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Some weighted norm inequalities for a one-sided

version of g
∗
λ

by

L. de Rosa and C. Segovia (Buenos Aires)

Abstract. We study the boundedness of the one-sided operator g+
λ,ϕ between the

weighted spaces Lp(M−w) and Lp(w) for every weight w. If λ = 2/p whenever 1 < p < 2,
and in the case p = 1 for λ > 2, we prove the weak type of g+

λ,ϕ. For every λ > 1 and
p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2
and λ > 1, we obtain the boundedness of g+

λ,ϕ from Lp((M−)[p/2]+1w) to Lp(w), where

(M−)k denotes the operator M− iterated k times.

1. Notations and definitions. As usual, S denotes the class of all
those C∞-functions defined on R such that

sup
x∈R

|xm(Dnϕ)(x)| < ∞

for all non-negative integers m and n. We also consider the space C∞
0 of all

C∞-functions defined on R with compact support.
If E ⊂ R is a Lebesgue measurable set, we denote its Lebesgue measure

by |E|, and the characteristic function of E by χE(x).
Let f be a measurable function defined on R. The one-sided Hardy-

Littlewood maximal functions M−f and M+f are given by

M−f(x) = sup
h>0

1

h

x\
x−h

|f(t)| dt, M+f(x) = sup
h>0

1

h

x+h\
x

|f(t)| dt.

A weight w is a measurable and non-negative function defined on R. If
E ⊂ R is a measurable set, we denote its w-measure by w(E) =

T
E w(t) dt.

Given p ≥ 1, Lp(w) is the space of all measurable functions f such that

‖f‖Lp(w) =
( ∞\
−∞

|f(x)|pw(x) dx
)1/p

< ∞.

If w = 1, we simply write Lp and ‖f‖Lp .
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We shall say that a function B : [0,∞) → [0,∞) is a Young function

if it is continuous, convex, increasing and satisfies limt→∞ B(t) = ∞. The
Luxemburg norm of a function f is given by

‖f‖B = inf
{
λ > 0 :

\
B(|f |/λ) ≤ 1

}
,

and the average over an interval I is:

‖f‖B,I = inf
{
λ > 0 :

1

|I|

\
I

B(|f |/λ) ≤ 1
}
.

The one-sided maximal operators associated to B are defined as

M+
B (f)(x) = sup

h>0
‖f‖B,[x,x+h], M−

B (f)(x) = sup
h>0

‖f‖B,[x−h,x].

Let ϕ belong to S and be supported on (−∞, 0] with
T
ϕ(x) dx = 0. For

every λ > 1, the one-sided operator g+
λ,ϕ was defined in [RoSe] as

g+
λ,ϕ(f)(x) =

(∞\
0

∞\
x

(
t

t + y − x

)λ

|f ∗ ϕt(y)|2
dy dt

t2

)1/2

.

Throughout this paper the letter C will always mean a positive constant
not necessarily the same at each occurrence. If 1 < p < ∞ then p′ denotes
its conjugate exponent: p + p′ = pp′.

2. Statement of the results. In [CW], S. Chanillo and R. Wheeden
obtained the boundedness of the area integral between the spaces Lp(Mw)
and Lp(w) when 1 < p ≤ 2. For p = 2 and λ > 1, if the support of ϕ is
compact, they showed in [CW, Lemma (1.1)] that the operator g∗λ,ϕ maps

L2(Mw) into L2(w). We shall give, in Theorem A, a one sided-version of
this result without the restriction on the support of ϕ. For 1 < p < 2 and
λ = 2/p, in order to prove Theorem B below, we use some arguments due to
C. Fefferman (see [F]). As a consequence of Theorems A and B, for 1 < p ≤ 2
and λ > 2/p, we obtain, in Theorem C, the boundedness of g+

λ,ϕ between

Lp(M−w) and Lp(w). For p > 2, the known techniques (see [P]) allow us to
prove Theorem D.

Next, we state the already mentioned Theorems A–D.

Theorem A. Let ϕ ∈ S with supp(ϕ) ⊂ (−∞, 0] and
T
ϕ(x) dx = 0.

Then, for every λ > 1,
( ∞\
−∞

g+
λ,ϕ(f)(x)2w(x) dx

)1/2
≤ Cλ,ϕ

( ∞\
−∞

|f(x)|2M−w(x) dx
)1/2

,

with a constant Cλ,ϕ not depending on f.

