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Abstract

The common principal components (CPC) model for several groups of multivariate observations
assumes equal principal axes but possibly different variances along these axes among the groups.
Under a CPC model, generalized projection-pursuit estimators are defined by using score functions
on the dispersion measure considered. Their partial influence functions are obtained and asymptotic
variances are derived from them. When the score function is taken equal to the logarithm, it is shown
that, under a proportionality model, the eigenvector estimators are optimal in the sense of minimizing
the asymptotic variance of the eigenvectors, for a given scale measure.
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1. Introduction

Several authors, as [10], have studied models for common structure dispersion. As it is
well known, those models have been introduced to overcome the problem of an excessive
number of parameters, when dealing with several populations, in multivariate analysis. One
such basic common structure assumes that the k covariance matrices have possibly different
eigenvalues but identical eigenvectors, i.e.,

�i = ��i�
′, 1� i�k, (1)

where �i are diagonal matrices, � is the orthogonal matrix of the common eigenvectors
and �i is the covariance matrix of the ith population. The more restrictive proportionality
model assumes that the scatter matrices are equal up to a proportionality constant, i.e.,

�i = �i�1 for 1� i�k and �1 = 1. (2)

Model (1) was proposed in [9] and became known as the common principal components
(CPC) model. The maximum likelihood estimators of � and �i are derived in [9], assuming
multivariate normality of the original variables. In [10] a unified study of the maximum
likelihood estimators under a CPC model and, in particular, under a proportionality model
is given.

Let
(
xij

)
1� j �ni ,1� i �k

be independent observations from k independent samples in

Rp with location parameter �i and scatter matrix �i . Let N = ∑k
i=1 ni , �i = ni

N
and

Xi = (xi1, . . . , xini

)
. For the sake of simplicity and without loss of generality, we will also

assume that �i = 0p.

It is well known that, in practice, the classical CPC analysis can be affected by the existence
of outliers in a sample. In order to obtain robust estimators, in [3,4], an approach based on
robust affine equivariant estimators of the covariance matrices �i , 1� i�k is considered.
These authors also studied an approach based on projection-pursuit principles in which, the
estimator of � = (�1, . . . , �p

)
are the solution of

�̂1 = argmax
‖b‖=1

k∑
i=1

�i s2(X′
ib),

�̂j = argmax
b∈Bj

k∑
i=1

�i s
2(X′

ib), 2�j �p, (3)

where Bj = {b : ‖b‖ = 1, b′̂�m = 0 for 1�m�j −1} and s is a univariate scale estimator.

In this paper, we adopt a more general approach which consists of applying a score
function to the scale estimator. The paper is organized as follows. In Section 2, we motivate
and introduce our proposal while, in Section 3, partial influence functions are computed
and asymptotic variances are derived heuristically from them. Also, it is shown that the
choice f (t) = ln(t) leads to an optimal score function since it minimizes the asymptotic
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variance of the common directions, under proportionality of the scatter matrices. In Section
4, through a simulation study the proposed estimators are compared with those defined
through (3) for normal and contaminated samples. All proofs are given in the Appendix.

2. General projection-pursuit estimators

2.1. Definition

In robust principal component analysis, an alternative to using the eigenvalues and eigen-
vectors of a robust scatter matrix, was first considered in [12] who proposed projection-
pursuit estimators maximizing (or minimizing) a robust scale of a one-dimensional projec-
tion of the data. A fast algorithm for computing their proposal was developed in [6]. Later,
[7] studied the breakdown point of the scatter matrix related to the estimators obtained with
this algorithm. These authors also derived influence functions for the projection-pursuit es-
timators. A rigorous proof of the asymptotic distribution of these estimators has been given
recently in [8]. Maximum biases under contaminated models can be found in [13,1].

For the CPC model, the common decomposition given in (1) implies that for any b ∈
Rp, and 1� i�k, VAR

(
b′xi1

) = b′��i�′b. Therefore, the first (or the last) axis could be

obtained by maximizing (or minimizing)
∑k

i=1 �iVAR
(
b′xi1

)
over b ∈ Rp with ‖b‖ = 1 if

the matrix
∑k

i=1 �i�i has no multiple eigenvalues. By considering orthogonal directions to
�1, the second axis is defined and so on. The eigenvalues for the ith population are clearly
�′
j�i�j and finally, the eigenvectors can be arranged according to a decreasing order of the

eigenvalues of the first population. This allows to define the projection-pursuit estimators
under a CPC model as in (3).

On the other hand, it is well known (see [10]) that the maximum likelihood estimator of
� in a normal model minimizes

k∏
i=1

[
det {diag (Fi )}

det (Fi )

]ni

,

where Fi = �′Si�, and Si is the sample covariance matrix of the ith population. This is
equivalent to minimizing

ln

(
k∏

i=1

[
det {diag (Fi )}

det (Fi )

]ni
)

=
k∑

i=1

ni (ln [det {diag (Fi )}] − ln {det (Fi )})

=
k∑

i=1

ni (ln [det {diag (Fi )}] − ln {det (Si )})

=
k∑

i=1

ni

p∑
j=1

ln
(
�ij

)− ln {det (Si )} ,
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where �ij are the diagonal elements of Fi . Therefore, the maximum likelihood estimator

�̂ can be viewed as the minimizer of
∑p

j=1

∑k
i=1 ni ln

(
�ij

)
. By noting that �̂ij = �̂

′
j Si �̂j

equals the sample variance of the projected vector, a robust projection–pursuit procedure
can be obtained by solving iteratively

�̂p = argmin
‖b‖=1

k∑
i=1

�i ln
{
s2(X′

ib)
}

,

�̂p−j = argmin
b∈Aj

k∑
i=1

�i ln
{
s2(X′

ib)
}

, 1�j �p − 1,

where Aj = {b : ‖b‖ = 1, b′̂�p−m = 0 for 0�m�j − 1}. Another consistent solution
can be obtained by maximizing instead of minimizing in the above definition, just as in the
one population case (see [12]).

