(�̂CPC,jj ) > ASVAR(�̂PR,jj ): As in the classical setting, CPC discrimi-
nation and ordinary quadratic discrimination yield the same asymptotic variances. For �2 close
to 1, ASVAR(�̂PR,jj ) can become considerably smaller than ASVAR(�̂CPC,jj ). On the other hand,
when �1 = �2 = 1/2 and p is large, ASVAR(�̂PR,jj ) can also become considerably smaller than
ASVAR(�̂CPC,jj ).

• ASVAR(�̂DIF,js)�ASVAR(�̂CPC,js) = ASVAR(�̂PR,js), for j �= s: Moreover, when �1 = �2 = 1/2,
we have that 1

2 ASVAR(�̂DIF,js)�ASVAR(�̂CPC,js) = ASVAR(�̂PR,js). On the other hand, for �2

close to 1, the last two variances may become considerably smaller than ASVAR(�̂DIF,js) and
so, for these coefficients, using the more parsimonious model appears to have considerable
advantage over ordinary quadratic discrimination.
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Table 1
Relationship among the asymptotic variances under the different hierarchical models

Estimated coefficient True Model

Level 2 Level 3 Level 4

�̂jj DIF = CPC DIF = CPC > PR DIF = CPC > PR > 0

�̂js DIF�CPC DIF�CPC = PR DIF > CPC = PR = 0
�̂j DIF�CPC DIF�CPC�PR DIF�CPC�PR�EQ

�̂ DIF�CPC DIF�CPC�PR DIF�CPC�PR�EQ

DIF, CPC, PR, and EQ indicate the model used to estimate the parameters, i.e., the model used for discrimination.

• ASVAR(̂�DIF,j )�ASVAR(̂�CPC,j )�ASVAR(̂�PR,j ): If μ2 = 0 equality holds in all cases, otherwise
some improvement may be expected.

• ASVAR(̂�DIF)�ASVAR(̂�CPC)�ASVAR(̂�PR): Moreover, ASVAR(̂�CPC) = ASVAR(̂�PR) if for some

constant c, μ2 = c
(
�1/2

1 , . . . , �1/2
p

)T
. In particular, if μ2 = 0 we have ASVAR(̂�DIF) =

ASVAR(̂�CPC) = ASVAR(̂�PR).

As in the classical case, these results suggest that using the proportional model, provided it is
true, may be advantageous, particularly for large dimensions. Furthermore, CPC discrimination
can also be expected to perform better than quadratic discrimination under these circumstances.

When the scatter matrices are equal, �̂EQ,js = 0 for any j, s and

• ASVAR(�̂DIF,jj ) = ASVAR(�̂CPC,jj ) > ASVAR(�̂PR,jj ) > 0: Note that in the robust setting, since
�2 can be different from 0, we do not obtain the inequality ASVAR(�̂DIF,jj ) = ASVAR(�̂CPC,jj ) >

pASVAR(�̂PR,jj ) as in the classical case.
• ASVAR(�̂DIF,js) > ASVAR(�̂CPC,js) = ASVAR(�̂PR,js) = 0 for j �= s: Under both CPC and

proportional discrimination, the variance of �̂js converges to zero at a rate faster than n−1.
• ASVAR(̂�DIF,j )�ASVAR(̂�CPC,j )�ASVAR(̂�PR,j )�ASVAR(̂�EQ,j ): If μ2 = 0 equality holds in all

cases, otherwise a reduction of the variance can be attained by using one of the constrained mod-
els. As for the classical rule, the advantage of proportional and linear discrimination increases
with the dimension.

• ASVAR(̂�DIF)�ASVAR(̂�CPC)�ASVAR(̂�PR)�ASVAR(̂�EQ). Note that, for this parameter, if μ2 = 0,
we have that ASVAR(̂�DIF) = ASVAR(̂�CPC) = ASVAR(̂�PR) > ASVAR(̂�EQ).

In Table 1 we summarize the above results concerning the relationships among the asymptotic
variances along the hierarchical models on the scatter matrices. It is worth noticing that even when
the asymptotic variances of the robust estimators are not proportional to their classical relatives,
the relationships shown in Table 1 coincide with those obtained by Flury and Schmid [17], that
is, the order is preserved.