Theorem B. Let ϕ ∈ S with supp(ϕ) ⊂ (−∞, 0] and
T
ϕ(x) dx = 0.

Let λ > 2 if p = 1, and λ = 2/p whenever 1 < p < 2. Then there exists a
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constant Cp,λ,w,ϕ such that

w({x : g+
λ,ϕ(f)(x) > µ}) ≤

Cp,λ,w,ϕ

µp

∞\
−∞

|f(x)|pM−w(x) dx

for every function f and µ > 0.

Theorem C. Let ϕ ∈ S with supp(ϕ) ⊂ (−∞, 0] and
T
ϕ(x) dx = 0. Let

1 < p ≤ 2. If λ > 2/p, then there exists a constant Cp,λ,w,ϕ such that

∞\
−∞

g+
λ,ϕ(f)(x)pw(x) dx ≤ Cp,λ,w,ϕ

∞\
−∞

|f(x)|pM−w(x) dx

for every function f.

Theorem D. Let ϕ ∈ S with supp(ϕ) ⊂ (−∞, 0] and
T
ϕ(x) dx = 0. Let

λ > 1 and p > 2. Then there exists a constant Cp,λ,w,ϕ such that

∞\
−∞

g+
λ,ϕ(f)(x)pw(x) dx ≤ Cp,λ,w,ϕ

∞\
−∞

|f(x)|p(M−)[p/2]+1(w)(x) dx.

3. Proof of the results. The following lemma and remark will be used
in the proof of Theorem A.

Lemma 1. Let ϕ∈C∞
0 with supp(ϕ)⊂ [−2s, 0], s≥ 0, and

T
ϕ(x) dx=0.

Then
∞\
−∞

g+
λ,ϕ(f)(x)2w(x) dx ≤ Cλ2sλ

( ∞\
−∞

|ϕ̂(t)|2
dt

|t|

) ∞\
−∞

|f(x)|2M−w(x) dx,

with a constant Cλ depending neither on f nor on ϕ.

Proof. By Fubini’s theorem, we have
∞\
−∞

g+
λ,ϕ(f)(x)2w(x) dx

=

∞\
−∞

∞\
0

∞\
x

(
t

t + y − x

)λ

|f ∗ ϕt(y)|2
dy dt

t2
w(x) dx

=

∞\
0

∞\
−∞

|f ∗ ϕt(y)|2
(

1

t

y\
−∞

(
t

t + y − x

)λ

w(x) dx

)
dy dt

t
.

For each integer k, we consider the set

Ak =

{
(y, t) : 2k−1 <

1

t

y\
−∞

(
t

t + y − x

)λ

w(x) dx ≤ 2k

}
.
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Then

(2)

∞\
−∞

g+
λ,ϕ(f)(x)2w(x) dx ≤

∑

k∈Z

2k
∞\
0

∞\
−∞

|f ∗ ϕt(y)|2χAk
(y, t)

dy dt

t
.

For every (y, t) belonging to Ak and y ≤ z ≤ y + 2st, we have

1

t

z\
−∞

(
t

t + z − x

)λ

w(x) dx ≥
1

2(s+1)λ

1

t

y\
−∞

(
t

t + y − x

)λ

w(x) dx

>
2k−1

2(s+1)λ
.

On the other hand, since λ > 1, there exists a constant Cλ such that for
every z,

1

t

z\
−∞

(
t

t + z − x

)λ

w(x) dx ≤ CλM−w(z).

Therefore, if (y, t) ∈ Ak and y ≤ z ≤ y + 2st then z belongs to Ek = {z :
M−w(z) ≥ (Cλ/2(s+1)λ)2k−1}. Taking into account that supp(ϕ) ⊂ [−2s, 0],
we get

f ∗ ϕt(y) =
\
f(z)χEk

(z)ϕt(y − z) dz = (fχEk
∗ ϕt)(y).

Then, by Plancherel’s and Fubini’s theorems, (2) is majorized by

∑

k∈Z

2k
∞\
0

∞\
−∞

|fχEk
∗ ϕt(y)|2

dy dt

t
=

∑

k∈Z

2k
∞\
−∞

|f̂χEk
(y)|2

∞\
0

|ϕ̂(ty)|2
dt

t
dy.