A more general framework considers a general increasing score function f : R+ → R

and thus, we propose to estimate the common directions as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�̂1 = argmax

‖b‖=1

k∑
i=1

�i f
{
s2(X′

ib)
}
,

�̂j = argmax
b∈Bj

k∑
i=1

�if
{
s2(X′

ib)
}
, 2�j �p.

(4)

The estimators of the eigenvalues of the ith population are then computed as �̂ij = s2(X′
i �̂j )

for 1�j �p. A different definition arises by taking minimum instead of maximum, which
lead to different solutions (beyond the order) due to the use of a robust scale. However, both
will have the same partial influence functions and thus, the same asymptotic variances.

2.2. Notation and assumptions

From now on, xi will denote independent vectors such that xi ∼ Fi , where Fi has
location parameter �i and scatter matrix �i = CiC′

i satisfying (1). As in [4], without loss
of generality, we will assume that �i = 0. Denote by Fi[b] the distribution of b′xi and by
F the product measure, F = F1 × · · · × Fk .

Let �(b) = ∑k
i=1 �i f {�2 (Fi[b])} where �(·) is a univariate scale functional related to

the scale estimator s, which is assumed to be equivariant under scale transformations.

Throughout this paper we will consider the following set of assumptions:

A1. Fi is an ellipsoidal distribution with location parameter �i = 0p and scatter matrix
�i = CiC′

i satisfying (1). Moreover, when xi ∼ Fi , C−1
i xi = zi has the same

spherical distribution G for all 1� i�k.
A2. �(·) is a robust scale functional, equivariant under scale transformations, such that

�(G0) = 1, with G0 the distribution of z11.
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A3. The function (�, y) → �
(
(1 − �)G0 + ��y

)
is twice continuously differentiable in

{(0, y), y ∈ R} where �y denotes the point mass at y.
A4. f is a twice continuously differentiable function.
A5. ni = �iN ,

∑k
i=1 �i = 1, with 0 < �i < 1 fixed numbers.

2.3. Fisher-consistency

In this Section, we provide conditions under which the common directions projection-
pursuit estimates will be Fisher-consistent, that is, they will estimate the right quantities at
the idealized model (see, [11]). For this purpose let us introduce the statistical function-
als corresponding to (4). The common directions projection-pursuit functional ��(F ) =
(��,1(F ), . . . , ��,p(F )) is defined as the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

��,1(F ) = argmax
‖b‖=1

�(b),

��,j (F ) = argmax
b∈Bj

�(b), 2�j �p,

(5)

where Bj = {b : ‖b‖ = 1, b′�m(F ) = 0 for 1�m�j − 1}. As in [12] an alternative,
though less popular, is based on stepwise minimization, defined as⎧⎪⎪⎪⎨⎪⎪⎪⎩

��,p(F ) = argmin
‖b‖=1

�(b),

��,p−j (F ) = argmin
b∈Aj

�(b), 1�j �p − 1,

(6)

where Aj = {b : ‖b‖ = 1, b′��,p−m = 0 for 0�m�j − 1}. In both cases the eigenvalues
and the covariance matrix functionals are defined as

��,ij (F ) = �2 (Fi

[
��,j (F )

])
, (7)

V�,i (F ) =
p∑

j=1

��,ij (F )��,j (F )��,j (F )′. (8)

When f (t) = id(t) = t , conditions under which the functional defined through (5) will be
Fisher-consistent were obtained in [3]. The following Proposition, which is easily derived
from the optimality properties of the eigenvectors of a symmetric positive definite matrix,
establishes the conditions under which the functionals (5), (6) and (7) are Fisher-consistent
for a general f .

Proposition 1. Let xi be independent random vectors with distribution Fi satisfyingA1 and
�(·) a robust scale functional satisfying A2. Denote by ��(F ) = (��,1(F ), . . . , ��,p(F ))
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the solution of (5) and let ��,ij (F ) = �2
(
Fi[��,j (F )]). Then, we have that

(a) If �i = diag
(
�i1, . . . , �ip

)
are such that �i1 � · · · ��ip for 1� i�k and, for any

1�j �p − 1, there exists an i0 = i0(j) such that �i0j > �i0 (j+1), the functionals
��(F ), defined either by (5) or (6), and ��,ij (F ) are Fisher consistent for any strictly
increasing function f (t).

(b) Denote �f = �′�f � where�f = diag
(
	1, . . . , 	p

)
with 	j = ∑k

i=1 �if
(
�ij

)
and

	1 � · · · �	p. If f is strictly increasing and strictly convex (respectively, strictly con-
cave) and 	1, . . . 	p are pairwise different or ∀j �= m ∃i0 : �i0j �= �i0m, then � is the
unique solution of the system defined by (5) (respectively, by (6)) and so, the functionals
��(F ) and ��,ij (F ) are Fisher-consistent.

Remark 1. The case f (t) = ln(t), closely related to the maximum likelihood approach
and for which some optimality properties are derived later (Propositions 2 and 3) is included

in (b). Note that �ln = ln
(∏k

i=1 ��i

i

)
= �′diag

(
ln
(∏k

i=1 ��i

i1

)
, . . . , ln

(∏k
i=1 ��i

ip

))
�.