5. Monte Carlo study

Up till now, we have considered asymptotic variances, but in the context of discrimination
misclassification error rates are also important, especially for moderate to small sample sizes.
In order to have a deeper insight into misclassification rates, we have performed a simulation
study.
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We have considered two populations of sizes n1 = n2 = n = 20, 30, 40, 50, 75 and 100 in
dimension p = 4. The classification rules to be compared are:

• the ordinary quadratic rule denoted QDIF;
• the quadratic classification rule under level 2, i.e., QCPC;
• the quadratic classification rule under level 3, i.e., QPR; and
• the linear classification rule denoted QEQ,

indicated as diamonds, squares, inverted triangles and circles combined with solid lines in all
figures, respectively. The horizontal dashed line indicates the optimal error rate. All of them
were computed using the sample mean and the sample covariance matrix and also using as
robust estimators the Donoho–Stahel estimators with weight function the Huber’s function with

constant
√

�2
p(0.95) and the S-estimators using as � function the biweight Tukey’s function

calibrated to attain 25% breakdown point. The S-estimators were computed using the MATLAB

programs provided in Christophe Croux’s personal web site taking 1000 random p-subsets. To
obtain approximately the worst direction for the Donoho–Stahel estimator, we have combined a
search over 1000 random directions on the p-dimensional sphere together with 1000 directions
using random p-subsets.

Since, �1 = �2 = 1
2 , the total misclassification error of a given rule Q, under the central model,

equals

TPM(Q) = P1 (Q(y) < 0) + P2 (Q(y) > 0)

2
,

where Pi is the probability related to a Np(μi , �i ), i = 1, 2. In order to estimate it, we have
considered validation samples of size m = 10 000. To be more precise, we have generated inde-
pendent random variables yi1, . . . , yim with yij ∼ Np(μi , �i ), for i = 1, 2. For each observation
yij we evaluated Qij = Q(yij ) and we have computed

̂TPM(Q) = #
{
Q1j < 0

}+ #
{
Q2j > 0

}
2m

.

We have performed 1000 replications and the mean of the estimated misclassification error
over replications, ̂TPM(Q), was computed in order to compare the discrimination rules under
different models and different contaminations.

We give a detailed description of the five designs considered. In all cases and without loss of
generality, we have assumed that μ1 = 0.

• Design 1 (Efron’s model): An optimal model for linear discrimination with �1 = �2 (see
[15,18]). Under this model the advantage of using the linear rule over the CPC discrimina-
tion and the ordinary quadratic discrimination increases with the dimension p. On the other
hand, the variances of the estimators of the linear and constant coefficients of QPR approach
those obtained in linear discrimination when p increases. With respect to the quadratic co-
efficients, the same argument holds for the non-diagonal elements when using the classical
methods while for the robust one, a term involving the coefficient �2 is always present. One
expects that proportional discrimination will do as well as linear discrimination, for the classi-
cal rule and assessing the effect of using robust estimators is one of the goals of this simulation
study. The parameters were chosen as μ2 = (3, 0, 0, 0)T, �1 = �2 = diag (1, 2, 8, 16),
yielding an optimal error rate of 0.0668. The eigenvalues were chosen to be different to
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Fig. 4. Estimated misclassification rates under Design 1. Diamonds correspond to QDIF, squares to QCPC, inverted triangles
to QPR and circles to the linear discrimination rule. The horizontal dashed line indicates the optimal error rate.

avoid convergence problems when solving the equations leading to the estimators under a CPC

model.
• Design 2 (A proportional model): In this case we have considered a design similar to design

1, but including a proportionality constant, i.e., we have chosen μ2 = (3, 0, 0, 0)T, �1 =
diag (1, 2, 8, 16), �2 = 4�1. The optimal rate is now 0.0885.