The inner integral is bounded by Cϕ =
T∞
−∞(|ϕ̂(t)|2/|t|) dt. Thus, applying

Plancherel’s theorem again, we get
∞\
−∞

g+
λ,ϕ(f)(x)2w(x) dx ≤ Cϕ

∞\
−∞

|f(y)|2
∑

k∈Z

2kχEk
(y) dy.

Finally, we observe that by the definition of Ek,∑

k∈Z

2kχEk
(y) ≤ Cλ2sλM−w(y)

for almost every y, ending the proof of the lemma.

Remark. We observe that if ϕ ∈ S and
T
ϕ(x) dx = 0, then

(3)

∞\
−∞

|ϕ̂(s)|2
ds

|s|
≤ 4π2

( ∞\
−∞

|s| |ϕ(s)| ds
)2

+

∞\
−∞

|ϕ(s)|2 ds.

In fact, since
T
ϕ(x) dx = 0, we have

|ϕ̂(s)| =
∣∣∣
∞\
−∞

ϕ(t)(e−2πist − 1) dt
∣∣∣ ≤ 2π|s|

∞\
−∞

|t| |ϕ(t)| dt.
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Consequently, \
|s|≤1

|ϕ̂(s)|2
ds

|s|
≤ 4π2

( ∞\
−∞

|s| |ϕ(s)| ds
)2

.

On the other hand, in view of Plancherel’s theorem\
|s|≥1

|ϕ̂(s)|2
ds

|s|
≤

∞\
−∞

|ϕ̂(s)|2 ds ≤

∞\
−∞

|ϕ(s)|2 ds,

which shows that (3) holds.

Let η be a non-negative and C∞
0 -function with support contained in

[−2,−1] and
T
η(x) dx = 1. For every non-negative integer k, let ηk(x) =

2−kη(2−kx). We define

θ(x) =
\

|x|/2≤|t|≤|x|

η(t) dt.

Then θ ∈ C∞
0 and supp(θ) ⊂ [−4,−1] ∪ [1, 4]. For every positive integer k,

let
θk(x) = θ(2−k+1x),

and for k = 0, let
θ0(x) = 1 −

\
|y|≤|x|

η(y) dy.

Then
∑∞

k=0 θk(x) = 1 for every x. Given ϕ ∈ S with supp(ϕ) ⊂ (−∞, 0]
and

T
ϕ(x) dx = 0, we define

ak =
\k∑

h=0

θh(y)ϕ(y) dy, k ≥ 0, a−1 = 0.

For every non-negative integer k, let ̺k be given by

(4) ̺k(x) = θk(x)ϕ(x) + ak−1ηk−1(x) − akηk(x).

It is easy to check that supp(̺k) ⊂ [−2k+1,−2k−1] for k ≥ 1, and supp(̺0) ⊂
[−2, 0]. Moreover,

T̺
k(x) dx = 0 for every k ≥ 0, and

∑∞
k=0 ̺k = ϕ. We shall

show that for every N > 2,

(5) C̺k
=

∞\
−∞

|̺̂k(s)|
2 ds

|s|
≤ CN,ϕ2−2k(N−2).

By definition of ̺k,

(6)
( ∞\
−∞

|̺k(x)|2 dx
)1/2

≤
( ∞\
−∞

|θk(x)ϕ(x)|2 dx
)1/2

+ |ak−1|
( ∞\
−∞

|ηk−1(x)|2 dx
)1/2

+ |ak|
( ∞\
−∞

|ηk(x)|2 dx
)1/2

.



26 L. de Rosa and C. Segovia

Since 0 ≤ θk(x) ≤ 1 and supp(θkϕ) ⊂ [−2k+1,−2k−1] for k ≥ 1, and
supp(θ0ϕ) ⊂ [−2, 0], we have

( ∞\
−∞

|θk(x)ϕ(x)|2 dx
)1/2

≤
( \

supp(θkϕ)

CN,ϕ

(1 + |x|)2N
dx

)1/2
(7)

≤ CN,ϕ2−k(N−1/2).

By definition of ak, and taking into account that
T
ϕ(x) dx = 0, we get

|ak| =
∣∣∣−
\ ∞∑

h=k+1

θh(y)ϕ(y) dy
∣∣∣ ≤

\
|y|≥2k

|ϕ(y)| dy

≤ CN,ϕ

\
|y|≥2k

dy

(1 + |y|)N
≤ CN,ϕ2−k(N−1).