3. Influence functions and asymptotic variances

Partial influence functions were introduced by [14] in order to ensure that the usual
properties of the influence function for the one-population case are satisfied when dealing
with several populations. Denote by F the product measure, F = F1 × · · · × Fk . Partial
influence functions of a functional T (F ) are then defined as

PIFi (x, T , F ) = lim
�→0

T (F�, x, i ) − T (F )

�
,

where F�,x,i = F1 × · · · × Fi−1 × Fi,�,x × Fi+1 × · · · Fk , with Fi,�,x = (1 − �)Fi + ��x,
and �x the point mass at x.

With the general results in [14] one can show that the following expansion holds:

N
1
2 {T (FN) − T (F )} =

k∑
i=1

1

(�i ni)
1
2

ni∑
j=1

PIFi

(
xij , T , F

)+ op(1),

where FN denotes the empirical distribution of the k independent samples xij , 1�j �ni ,
1� i�k. Therefore, the asymptotic variance of the estimates, i.e., the variance of the ap-
proximating normal distribution, can be evaluated as

ASVAR (T , F ) =
k∑

i=1

�i
−1EFi

{
PIFi (xi1, T , F ) PIFi (xi1, T , F )′

}
. (9)

The following Theorem gives the partial influence functions for the general projection-
pursuit functionals.
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Theorem 1. Let xi be independent random vectors with distribution Fi and �(·) a robust
scale functional. Then, underA1 toA4, we have that for any x, the partial influence functions
of the functionals defined through (5), (7) and (8) are given by

PIFi (x, ��,�j , F ) = 2 
�i �ij IF

(
x′�j√

�ij

, �, G0

)
, (10)

PIFi (x, ��,j , F ) = �i �′
j x

j−1∑
s=1

1

�sj − �s

√
�isf

′ (�is) DIF

(
�′
sx√
�is

, �, G0

)
�s

+�i

√
�ij f

′ (�ij

)
DIF

(
�′
j x√
�ij

, �, G0

)

×
p∑

s=j+1

1

�j − �js

�′
sx �s , (11)

PIFi (x, V�,�, F ) = 
�i 2
p∑

j=1

�ij IF

(
�′
j xi√
�ij

, �, G0

)
�j�

′
j

+
p∑

j=2

j−1∑
s=1

��j − ��s

�sj − �s

�i

√
�is f ′ (�is)

×DIF

(
x′�s√

�is

, �, G0

) (
x′�j

) (
�s�

′
j + �j�

′
s

)
,

where DIF(y, �, G) denotes the derivative of the influence function, IF(y, �, G), of the
scale functional � with respect to y, �js =∑k

i=1 �if
′ (�ij

)
�is , �j = �jj and �js �= �jj for

s �= j .

Remark 2. Under a proportional model �js = �s

∑k
i=1 �if

′ (�ij

)
�i . Therefore, �js �= �jj

for s �= j if and only if the eigenvalues of the first population are different, which is a usual
assumption in order to identify the common directions. It is worthwhile noticing that the
partial influence functions of the functionals defined through (6) are also given by (11).

Remark 3. As for the projection-pursuit estimators considered in [4], one notices that by
using a scale estimator with bounded influence, the eigenvalues will have bounded influence,
and its influence function does not depend on the score function f considered. However,
the influence function for the eigenvectors may be unbounded, since the term x′�j will still
remain unbounded.

The asymptotic variance of the projection-pursuit estimators of the common eigenvectors
and of the eigenvalues can be obtained heuristically using (9).
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Corollary 1. Let xi1, . . . , xini
, 1� i�k, be independent observations from k independent

samples with distribution Fi and �(·) a robust scale functional. Assume that A1 to A5 hold
and that � = Ip, i.e., �i = �i .

Let s(·) be the univariate scale statistic related to � and Xi = (xi1, . . . , xini

)
, for 1� i�k.

Define the common principal axes as the solution of (4) and the estimators of the eigenvalues
and of the covariance matrix of the ith population as �̂ij = s2(X′

i �̂j ), for 1�j �p and

Vi =∑p
j=1 �̂ij �̂j �̂

′
j .

Then, the asymptotic variances of the general projection-pursuit estimators are given by

ASVAR
(̂
�ij

)
= 4�2

ij

1

�i

ASVAR (s, G0) ,

ASVAR
(̂
�jm

) =
k∑

i=1

�i�ij�im

{

m>j

{
f ′ (�ij

)}2(
�j − �jm

)2 + 
m<j

{
f ′ (�im)

}2(
�mj − �m

)2
}

×EG

{
DIF

(
z1j , �, G0

)
z1m

}2
. (12)

In particular, when G = N
(
0, Ip

)
, if � denotes the standard normal distribution function,

we have that ASVAR
(̂
�ij

)
= 4�2

ij
1
�i

ASVAR (s, �), for 1� i�k and 1�j �p,

ASCOV
(̂
�jm, �̂jr

) = 0, for m �= j , m �= r and r �= j and that

ASVAR
(̂
�jm

) =
k∑

i=1

�i�ij�im

{

m>j

{
f ′ (�ij

)}2(
�j − �jm

)2 + 
m<j

{
f ′ (�im)

}2(
�mj − �m

)2
}

×E� [DIF (Y, �, �)]2 for m �= j,

where �js =∑k
i=1 �if

′ (�ij

)
�is , �j = �jj and �jm �= �jj for m �= j .

Remark 4. Note that when all the populations have the same scatter matrices, the asymp-
totic variance of the projection–pursuit estimators of the eigenvectors does not depend on the
score function f . From Remark 2, it follows that the asymptotic variance of the estimators
defined by minimizing instead of maximizing �(b), is also given by (12).

The following Proposition states the optimality of f (t) = ln(t), under a proportional
model, but when equality of all the scatter matrices does not hold.