• Design 3 (O’Neill’s model): This is a design based on a particular model studied by O’Neill
[25] and considered in Flury et al. [18], for the purpose of comparing the performance of
linear and ordinary quadratic classification rules. In this design μ2 = (�, 0, 0, 0)T, �1 = I4,
�2 = diag

(
�2, 1, 1, 1

)
. We have chosen � = 4.5 and �2 = 9 leading to an optimal error rate

of 0.1073. O’Neill’s model is a CPC model but not a proportional one and thus, both ordinary
quadratic discrimination and CPC discrimination are theoretically correct. Optimal classification
is quadratic only in the first variable. However, as the calculations given above suggest, the CPC

discrimination is not expected to do much better than ordinary quadratic discrimination. On
the other hand, in the classical case, O’Neill [25,26] noticed that it took a very large sample
size for quadratic discrimination to improve linear discrimination, even if � is so different than
1 as in our example.
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Fig. 5. Estimated misclassification rates under Design 2. Diamonds correspond to QDIF, squares to QCPC, inverted triangles
to QPR and circles to the linear discrimination rule. The horizontal dashed line indicates the optimal error rate.

• Design 4 (A CPC model): When the CPC model holds, both QDIF and QCPC are theoretically
correct. As mentioned above, and as discussed in Flury and Smith [17], the asymptotic vari-
ances indicate that using QCPC does not necessarily yield estimates of the discriminant function
coefficients with smaller variances than QDIF. The advantage of the method depends on the
eigenvalues. For instance, if �1s − �1j = �2s − �2j , for all (s, j), then CPC discrimination
and ordinary quadratic discrimination should do about equally well. On the other hand, if
�−1

1s − �−1
1j = �−1

2s − �−1
2j , for all (s, j), then some quadratic coefficients have smaller asymp-

totic variances if estimated using the CPC model. Our parameter setup for the simulation study
was taken as �1 = diag (1/5, 1/2, 2/3, 5/6), �2 = diag (1/4, 1, 2, 5) and μ2 = (1, 0, 0, 0)T

to study the improvement obtained with the robust CPC rule. The optimal error rate equals
0.0991.

• Design 5 (A quadratic model): We have considered the same design as in Flury et al. [18]
in which none of the CPC, proportional or linear discrimination rules are correct. We wanted
the CPC model to be far from correct. A particular way to generate such models is to take
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Fig. 6. Estimated misclassification rates under Design 3. Diamonds correspond to QDIF, squares to QCPC, inverted triangles
to QPR and circles to the linear discrimination rule. The horizontal dashed line indicates the optimal error rate.

μ2 = (2, 0, 0, 0)T,

�1 =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 1/2 1/2

0 1/2 1 1/2

0 1/2 1/2 1

⎞⎟⎟⎟⎠ , �2 =

⎛⎜⎜⎜⎝
1 0 0 0

0 2 0 0

0 0 1/2 0

0 0 0 1/2

⎞⎟⎟⎟⎠
yielding an optimal error rate of 0.1278.

The results for normal data will be indicated by C0, while two contaminations were studied

• C1: xi1, . . . , xin are i.i.d. 0.9N4(μi , �i ) + 0.1N4(μi , 9�i ).
• C2: xi1, . . . , xin are i.i.d. 0.9N4(μi , �i ) + 0.1N4(μi + μ, �i ) with μ = (10, 0, 0, 0)T. The

aim of this contamination is to see how the bias of parameter estimates affects the probability
of misclassification.

Figs. 4–8 summarize the results of the simulation study. The results show the advantage of using
robust procedures when contamination is present. For instance, under C2, in most cases, the error
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Fig. 7. Estimated misclassification rates under Design 4. Diamonds correspond to QDIF, squares to QCPC, inverted triangles
to QPR and circles to the linear discrimination rule. The horizontal dashed line indicates the optimal error rate.

rates with the classical rules are over twice those of the uncontaminated situations. The robust
procedures behave quite similarly under normal errors and the two contaminations considered.
In general, contamination C2 seems to be more harmful than contamination C1. However, the
error rates related to the Donoho–Stahel estimator are slightly smaller than those related to the
S-estimator under C2. Besides, for small sample sizes (n = 20, 30), the Donoho–Stahel rule
shows in all cases larger rates under C0 than that derived from the S-estimator. This performance
of the Donoho–Stahel rule may be due to the difficulty to obtain the optimal direction for small
sample sizes and also to the larger bias of the estimator for small sample sizes. On the other hand,
as expected, under C0, the advantage of using the classical rule over the robust ones decreases as
the sample size increases. Moreover, under C0, the conclusions obtained in Flury et al. [18] hold
for both the classical and robust discrimination rules. To summarize,