Thus,

|ak|
( ∞\
−∞

|ηk(x)|2 dx
)1/2

=
|ak|

2k/2

( ∞\
−∞

|η(x)|2dx
)1/2

≤ CN,ϕ2−k(N−1/2).(8)

Then, by (6)–(8),
∞\
−∞

|̺k(x)|2 dx ≤ CN,ϕ2−2k(N−1/2).

Simple calculations show that
∞\
−∞

|x| |̺k(x)|2 dx ≤ CN,ϕ2−2k(N−2).

Now, using (3) we obtain (5).

Proof of Theorem A. We consider the sequence of functions {̺k, k ≥ 0}
defined in (4). Since

∑∞
k=0 ̺k = ϕ and

∑∞
k=0 χsupp(̺k)(x) ≤ 3, we have

f ∗ ϕt(y) =

∞∑

k=0

f ∗ (̺k)t(y)

for every y. Then

(9)
( ∞\
−∞

g+
λ,ϕ(f)(x)2w(x) dx

)1/2

≤

∞∑

k=0

( ∞\
−∞

∞\
0

∞\
x

(
t

t + y − x

)λ

|f ∗ (̺k)t(y)|2
dy dt

t2
w(x) dx

)1/2

=

∞∑

k=0

( ∞\
−∞

g+
λ,̺k

(f)(x)2w(x) dx
)1/2

.
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Keeping in mind that supp(̺k) ⊂ [−2k+1, 0] and
T̺

k(x) dx = 0, we can
apply Lemma 1. Then, by the estimate (5) with N > λ+2, we find that (9)
is bounded by a constant times

∞∑

k=0

2(k+1)λ/2

( ∞\
−∞

|̺̂k(t)|
2 dt

|t|

)1/2( ∞\
−∞

|f(x)|2M−w(x) dx
)1/2

≤ Cλ,ϕ

( ∞\
−∞

|f(x)|2M−w(x) dx
)1/2

.

In order to prove Theorem B, we shall need the following one-sided
Fefferman–Stein type inequality and Lemma 11.

Lemma 10. There exists a positive constant C, such that

w({x : M+(f)(x) > µ}) ≤
C

µ

∞\
−∞

|f(x)|M−w(x) dx

for every function f, and µ > 0.

Proof. The proof is similar to the proof of Theorem 1 in [M, p. 693], and
it shall not be given.

Lemma 11. Let I = (α, β), a bounded interval , 1 < λ < 2, and k ≥ 4.
Then there exists a constant Cλ,k such that for every x < α − 2|I|,

∞\
0

α−2|I|\
x

(
t

t + y − x

)λ(
t

t + α − y

)k dy dt

t4
≤ Cλ,k

|I|λ−2

(α − x)λ
.

Proof. Changing the variables (y, t) to

z = (α − y)/t and u = (α − x)/t,

we obtain
∞\
0

\
α−x≥α−y≥2|I|

(
1

1 + y−x
t

)λ(
1

1 + α−y
t

)k dy dt

t4

=
1

(α − x)2

∞\
0

\
u≥z≥2|I|u/(α−x)

1

(1 + u − z)λ

1

(1 + z)k
u du dz.

We set A = 2|I|/(α − x). Applying Fubini’s theorem, it is enough to show
that

∞\
0

1

(1 + z)k

\
z≤u≤z/A

u

(1 + u − z)λ
du dz ≤ Cλ,kA

λ−2.
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Recalling that 1 < λ < 2, we have
∞\
0

1

(1 + z)k

\
z≤u≤z/A, u−z>u/2

u

(1 + u − z)λ
du dz

≤

∞\
0

1

(1 + z)k

z/A\
0

(
2

u

)λ

u du dz = Cλ

∞\
0

1

(1 + z)k

(
z

A

)2−λ

dz = Aλ−2.

Since k ≥ 4, A < 1 and λ < 2, it follows that
∞\
0

1

(1 + z)k

\
z≤u≤z/A, u−z≤u/2

u

(1 + u − z)λ
du dz

≤

∞\
0

1

(1 + z)k

2z\
0

u du dz = 2

∞\
0

z2

(1 + z)k
dz ≤ CkA

λ−2,

which ends the proof of the lemma.

Proof of Theorem B. By a density argument it is enough to consider f ∈
Lp(M−w)∩Lp. It is well known that the set Ω = {x : M+(|f |p)(x)1/p > µ}
is open. Let {Ij}j≥1 be its connected components. Since f ∈ Lp, each Ij is
a bounded interval, and it is well known (see [HSt, pp. 421–424]) that

(12)
1

|Ij|

\
Ij

|f(x)|p dx = µp.