Proposition 2. Let xi1, . . . , xini
, 1� i�k, be independent observations from k independent

samples with distribution Fi and �(·) a robust scale functional. Assume that A1 to A3 and
A5 hold and that �i=�i=�i�1, i.e., �i satisfies (2) with � = Ip, �1 = 1. Let �1 =
diag

(
�1, . . . , �p

)
and assume that �1 > · · · > �p.
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Let s(·) be the fixed univariate scale statistic related to the scale functional �(G) and F
the class of all strictly increasing score functions f satisfying A4. Then,

(i) f (t) = ln(t) minimizes the asymptotic variance given by (12) of the general projection–
pursuit estimators in the class F .

(ii) Moreover, if at least one �i �= 1, and f ∈ F minimizes (12) for arbitrary F =
F1 ×· · ·×Fk as above, then there exists a �= 0 and b ∈ R such that f (t) = a ln(t)+b.

Remark 5. Under a proportional model, once the principal directions have been derived,
projection-pursuit functionals for the proportionality constant and for the eigenvalues of
the first population can be obtained as in [2]. As in the CPC model, these eigenvalue func-
tionals will have partial influence functions which will be independent of the choice of the
function f to be considered. As mentioned above, Proposition 2 entails the optimality of
f (t) = ln(t), since we can always assume a = 1 and b = 0 and so, we get eigenvector
estimators with the lowest variances, given a scale �(G), while the estimators for the eigen-
values and proportionality constants will behave as those with the identity score function.
Note that this optimality property extends the well known result for the maximum likeli-
hood estimators, which minimize the asymptotic variance of any asymptotically normally
distributed estimator and, in particular, of those defined through (4) with s2 the sample
variance, to estimates defined through a general scale function satisfying A2.

Moreover, under the proportionality model and for normally distributed data, the asymp-
totic variance of the mth element of the maximum likelihood estimator of the common direc-
tion �j is given by

�m�j

(�m−�j )
2 . Therefore, when considering the score function f (t) = ln(t),

the relative efficiency of the projection-pursuit estimator is given by E� [DIF (Y, �, �)]2,
and thus, it does not depend on the proportionality constants as it does when f (t) = t .
It is worthwhile noticing that, in this case, when �2(G) = var(G) and f (t) = ln(t), the
asymptotic variance of the projection-pursuit estimator of �j equals that of the maximum
likelihood estimator.

The following Proposition states a partial result regarding the optimality of f (t) = ln(t),
under a CPC model where the scatter matrices are not proportional but when their eigenvalues
preserve the order among populations. However, the class of objective functions need to be
restricted in order to obtain the optimality. We have considered the well-known Box and
Cox class of functions.

Proposition 3. Let xi1, . . . , xini
, 1� i�k, be independent observations from k independent

samples with distribution Fi and �(·) a robust scale functional. Assume that A1 to A3 and
A5 hold with � = Ip. Let �i = diag

(
�i1, . . . , �ip

)
and s(·) be the fixed univariate scale

statistic related to the scale functional �(G).

Denote by F = {f (t) : f : R+ → R, f ′(t) = t−1, �0}. Let 1�j �p be fixed, and
denote by ai, mj = �im

�ij
.

(i) Given m > j , assume that �ij ��im for 1� i�k and there exists i0 such that �i0j >

�i0m, if �1j � · · · ��kj and a1, mj � · · · �ak, mj , then f (t) = ln(t) minimizes the
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asymptotic variance (12) of �̂jm in the class F . Moreover if there exists, � < i such
that ��j < �ij and a�, mj < ai, mj , then f (t) = ln(t) is the unique minimizer within F .

(ii) Given m < j , assume that �ij ��im for 1� i�k and there exists i0 such that �i0j <

�i0m, if �1m � · · · ��km and a1, jm � · · · �ak, jm, then f (t) = ln(t) minimizes the
asymptotic variance (12) of �̂jm in the class F . Moreover if there exists, � < i such
that ��m < �im and a�, jm < ai, jm, then f (t) = ln(t) is the unique minimizer within
F .

Remark 6. A similar result holds, for instance, for m > j , if we assume that �ij ��im for
1� i�k and there exists i0 such that �i0j ��i0m, and if �1j � · · · ��kj and a1, mj � · · · �
ak, mj .

4. Monte Carlo study

We performed a simulation study in dimension 4. A more extensive Monte Carlo study
including a simulation study in dimension 2 can be found in [15].

We evaluated the estimators defined in Section 2 with f (t) = ln(t) and f (t) = t . In all
Figures, LPP1 and LPP2 will denote the estimates corresponding to the first choice, while
PP1 and PP2 correspond to those related to the second one. The index 1 indicates that the
scale � considered is the MAD (median of the absolute deviations from the median) while

the index 2 is for the M-scale estimator with score function �(t) = min
(

t2

c2 , 1
)

− 1
2 and

c = 1.041, which gives a scale estimator with breakdown point 1
2 and efficiency 0.509.

Two procedures were considered to compute the projection-pursuit estimates. They will
be denoted DD and RD in Figures. The first one corresponds to the procedure considered in
[3] which adapts the proposal given in [6] for the one-population case. By RD we will denote
the following random direction procedure for searching the common principal directions:

(i) We first generate 1000 random directions zi/‖zi‖, zi ∼ N
(
0p, Ip

)
(ii) Let P0 = Ip and denote Pq the projection matrix over the linear space orthogonal

to the already computed q common principal directions �̂1, . . . , �̂q for 1�q �p − 1.
Following the same steps as in [6], for 0�q �p − 1, we search the common principal

direction �̂q+1 among
Pq

(
zi−�̂

)
∥∥∥Pq

(
zi−�̂

)∥∥∥ , 1� i�1000, where �̂ is the Donoho–Stahel location

estimator of (z1, . . . , z1000).