• Design 1: If equality holds, under C0, then the linear discrimination is the best one, but not much
is lost if proportional discrimination is used. If CPC or ordinary quadratic discrimination are
used, approximately twice the observations are needed to obtain the same error rate ̂TPM. These
conclusions remain valid for the robust procedure based on the Donoho–Stahel estimator even
under both contaminations and for that based on the S-scatter under C0 and C1. Surprisingly,
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Fig. 8. Estimated misclassification rates under Design 5. Diamonds correspond to QDIF, squares to QCPC, inverted triangles
to QPR and circles to the linear discrimination rule. The horizontal dashed line indicates the optimal error rate.

under C2 the rule based on the S-estimator gives better rates with the CPC and quadratic
discrimination than for the linear one.

• Design 2: All methods except the linear discrimination are theoretically correct, but clearly,
under C0, QPR performs much better than either QCPC or QDIF. This conclusion remains valid for
the robust Donoho–Stahel procedure under both contaminations and for the S-rule under C1,
while for the classical procedure all rules perform similarly bad for data faraway from normality.
It is worth noticing that, under C2, when using the S-estimator, all the quadratic discrimination
rates are quite similar, however, the lower rates are attained by CPC discrimination.

• Design 3: One would expect that the two theoretically correct rules, QCPC and QDIF performed
considerably better than the inappropriate proportional and linear methods. However, under
C0, all methods perform quite similarly, and only for sample sizes larger than 40, QDIF starts
to perform better than the linear rule. On the other hand, QCPC appears to have a noticeable
advantage over QDIF while the linear rule performs better than QPR. As mentioned in Flury
et al. [18], a possible explanation for this unexpected phenomenon is that QPR introduces the
wrong flexibility, compared to the linear discriminant rule. Proportional discrimination forces
the boundary of the classification regions to be genuinely quadratic, which is undesirable in
this case. This model corresponds to the situation where the direction of the mean difference is
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identical to the direction of the difference in variance. More precisely, μ1 − μ2 is proportional
to the eigenvector of �−1

1 �2 related to the single eigenvalue that is different from 1. These
comments remain valid for both robust procedures, not only under C0 but also under C1 and
C2. However, the classical rule, under C2 reverses the conclusions since the best error rate is
attained by the linear discrimination rule followed by QPR and by both the CPC and the ordinary
quadratic rule that performed quite similarly. In this design, none of the methods seems suitable
to handle the situation due to their slow convergence to the optimal rate, under C0.

• Design 4: This design was tailored to favor CPC discrimination. Under C0, CPC beats the
ordinary discrimination rule for small sample sizes. Note that for n = 20 the proportional
rule performs better than the theoretically correct CPC rule, when using the robust procedure
based on the Donoho–Stahel estimator. In both cases, robust and non-robust, the proportional
discrimination rule performs surprisingly well. In particular, for sample sizes lower than 40 it
gives better rates than ordinary quadratic discrimination. This is quite outstanding in view of the
fact that the variance ratios range from 1.25 to 6 and thus, the two scatter matrices are far from
being proportional. This behavior underlines the usefulness of proportional discrimination due
to its flexibility when introducing only a single parameter for each additional group. Under C1,
the same behavior is observed for all procedures, robust or not, while under C2, the classical
proportional discrimination rule performs much worse than the other two quadratic rules. The
conclusions described for the behavior of the robust proposal under C0, also hold under C2.

• Design 5: In this case, the appropriate rule is the ordinary quadratic method. All three con-
strained methods are theoretically wrong. However, the linear discrimination rule shows its
advantage over the proportional one under the three distributions considered. The ordinary
quadratic rule performs better than the CPC rule for both the classical and robust procedures
and all contaminations. Besides, it should be noticed that, under C2, the error rates of QDIF and
QCPC are almost the same. Note that QDIF and QCPC perform much better than proportional and
linear discrimination.

6. Final comments

In this paper we have studied robust methods for discriminating between two groups of elliptical
observations, considering several levels of dissimilarities of the scatter matrices.

We have shown, both theoretically and by means of a simulation study, the advantage of using
robust procedures over classical ones, especially if the data deviate from multivariate normality.