Given Ij = (αj , βj), we write I−j = (αj − 4|Ij |, αj). By (12), we have

w(I−j ) =
1

µp

\
Ij

|f(x)|p
w(I−j )

|Ij|
dx ≤

5

µp

\
Ij

|f(x)|pM−w(x) dx.

Therefore, if we define Ω̃ =
⋃

j≥1 Ij ∪ I−j , applying Lemma 10 we obtain

w(Ω̃) ≤ w(Ω) +
∑

j≥1

w(I−j )

≤
C

µp

∞\
−∞

|f(x)|pM−w(x) dx +
5

µp

∑

j≥1

\
Ij

|f(x)|pM−w(x) dx

≤
C

µp

∞\
−∞

|f(x)|pM−w(x) dx.

Consequently, it is enough to prove that

(13) w({x /∈ Ω̃ : g+
λ,ϕ(f)(x) > µ}) ≤

C

µp

∞\
−∞

|f(x)|pM−w(x) dx.
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We define

g(x) = f(x)χΩc(x) +
∑

j≥1

(
1

|Ij |

\
Ij

f

)
χIj (x),

bj(x) =

(
f(x) −

1

|Ij|

\
Ij

f

)
χIj (x), j ≥ 1.

Then f = g + b where b =
∑

j≥1 bj .
By Chebyshev’s inequality and applying Theorem A, we get

(14) w({x /∈ Ω̃ : g+
λ,ϕ(f)(x) > µ}) ≤

1

µ2

\̃
Ωc

g+
λ,ϕ(g)(x)2w(x) dx

≤
C

µ2

∞\
−∞

|g(x)|2M−(wχ
Ω̃c)(x) dx

=
C

µ2

∞\
−∞

|g(x)|2−p|g(x)|pM−(wχ
Ω̃c)(x) dx.

We observe that |g(x)| ≤ µ almost everywhere. Then, by the definition of g
and Hölder’s inequality, (14) is bounded by

C

µp

[ \
Ωc

|f(x)|pM−(wχ
Ω̃c)(x) dx+

∑

j≥1

\
Ij

(
1

|Ij|

\
Ij

|f(z)|p dz

)
M−(wχ

Ω̃c)(x)dx

]
.

It is easy to see that M−(wχ
Ω̃c)(x) ≤ CM−(w)(z) for every x, z ∈ Ij . Thus,

(15) w({x /∈ Ω̃ : g+
λ,ϕ(g)(x) > µ}) ≤

C

µp

∞\
−∞

|f(x)|pM−w(x) dx.

We define I∗j = (αj − 2|Ij |, βj) for every j ≥ 1. We can write

(16) g+
λ,ϕ(b)(x) ≤ g1(x) + g2(x),

where

g1(x) =

(∞\
0

∞\
x

(
t

t + y − x

)λ∣∣∣
∑

i : y/∈I∗i

bi ∗ ϕt(y)
∣∣∣
2 dy dt

t2

)1/2

,

g2(x) =

(∞\
0

∞\
x

(
t

t + y − x

)λ∣∣∣∣
∑

i : y∈I∗i

bi ∗ ϕt(y)

∣∣∣∣
2 dy dt

t2

)1/2

.

Let us consider g1(x). Taking into account that bi ∗ ϕt(y) = 0 if y > βi,
and

T
|bi(z)| dz ≤ 2|Ii|µ, it follows that

∣∣∣
∑

i : y/∈I∗i

bi ∗ ϕt(y)
∣∣∣ ≤

2µ

t

∑

i : y/∈I∗i , y<βi

|Ii| sup
z∈Ii

∣∣∣∣ϕ
(

y − z

t

)∣∣∣∣.
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Since ϕ ∈ S, and supp(ϕ) ⊂ (−∞, 0], we deduce that
∣∣∣∣ϕ

(
y − z

t

)∣∣∣∣ ≤
C

(
1 + w−y

t

)2 for y /∈ I∗i and z, w ∈ Ii.

Then ∣∣∣
∑

i : y/∈I∗i

bi ∗ ϕt(y)
∣∣∣ ≤

Cµ

t

∑

i : y/∈I∗i , y<βi

\
Ii

dw
(
1 + w−y

t

)2 ≤ cµ.