This procedure can be helpful when the number of observations in each sample is small
and thus the procedure described in [3] does not provide a good algorithm to search for the
projection-pursuit directions.

We have considered the following three models

• Model 1. k = 2 populations where �1 = diag(4, 3, 2, 1) and �2 = diag(6, 8, 2.5, 5).

Then, �id =∑k
i=1 �i�i = diag(5, 5.5, 2.25, 3) while �ln = ln

(
diag(

√
24,

√
24,

√
5,

√
5)
)

.
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• Model 2. k = 2 populations with proportional covariance matrices �1 = diag(4, 3, 2, 1)

and �2 = 4 �1. Therefore, �id = diag(10, 7.5, 5, 2.5) and �ln = ln (diag(8, 6, 4, 2)).
• Model 3. k = 3 populations with covariance matrices �1 = diag(8, 4, 2, 1), �2 =

diag(16, 12, 8, 4) and �3 = 5 �1. Thus, �id = diag( 64
3 , 12, 20

3 , 10
3 ) while �ln =

1
3 ln (diag(5120, 960, 160, 20)).

These models have been selected since, Model 1 does not preserve the order of the
eigenvalues among populations and has an identification problem of the directions when
using f (t) = ln(t). More precisely, any basis of the subspace generated by �1 and �2, could
be considered by this procedure as good as the two first canonical vectors. Model 2 is a pro-
portional model where the optimality of f (t) = ln(t) holds and our aim is to illustrate the
results of Proposition 2. On the other hand, in Model 3, neither proportionality among the
three populations nor the assumptions of Proposition 3 hold. However, straightforward cal-
culations show that the general projection-pursuit estimates using f (t) = ln(t) have smaller
asymptotic variance than those using f (t) = t . Moreover, for instance, for m = 3, 4, the
asymptotic variance ASVAR

(̂
�1m

)
given by (12) is minimized when f (t) = ln(t) over

the class of functions F = {f (t) : f : R+ → R, f ′(t) = t−1, �0}, considered in
Proposition 3.

In all models, we performed 1000 replications generating k independent samples of size
ni = n = 100. The true common principal axes are thus the original x-axes given by
the unit vectors ej . The eigenvectors were ordered according to a decreasing order of the
eigenvalues of the first population and so, �j = ej .

The results for normal data sets will be indicated by C0, while C1,� denote the following
contamination: xi1, . . . , xin are i.i.d. (1 − �)N(0, �i ) + �N(�, �i ) with � = 10 e4 =
(0, 0, 0, 10)′. We present the results for � = 0.05 and � = 0.10. This case corresponds
to contaminating both populations in the direction of the smallest eigenvalue of the first
population. The aim is to study changes in the estimation of the principal directions.

For simplicity, we report only the results corresponding to the common eigenvectors and
to the eigenvalues of the first population. Moreover, we present only a subset of the results
in a graphical way. More detailed results are available in [15].

Figs. 1 and 2 give the boxplots of log

(
�̂1j

�1j

)
where �̂1j denote the eigenvalue estimates

of �1 for Models 1 and 2. The results for Model 3 are similar and thus, they are not reported
here but are described in [15].

The best performance for estimating the eigenvalues under contamination is obtained by
the estimates based on the M-scale, see Figs. 1 and 2. Contrary to our expectations, there is
not a great improvement when we use 1000 random directions instead of the normalized data.
An alternative procedure could be to combine both the random generated directions and the
directions given by the sample data at each replication. Except for the smallest eigenvalue,
in most cases the estimates based on f (t) = t have similar or smaller dispersion than those
based on f (t) = ln(t). The poor efficiency of the eigenvalue estimates obtained using both
projection-pursuit procedures is related to the low efficiency of the MAD and of the M-scale
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estimator. A better performance could be reached by using, for instance, the �-function
proposed in [5] or a �-scale estimator.

With regard to eigenvector estimation, in Figs. 3–5 a density estimator (using the normal
kernel with a bandwidth equal to 0.3) of the cosines of the angle between the true and
the estimated direction related to the smallest eigenvalue of the first population, cos(̂�4),
is plotted. The solid lines correspond to the densities of cos(̂�4) evaluated over the 1000
normally distributed samples, while the dashed and dotted correspond to the asymmetric
contaminated samples generated according to C1,0.05 and C1,0.10, respectively. The vertical
lines indicate the corresponding estimated medians.

Under C1,0.10 the projection-pursuit estimates perform differently for Model 1 than for
Models 2 and 3. Note that the direction corresponding to the smallest eigenvalue of the
first population was the one we have chosen to contaminate the samples. A huge sensitivity
is observed for all the proposals under Model 1, while for Models 2 and 3 the estimates
are more stable under contamination. This can be explained by the fact that for Model
1, the pooled matrix becomes �id = diag(5, 5.5, 2.25, 3) and thus, we are using a dis-
tribution for the observations for which the projection-pursuit estimates with f (t) = t

will breakdown with a 10% of contamination even by using the MAD scale estimator (see
[3]). Moreover, since the larger eigenvalues of �id are quite close, the sample size does
not allow to distinguish between them and thus, the projection-pursuit estimates produce
a systematic bias for normal data (see [15]). On the other hand, due to the structure of
�ln, the projection-pursuit procedure based on f (t) = ln(t) will not be able to distinguish
among the vectors �1 and �2 and among �3 and �4, leading to the bias observed in Fig. 3.
Moreover, any basis of the subspace generated by �1 and �2, could be considered by this
procedure as good as the two first canonical vectors. In order to evaluate the performance of
the projection-pursuit method based on f (t) = ln(t), an alternative in this case, could be to
evaluate the distance between the linear space generated by �1 and �2 and that spanned by
�̂1 and �̂2. Since our aim is to discover the common structure among the scatter matrices, we
have only compared the true and the estimated directions. Note that, under the asymmetric
contamination C1,�, these estimates have a slightly better performance than those based
on f (t) = t .