Our results have also shown that, in some cases, better rates of misclassification can be achieved
if a more parsimonious model among all the correct ones is used. Therefore, an important issue
is to assess the adequacy of each of the different hierarchical levels. Classical tests for selecting
a level within this hierarchy are presented in Flury [16]. Robust versions of those tests have been
proposed recently by Boente et al. [6].
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Appendix

Note that (10), (11), (12), (17), (18), (24) and (25) follow immediately from (9), (16) and (23),
respectively. In order to prove Theorems 3.2 and 3.3 it will be enough to derive the expressions
for the partial influence functions of the matrices SCPC,� and SR,�, � = 1, 2. These partial influence
functions follow immediately from their definitions and from the partial influence functions of
the common eigenvectors and the eigenvalues given in Boente et al. [5] under a CPC model and in
Boente et al. [2] under a proportional model.

Note that A1 and A2 imply that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ASCOV
(
Vi,js , Vi,m�

)=ASCOV
(
Vi,js , Vi,mm

)=0 forj<s, m<� and (j, s)�=(m, �),

ASCOV
(
Vi,jj , Vi,ss

) = �2�ij�is forj < s,

ASVAR
(
Vi,jj

) = (2�1 + �2)�
2
ij ,

ASVAR
(
Vi,js

) = �1�ij�is ,

ASCOV
(
Vi,s�, μ̂ij

) = ASCOV
(
μ̂ir , μ̂ij

) = 0 forj �= r,

ASVAR
(
μ̂ij

) = �3�ij .

(38)

Proof of Theorem 4.1. Its proof follows immediately, using (26), (38) and that

ASVAR(�̂DIF,js) = 1

4

2∑
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�i

1

�2
ij�

2
is
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Proof of Theorem 4.2. Using (26), we get that the asymptotic variance of �̂CPC is given by∑2
i=1(1/�i )EFi

[
PIFi (x, DCPC,js , F )

]2. For any 1�j, s�p, we have that

EFi

[
PIFi (x, DCPC,js , F )

]2
= 1

4

{
1

�2
2j�

2
2s

EFi

[
PIFi (x, SCPC,2,js , F )

]2
+ 1

�2
1j�

2
1s

EFi

[
PIFi (x, SCPC,1,js , F )

]2}

−1

2

1

�1j�1s

1

�2j�2s

EFi

[
PIFi (x, SCPC,2,js , F )PIFi (x, SCPC,1,js , F )

]
.

When j = s, the above expression, (13) and (38) entail (30). Let us consider now the case when
j �= s. From (14), we derive that

EFi

[
PIFi (x, DCPC,js , F )

]2
= �2

i

4

2
js

(
�ij − �is

)2
�2
ij�

2
is

(
�2j − �2s

�2j�2s

− �1j − �1s

�1j�1s

)2

EFi

[
IF(x, �i,js , Fi)

]2
.

Hence, using again (38), straightforward calculations allow to derive (30). In order to prove
(31) we have to compute EFi

[PIFi (x, aCPC, F )]2 . From the expressions of the partial influence
functions of the functional given in (11) and from (38), we obtain easily that

EFi

[
PIFi (x, aCPC,j , F )

]2 = 1

�2
ij

⎧⎨⎩�ij�3 + μ2
ij (2�1 + �2) + �1

∑
s �=j

μ2
is

�ij

�is

⎫⎬⎭ ,

which entails (31).
Finally, the expression for ASVAR(̂�CPC), follows easily using that PIFi (x, cCPC, F ) =

(−1)i (Pi1 + Pi2/2) − �iPi4, where

Pi1 =
p∑

j=1

μij

�ij

IF(x, mij , Fi), (39)

Pi2 =
p∑

j=1

1

�ij

IF(x, �i,jj , Fi)

(
1 − μ2

ij

�ij

)
, (40)

Pi4 =
∑
j<s


sj�sj

�ij − �is

�ij�is

IF(x, �i,js , Fi), (41)
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with 
sj defined in Theorem 3.2, and �js = ∑2
i=1(−1)iμijμis(�ij − �is)/(�ij�is). Details can

be found in Bianco et al. [1]. �

The proofs of Theorems 4.3 and 4.4 follow using similar arguments. Details can be found in
Bianco et al. [1].
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