Therefore,

g1(x)2 ≤ Cµ

∞\
0

∞\
x

(
t

t + y − x

)λ∣∣∣
∑

i : y/∈I∗i

bi ∗ ϕt(y)
∣∣∣
dy dt

t2
= CµF (x),

and by Chebyshev’s inequality we get

(17) w({x /∈ Ω̃ : g1(x) > µ}) ≤
C

µ

\̃
Ωc

F (x)w(x) dx.

Since
T
bi(z) dz = 0, applying the mean value theorem, for every y ≤ αi−2|Ii|

we obtain the estimate

|bi ∗ ϕt(y)| ≤
1

t

\
|bi(z)|

∣∣∣∣ϕ
(

y − z

t

)
− ϕ

(
y − αi

t

)∣∣∣∣ dz

≤
C

t

\
Ii

|bi(z)|

∣∣∣∣
z − αi

t

∣∣∣∣
(

t

t + αi − y

)4

dz

≤ C|Ii|
t2

(t + αi − y)4

\
Ii

|f(z)| dz.

Then, by the definition of F (x), (17) is majorized by

(18)
C

µ

∑

i≥1

\
Ii

|f(z)| dz
\̃

Ωc

|Ii|

∞\
0

\
x<y<βi, y /∈I∗i

(
t

t + y − x

)λ′

×
1

(t + αi − y)4
dy dt w(x) dx,

where 1 < λ′ < inf(λ, 2). Now, applying Lemma 11 with k = 4, we find that
(18) is bounded by

C

µ

∑

i≥1

\
Ii

|f(z)| dz

αi−4|Ii|\
−∞

|Ii|
λ′−1

(αi − x)λ′ w(x)χ
Ω̃c(x) dx.

The inner integral is bounded by CM−(wχ
Ω̃c)(αi). It is easy to verify that,

by Hölder’s inequality and (12),
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1

µ

\
Ii

|f | ≤
1

µp

\
Ii

|f |p.

Thus, we obtain

w({x /∈ Ω̃ : g1(x) > µ}) ≤
C

µp

∑

i

\
Ii

|f(z)|p dz M−(wχ
Ω̃c)(αi)(19)

≤
C

µp

∞\
−∞

|f(z)|pM−w(z) dz.

Now, let us consider g2(x). By (12), there exists an integer k0 such that
|Ij | ≤ ‖f‖p

pµ−p ≤ 2k0 for every j ≥ 1. Let Ak = {j : 2k−1 < |Ij| ≤ 2k},
k ≤ k0. We can write ⋃

j≥1

I∗j =
⋃

k≤k0

⋃

j∈Ak

E∗
j ,

where E∗
j = I∗j \

⋃
l>k

⋃
s∈Al

I∗s for each j ∈ Ak. We observe that if I∗i ∩ E∗
j

is not empty then I∗i ⊂ I ′j , where I ′j is the interval with the same center of

Ij and with measure 20|Ij|. For each x /∈ Ω̃, we have

g2(x)2 =
∑

k≤k0

∑

j∈Ak

∞\
0

\
x<y, y∈E∗

j

(
t

t + y − x

)λ∣∣∣∣
∑

i : y∈I∗i

bi ∗ ϕt(y)

∣∣∣∣
2 dy dt

t2
.

We observe that if x /∈ Ω̃c, x < y and y ∈ E∗
j then x < αj − 4|Ij| and

t + y − x ≥ (αj − x) − (αj − y) ≥ (αj − x)/2. Then

g2(x)2 ≤ C
∑

k≤k0

∑

j∈Ak, x<αj

1

(αj − x)λ
(20)

×

∞\
0

\
x<y, y∈E∗

j

tλ−2
∣∣∣

∑

i : y∈I∗i

bi ∗ ϕt(y)
∣∣∣
2
dy dt.

If we define Dj =
⋃

i : E∗
j ∩I∗i 6=∅ Ii and bj(x) = |b(x)|χDj(x) then, for every

y ∈ E∗
j , we obtain

∣∣∣
∑

i : y∈I∗i

bi ∗ ϕt(y)
∣∣∣ ≤

∑

i : y∈I∗i

\
Ii

|b(z)| |ϕt(y − z)| dz

≤
\

⋃
i : E∗

j
∩I∗

i
6=∅ Ii

|b(z)| |ϕt(y − z)| dz

≤
\

Dj

|b(z)| |ϕt(y − z)| dz = (bj ∗ |ϕ|t)(y).
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Consequently, by (20), we have

g2(x)2 ≤ C
∑

k≤k0

∑

j∈Ak, x<αj

1

(αj − x)λ
(21)

×

∞\
0

\
x<y, y∈E∗

j

tλ−2|(bj ∗ |ϕ|t)(y)|2 dy dt.