On the other hand, under Models 2 and 3 all the populations have the common directions
related to increasing eigenvalues and since both �id and �ln have different and well separated
eigenvalues the projection-pursuit estimates perform much better. This structure helps in
the identification of the common direction, as observed in the plots. As expected, in Model
2, the estimates based on f (t) = ln(t), have a slightly better performance that the raw
projection-pursuit ones, a behavior which was already observed in Fig. 4. It is worthwhile
noticing, that in Model 3, even if we are not under a proportional model, the estimates based
on f (t) = ln(t) perform similarly or better than those computed with f (t) = t , see Fig. 4
under the central model. For a more detailed description see [15], where the performance
for other directions is described.

As mentioned above, no improvement in the eigenvector estimation is obtained by using
1000 random directions instead of the normalized data.
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5. Conclusions

The proposed generalized projection-pursuit procedure showed its advantage with respect
to the usual one, when estimating the common directions. Under an ellipsoidal distribution
and a proportional model, the common direction estimators can attain the lowest asymptotic
variance for a given scale estimator, using the logarithmic function. Moreover, under a
normal distribution, the efficiency of the projection-pursuit common direction estimates
evaluated with f (t) = ln(t) does not depend on the proportionality constants. Proposition
2 also shows that f (t) = ln(t) minimizes the asymptotic expected value of the square
distance between the estimated and the true j th common direction. Also, with respect to the
eigenvalue estimates, the generalized projection-pursuit procedure give, for any function
f , estimates with the same partial influence functions and thus, with the same asymptotic
variance than that corresponding to the identity function.

Our simulation study shows that, with respect to eigenvalues, none of the considered
methods has uniformly better performance over all the distributions considered. On the
other hand, the random direction selection did not give a great improvement with respect
to that considered in [3]. However, it can be an alternative for small data sets. Finally, with
respect to the common principal directions, the estimates based on f (t) = ln(t) show their
advantage, in most cases.
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Appendix A

Proof of Proposition 1. First note that �2(Fi[b]) = b′�ib.
(a) Since �i1 � · · · ��ip for i = 1, . . . , k using that f is strictly increasing and

sup
‖b‖=1

(b′�ib) = �i1 = �′
1�i�1,

sup
b∈Br

(b′�ib) = �ir = �′
r�i�r ,
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where Br = {b : ‖b‖ = 1, �′
�b = 0, ∀1���r − 1}, we get

sup
‖b‖=1

k∑
i=1

�if
(
b′�ib

) =
k∑

i=1

�if (�i1) =
k∑

i=1

�if
(
�′

1�i�1
)
,

sup
b∈Br

k∑
i=1

�if
(
b′�ib

) =
k∑

i=1

�if (�ir ) =
k∑

i=1

�if
(
�′
r�i�r

)
.

Moreover, since for any j = 1, . . . , p − 1 there exists i0 = i0(j) such that �i0j > �i0,j+1,
we have that b′�i0 b < �i0j for any b ∈ Bj and thus, using again the fact that f is strictly
increasing we get

k∑
i=1

�if
(
b′�ib

)
<

k∑
i=1

�if (�i1) ∀‖b‖ = 1,

k∑
i=1

�if
(
b′�ib

)
<

k∑
i=1

�if (�ir ) ∀b ∈ Br .

Therefore, for any j = 1, . . . , p, ��,j (F ) = �j are uniquely defined and the functional is
Fisher-consistent. The Fisher-consistency of ��,ij (F ) follows immediately.
(b) We can assume without lack of generality that � = Ip and 	1 � · · · �	p.
Let us first assume that 	1, . . . , 	p are pairwise different, then we have 	1 > · · · > 	p.

Given b = (
b1, . . . , bp

)′ such that ‖b‖ = 1, using the fact that f is strictly convex, we
have that for all i = 1, . . . , k

f
(
b′�ib

) = f

⎛⎝ p∑
j=1

b2
j�ij

⎞⎠ �
p∑

j=1

b2
j f
(
�ij

)
(13)

and equality holds if and only if ∀j �= m, such that bj �= 0 and bm �= 0, �ij = �im.

Using (13) for all i = 1, . . . , k, we get

k∑
i=1

�if

⎛⎝ p∑
j=1

b2
j�ij

⎞⎠ �
k∑

i=1

�i

p∑
j=1

b2
j f
(
�ij

) = b′�f b,

which together with⎧⎪⎨⎪⎩
sup

‖b‖=1
(b′�f b) = 	1 = �′

1�f �1,

sup
b∈Br

(b′�f b) = 	r = �′
r�f �r

(14)
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and 	1 > · · · > 	p, entails that for b �= �1

�(b) =
k∑

i=1

�if

⎛⎝ p∑
j=1

b2
j�ij

⎞⎠ �b′�f b <

k∑
i=1

�if (�i1) = 	1 = �(�1)

and similarly, using induction, given b ∈ Br , b �= �r we have

k∑
i=1

�if
(
b′�ib

)
b′�f b < 	r = �(�r )

showing that ��(F ) = Ip is the unique solution of (5). The case for f strictly concave
follows in an analogous way.