We claim that

(22)

∞\
0

\
E∗

j

tλ−2|(bj ∗ |ϕ|t)(y)|2 dy dt ≤ C|E∗
j |

λ−2/p‖bj‖2
p.

In fact, by Fubini’s theorem, we have
∞\
0

tλ−2|(bj ∗ |ϕ|t)(y)|2 dt

=

∞\
y

bj(z)

∞\
y

bj(w)

∞\
0

tλ−4|ϕ|

(
y − z

t

)
|ϕ|

(
y − w

t

)
dt dw dz.

Since ϕ ∈ S, and λ < 3,
∞\
0

tλ−4|ϕ|

(
y − z

t

)
|ϕ|

(
y − w

t

)
dt

≤ C

∞\
0

tλ−4 1
(
1 + z−y

t

)2

1
(
1 + w−y

t

)2 dt

≤ C

∞\
0

tλ−4

(
1 + z+w−2y

t

)2 dt = Cλ(z + w − 2y)λ−3.

Then the left hand side of (22) is bounded by

C
\

E∗
j

∞\
y

bj(z)

∞\
y

bj(w)
1

(z + w − 2y)3−λ
dw dz dy

≤ C ′
\

E∗
j

∞\
y

bj(z)

(z − y)(3−λ)/2
dz

∞\
y

bj(w)

(w − y)(3−λ)/2
dw dy

≤ C ′
\

E∗
j

|I+
(λ−1)/2(b

j)(y)|2 dy,

where I+
(λ−1)/2 denotes the one-sided fractional integral operator of order

(λ − 1)/2. In the case 1 < p < 2 and λ = 2/p, since, as is well known,
I+
(λ−1)/2 is a bounded operator from Lp to L2, it follows that (22) holds.
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For 2 < λ < 3, the operator I+
(λ−1)/2

maps L1 into weak-L2/(3−λ). Then, by

Kolmogorov’s condition (see [GRu, p. 485]), we obtain (22).

On the other hand, since
T
|bi(y)|p dy ≤ (2µ)p|Ii|, we have

‖bj‖p ≤
( ∑

i : E∗
j ∩I∗i 6=∅

(2µ)p|Ii|
)1/p

≤ 2µ|I ′j|
1/p = Cµ|Ij|

1/p.

Therefore, by (21) and (22) we get

g2(x)2 ≤ C ′µ2
∑

k≤k0

∑

j∈Ak, x<αj

|Ij |
λ

(αj − x)λ
.

Consequently,

w({x /∈ Ω̃ : g2(x) > µ}) ≤ C
∑

j

|Ij |
λ

αj−4|Ij |\
−∞

w(x)χ
Ω̃c(x)

(αj − x)λ
dx(23)

≤
C

µp

∑

j

\
Ij

|f(z)|p dz M−(wχ
Ω̃c)(αj)

≤
C

µp

∞\
−∞

|f(z)|pM−w(z) dz.

From (15), (16), (19) and (23) we deduce that (13) holds for λ = 2/p if
1 < p < 2 and for 2 < λ < 3 if p = 1. Taking into account that if λ1 ≤ λ2

then g+
λ2,ϕ(f)(x) ≤ g+

λ1,ϕ(f)(x), the proof of the theorem is complete.

We now deduce Theorem C from Theorems A and B.

Proof of Theorem C. The case p = 2 and λ > 1 was considered in
Theorem A. Let 1 < p < 2 and 2/p < λ < 2. We have λ = 2/q with
1 < q < p. Then, by Theorem B, g+

λ,ϕ maps Lq(M−w) into weak-Lq(w).

Since g+
λ,ϕ is bounded from L2(M−w) to L2(w), by interpolation, we get the

assertion for λ < 2. The case λ ≥ 2 follows by simple arguments.

The following remark shows that for λ = 2 and p = 1, a weak type
inequality as in Theorem B cannot be valid.

Remark. Let ϕ 6= 0 belong to S with supp(ϕ) ⊂ [−1, 0] and
T
ϕ(x) dx

= 0. There exists f ∈ L1 such that g+
2,ϕ(f)(x) = ∞ for every x belonging to

an unbounded set.