For the second assumption, ∀j �= m ∃i0 : �i0j �= �i0m, it is easy to show using (13)
and (14), that ��(F ) = Ip is a solution of (5). To ensure Fisher-consistency, we need to
prove uniqueness of solution. Assume that if ∀j �= m there exists i0 = i0(j, m) such that
�i0j �= �i0m. Let b be such that ‖b‖ = 1, b �= ej for all j = 1, . . . , p, then, we have that there
exists j �= m such that bj �= 0 and bm �= 0. Therefore, since there exists i0 = i0(j, m) such
that �i0j �= �i0m, the strictly convexity of f entails that f

(
b′�i0 b

)
<
∑p

j=1 b2
j f
(
�i0j

)
.

Now using (13) for i �= i0 we get that �(b) < b′�f b�	1 and so, �(b) < �(�1) implying
that ��,1(F ) = �1 is the unique solution.

Similarly, given b such that ‖b‖ = 1, b �= �j for all j = 1, . . . , p and b ∈ Br , we have
that bj = 0 for all 1�j �r − 1 and there exists j �= m j �r , m�r such that bj �= 0 and
bm �= 0. Therefore, there exists i0 = i0(j, m) such that �i0j �= �i0m and so, the strictly
convexity of f entails that f

(
b′�i0 b

)
<
∑p

j=1 b2
j f
(
�i0j

)
. Now using (13) for i �= i0 we

get that �(b) < b′�f b�	r , since b ∈ Br and so, �(b) < �(�r ) implying that ��,r (F ) = �r

is also the unique solution.

Proof of Theorem 1. Since the proof follows the ideas given in [4], we will only derive
the partial influence functions for the eigenvectors. Denote by Fi,�,x = (1 − �)Fi + ��x and
by F�,x,i = F1 × · · · × Fi−1 × Fi,�,x × Fi+1 × · · · × Fk . Let �j,�,i = ��,j

(
F�,x,i

)
, ��j,�,i =

�2
(
F�

[
�j,�,i

])
, for � �= i and �ij,�,i = �2

(
Fi,�,x

[
�j,�,i

])
. Denote V�,�,i = V�,�

(
F�,x,i

) =∑p
j=1 ��j,�,i�j,�,i�′

j,�,i .

�j,�,i maximizes �
(
F�,x,i [b]

)
under the constraints �′

j,�,i�j,�,i = 1 and �′
s,�,i�j,�,i = 0

for 1�s�j − 1. Therefore, �j,�,i maximizes the function

L(b, �, �) = �if
{
�2 (Fi,�,x [b]

)}+
∑
i0 �=i

�i0f
{
�2 (Fi0 [b]

)}

−�
(
b′b − 1

)−
j−1∑
s=1

sb′�s,�,i
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and so, it should satisfy

0 = �
�b

L(b, �, �)

∣∣∣∣
b=�j,�,i

= �(�) − 2��j,�,i −
j−1∑
s=1

s�s,�,i (15)

with

�(�) = �
�b

�
(
F�,x,i[b])∣∣∣∣

b=�j,�,i

= �if
′ {�2 (Fi,�,x

[
�j,�,i

])} �
�b

{
�2 (Fi,�,x [b]

)} |b=�j,�,i

+
∑
i0 �=i

�i0f
′ {�2

(
�′
j,�,i�i0�j,�,i

)} �
�b

{
�2 (Fi0 [b]

)} |b=�j,�,i0
. (16)

Since �′
j,�,i�j,�,i = 1 and �′

s,�,i�j,�,i = 0 for 1�s�j − 1, we have that �(�)′�j,�,i =
2� and �(�)′�s,�,i = s for 1�s�j − 1 . Therefore, (15) can be written as �(�) =∑j

s=1

(
�(�)′�s,�,i

)
�s,�,i . Assumptions A3 and A4 entail that �(�) is differentiable. Thus,

differentiating this last expression with respect to �, we get

�
��

�(�)

∣∣∣∣
�=0

=
j∑

s=1

[(
�(0)′PIFi

(
x, ��,s , F

))
�s +

(
�′
s

�
��

�(�)|�=0

)
�s

+ (�(0)′�s

)
PIFi

(
x, ��,s , F

)]
. (17)

Since Fi is an elliptical distribution and �(G0) = 1, using that �2 (Fi[b]) = b′�ib, we
obtain that �(0) = �

�b
�
(
F0,x,i[b]) |b=�j

= 2�j�j , which implies that �(0)′�s = 0 for

1�s�j − 1. Denote Pj+1 = Ip −∑j
s=1 �s�′

s , then (17) can be written as

Pj+1
�
��

�(�)

∣∣∣∣
�=0

= 2�j

j∑
s=1

�′
j PIFi (x, ��,s , F )�s + 2�j PIFi (x, ��,j , F ). (18)

On the other hand, from (16) and since �(F [b]) =∑k
i=1 �if

(
b′�ib

)
, we have that

�
��

�(�)|�=0 = 2 �̃j PIFi (x, ��,j , F )

+�i

�
�b

[
f ′ {�2 (Fi[b])

}
IF
(

b′x, �2, Fi[b]
)] ∣∣∣∣∣

b=�j

, (19)
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where �̃j =∑k
i=1 �if

′ (�ij

)
�i =∑p

s=1 �js�′
s�s . Again from the equivariance of the scale

estimator, we have

�
�b

[
f ′ {�2 (b′�ib

)}
IF
(

b′x, �2, Fi[b]
)] ∣∣∣∣∣

b=�j

= 2�ij f
′′ (�ij

)
�j �ij IF

(
�′
j x√
�ij

, �2, G0

)

+f ′ (�ij

) {
2�ij�j IF

(
�′
j x√
�ij

, �2, G0

)