In fact, we consider

f(t) =

(
1

|t| ln3/2(1/|t|)
− c

)
χ[−1/2,0](t),
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where c is the unique constant such that
T
f(t) dt = 0. For every x < −4, we

have

(24) g+
2,ϕ(f)(x)2 ≥

1

(1 − x)2

1\
0

0\
−2

|f ∗ ϕt(y)|2 dy dt.

The support of f ∗ ϕt is contained in (−∞, 0] and the fractional integral
I1/2(f) /∈ L2 (see [Z, p. 232]). Then Plancherel’s theorem yields

A :=

∞\
0

0\
−∞

|f ∗ ϕt(y)|2 dy dt =

∞\
0

∞\
−∞

|ϕ̂(ty)|2|f̂(y)|2 dy dt

≥ Cϕ

∞\
−∞

|f̂(y)|2

|y|
dy

= Cϕ

∞\
−∞

|I1/2(f)(y)|2 dy = ∞.

Applying the mean value theorem, for every y ≤ −2 we obtain

|f ∗ ϕt(y)| ≤
1

t

0\
−1/2

|f(z)|

∣∣∣∣ϕ
(

y − z

t

)
− ϕ

(
y

t

)∣∣∣∣ dz

≤
1

t

0\
−1/2

|f(z)|
|z|

t
Cϕ

(
t

t + |y|

)2

dz ≤ C
1

(t + |y|)2
.

Using these inequalities we get

A1 :=

∞\
0

−2\
−∞

|f ∗ ϕt(y)|2 dy dt ≤ C

∞\
0

−2\
−∞

1

(t + |y|)4
dy dt < ∞.

Since |f ∗ ϕt(y)| ≤ 1
t ‖ϕ‖∞‖f‖1, we have

A2 :=

∞\
1

0\
−2

|f ∗ ϕt(y)|2 dy dt ≤ C

∞\
1

0\
−2

1

t2
dy dt < ∞.

By (24) and the estimates obtained for A, A1, and A2 it follows that
g+
2,ϕ(f)(x) = ∞ for every x < −4.

To prove Theorem D, we proceed as in Theorem 1.10 of [P, p. 150].

Proof of Theorem D. More generally, we shall prove that

∞\
−∞

g+
λ,ϕ(f)(x)pw(x) dx ≤ C

∞\
−∞

|f(x)|pM−
B (w2/p)(x)p/2 dx,
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where B is a Young function that satisfies

(25)

∞\
c

(
tp/2

B(t)

)(p/2)′−1 dt

t
< ∞.

In the case B(t) ≈ tp/2(1 + ln+ t)[p/2], we get Theorem D.
Let r = p/2. We have

I = ‖g+
λ,ϕ(f)‖2

Lp(w) = ‖g+
λ,ϕ(f)2w1/r‖Lr =

∞\
−∞

g+
λ,ϕ(f)(x)2w(x)1/rg(x) dx,

for some g ∈ Lr′ with unit norm. We recall that

M−(g1g2)(x) ≤ M−
B (g1)(x)M−

B
(g2)(x),

where B is the complementary function to B. Then Theorem A and Hölder’s
inequality yield

I ≤ C

∞\
−∞

|f(x)|2M−(w1/rg)(x) dx

≤ C

∞\
−∞

|f(x)|2M−
B (w1/r)(x)M−

B
(g)(x) dx

≤ C
( ∞\
−∞

|f(x)|pM−
B (w1/r)(x)p/2 dx

)2/p( ∞\
−∞

M−
B

(g)(x)r′ dx
)1/r′

= C‖f‖2
Lp(v)‖M

−
B

(g)‖Lr′ ,

where v = M−
B (w1/r)(x)r. By Theorem 2.6 in [RiRoT], if B satisfies (25),

then

I ≤ C‖f‖2
Lp(v)‖g‖Lr′ ≤ C‖f‖2

Lp(v).

It is easy to check that M−
B (w1/r)(x)r = M−

B̃
(w)(x), where B̃(t) = B(t1/r).

If B̃(t) = t(1 + ln+ t)[r] then B satisfies (25), and by Proposition 2.15 in
[RiRoT] there exist two constants C1 and C2 such that

C1M
−

B̃
(w)(x) ≤ (M−)[r]+1w(x) ≤ C2M

−

B̃
(w)(x),

which completes the proof.
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