+�ij DIF

(
�′
j x√
�ij

, �2, G0

)(
x√
�ij

− �′
j x√
�ij

�j

)}
. (20)

From (19) and (20), we get

�
��

�(�)

∣∣∣∣
�=0

= 2 �̃j PIFi (x, ��,j , F )

+2�i

{
f ′′ (�ij

)
�ij + f ′ (�ij

)}
�ij�j IF

(
�′
j x√
�ij

, �2, G0

)

+�if
′ (�ij

)√
�ij DIF

(
�′
j x√
�ij

, �2, G0

)(
x − �′

j x �j

)
. (21)

Therefore, from (21), (18) can be written as

2�j

j∑
s=1

�′
j PIFi (x, ��,s , F )�s + 2�j PIFi (x, ��,j , F )

= 2 Pj+1 �̃j PIFi (x, ��,j , F )

+�i

√
�ij f

′ (�ij

)
DIF

(
�′
j x√
�ij

, �2, G0

)
Pj+1x. (22)

Note that �′
j,��j,� = 1 entails that PIFi (x, ��,j , F )′�j = 0, therefore (22) is equivalent to

2
(

Pj+1�̃j − �j Ip

)
PIFi (x, ��,j , F ) = 2�j

j−1∑
s=1

�′
j PIFi (x, ��,s , F )�s

−�i

√
�ij f

′ (�ij

)
DIF

(
�′
j x√
�ij

, �2, G0

)
Pj+1x.

The matrix Pj+1�̃j −�j Ip =∑p
s=j+1 �js�s�′

s−�j Ip is a full rank matrix since �js �= �jj for

s �= j , with inverse
(

Pj+1�̃j − �j Ip

)−1 =∑p
s=j+1

1
�js−�j

�s�′
s −∑j

s=1
1
�j

�s�′
s . Then, for

1�s�j − 1, we have
(

Pj+1�̃j − �j Ip

)−1
�s = − 1

�j
�s and

(
Pj+1�̃j − �j Ip

)−1
Pj+1 =
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s=j+1

1
�js−�j

�s�′
s . Hence, we obtain

PIFi (x, ��,j , F ) = −
j−1∑
s=1

�′
j PIFi (x, ��,s , F )�s

−1

2

p∑
s=j+1

1

�js − �j

�s�i

√
�ij f

′ (�ij

)
DIF

(
�′
j x√
�ij

, �2, G0

)
�′
sx,

which implies that

PIFi (x, ��,j , F )′�s = 1

2(�j − �js)
�i

√
�ij f

′ (�ij

)
DIF

(
�′
j x√
�ij

, �2, G0

)
�′
sx,

for any s�j + 1. Finally, using that IF
(
y, �2, G0

) = 2IF (y, �, G0), we get (11).

Proof of Corollary 1. It follows as in [4] using (9), (10), (11) and that
x′�j√

�ij

∼ G0 when

x ∼ Fi .

Proof of Proposition 2. For the sake of simplicity, we will only consider the case when
m > j , the other one being analogous. From (12), we have that the minimum variance

will be attained for a strictly increasing function f that minimizes V (f ) = ∑k
i=1

{
�i

1
2 �i

f ′ (�i�j

)}2 {∑k
i=1 �i

1
2 �i

1
2 �if

′ (�i�j

)}−2 =‖yj‖2
(

y′
j�
)−2

, where yj =
(
�1

1
2 �1

f ′ (�1�j

)
, . . . , �k

1
2 �kf

′ (�k�j

))′
and � =

(
�1

1
2 , . . . , �k

1
2

)′
. The Cauchy–Schwartz

inequality entails
(

y′
j�
)2

�‖yj‖2‖�‖2 and thus V (f )�‖�‖−2 = 1 = V (ln).

Moreover the minimum value of V (f ) is attained if and only if yj and � are collinear,
i.e., if and only if �if

′ (�i�j

) = f ′ (�j

)
, for all i, j . Since there exists at least one �i �= 1

this is verified for arbitrary �i and �j if and only if there exists a �= 0 and b ∈ R such that
f (·) = a ln (·) + b.

Proof of Proposition 3. For the sake of simplicity, we will only consider the case when
m > j , the proof of (ii) being analogous. From (12), we have that the minimum variance
will be attained for the function f ∈ F that minimizes

H() =
∑k

i=1 �iai, mj�
2
ij{∑k

i=1 �i

(
1 − ai, mj

)
�
ij

}2 .

Note that since �i0j > �i0m, ai0, mj �= 1 and the assumption �jm �= �j holds.
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Differentiating with respect to , straightforward calculations lead to

H ′()

=
∑k

i=1 �i�

ij

∑i−1
�=1 ���


�j

[
ln
(
�2
ij

)
− ln

(
�2
�j

)] [
ai, mj

(
1 − a�, mj

)
�
ij − a�, mj

(
1 − ai, mj

)
�
�j

]
{∑k

i=1 �i

(
1 − ai, mj

)
�
ij

}3

= N()

D()
.

Since �ij ��im and �i0j > �i0m, we have D() > 0. On the other hand, the order assump-
tions made among the eigenvalues of the different populations entail that[

ln
(
�2
ij

)
− ln

(
�2
�j

)] [
ai, mj

(
1 − a�, mj

)
�
ij − a�, mj

(
1 − ai, mj

)
�
�j

]
�0,

which implies that N()�0 and thus H() is an increasing function. Hence, its minimum
is attained at  = 0 which corresponds to f (t) = ln(t), as desired. Moreover if there exists,
� < i such that ��j < �ij and a�, mj < ai, mj , then N() > 0 implying that H() is a strictly
increasing function and thus f (t) = ln(t) is the unique minimizer of H().
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