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We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using
a propagating modulation of the medium connecting the two bodies. This phonon pump can cool
nanomechanical systems without the need for active feedback. We compute the lowest temperature
that this refrigerator can achieve.

Freezing out atomic motion by cooling matter to ab-
solute zero temperature is a thought that has, for ages,
fascinated both scientists and laymen alike. In atomic
gases, techniques such as evaporative cooling can bring
temperatures down to the submicrokelvin scale, allow-
ing for the observation of quantum phenomena such as
Bose-Einstein condensation. In solid state matter, the
ionic motion takes the form of oscillations around equi-
librium positions, and completely freezing the system (in
the case of an insulator) means removing all lattice vibra-
tions – phonons – leaving solely the quantum mechanical
zero-point motion.
The quest for observing quantized mechanical motion

in macroscopic systems has incited several experimental
groups in recent years [1]. In most cases, cooling is ob-
tained by a feedback mechanism which involves optical
or electronic sensors and some control system that acts
directly on a cantilever.
In this paper, we argue that it is possible to cool a

nanomechanical system without relying on feedback con-
trol. The mechanism we propose acts directly on the
acoustic phonons carrying heat in and out of the system
without the need for monitoring its state. By deform-
ing the lattice in the medium connecting the mechanical
system to its phonon thermal reservoir, one can pump
heat against a temperature gradient by extracting out
phonons. The mechanism resembles a classical cooling
cycle of a thermal machine and its physical basis is time-
reversal symmetry breaking. The pump works in both
coherent and incoherent phonon regime.
Quantum coherent electron pumps have been studied

extensively since Thouless’s original proposal [2]. For in-
stance, using lateral quantum dots and quantum wires,
charge [3], spin [4, 5], and heat [6] currents can be cre-
ated in the absence of bias by modulating adiabatically
and periodically in time two independent external pa-
rameters. In contrast, pumping massless bosons such as
acoustic phonons is a much more subtle problem. For
one, it is much harder to pump adiabatically phonons due
to the lack of a large energy scale such as the Fermi en-
ergy. Moreover, phonons not only obey a different wave
equation but are also not conserved when scattered by

external perturbations that couple linearly to the dis-
placement field (i.e., a driving force). The result in this
case is entropy generation in addition to pumping.

C A’

B

CB

A

cold (L)

(L)cold hot (R)

(R)(L)cold

(R)

hot

hot

FIG. 1: Pumping cycle: A→B→C→A′ (see text for an ex-
planation). A traveling lattice perturbation acts as a semi-
reflective barrier moving from cold to hot reservoir. The wide
arrows indicate unimpeded heat flow.

In practice on can pump phonons with minimum heat
generation by coupling quadratically to the displacement
field, either by locally modulating the propagation ve-
locity or by locally applying a pinning potential. An ex-
treme example of a pinning perturbation, which preserves
phonon number, is one that imposes Dirichlet boundary
conditions to the displacement field at a given point in
space. When such a perturbation travels along a quasi-
one-dimensional medium, it works as a linear peristaltic
pump. Below, we show that this mechanism allows for
cooling down the system to a minimum temperature Tmin

which, in one-dimension, is given by the expression

Tmin =

√

√

Θ4
B + T 4

H −Θ2
B, (1)

with ΘB = (λ/4π)
√

5(1 + γ)vB/πc, where TH is the tem-
perature of the hot thermal reservoir, λ is the perturba-
tion strength, c is the phonon velocity, vB is the barrier
speed, and γ is the Grüneisen parameter of the lattice.
A scheme of the pumping cycle is shown in Fig. 1,
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where the nanomechanical system to be cooled is rep-
resented by the left (cold) side. The local modulation
in the phonon velocity or pinning potential works like a
moving semi-reflective barrier to the phonons. In process
A→B, the barrier is translated from the cold to the hot
side of a cavity-like region. After it reaches the endpoint,
another barrier-like perturbation is activated at the op-
posite side of the cavity (process B→C). Then, in C→A′,
the first barrier is deactivated and phonons from the hot
reservoir free expand into the cavity. The procedure is
then repeated.
Interesting issues arise out of this simple process of

moving a reflective barrier (a “mirror”) for phonons, in
particular that of phonon pressure across the barrier. In-
deed, a similar process to the one described above was
used by Bartoli when he attempted to show the ap-
plicability of thermodynamics to electromagnetism and
raised the question of radiation pressure [7], which in
turn inspired Boltzmann in his studies of blackbody ra-
diation [8]. The issue of phonon pressure is not trivial
(and more subtle than the case of photons) as phonons
carry crystal momentum (q) but not obviously physi-
cal linear momentum (denoted by p). The connection
between these two forms of momentum requires anhar-
monicity and is given by pq = γh̄q [9–11].
Let us then start by discussing first the simpler case

of a fully reflective barrier. In this case, we can treat the
problem as a “gas” of phonons, which we cycle according
to Fig. 1. Notice that the barrier does not let heat pass
through and the cooling will be due to the removal of
internal energy from the left-hand side, dumping it into
the right-hand side, as explained below.
The expansion A → B is adiabatic and reversible

(∆SR,L = 0, i.e., no heat exchange between left- and
right-hand sides), so if the barrier moves to the right,
the change in internal energies on the two sides are
EB

L = EA
L −pLVpipe and EB

R = EA
R+pRVpipe, where Vpipe

is the swept volume. Then, once we insert the other bar-
rier to get to C, we redraw the boundary of what L is.
The volume of L changes by a factor (VL − Vpipe)/VL.

So in C we have EC
L =

(

1−
Vpipe

VL

)

EB
L , EC

R = EB
R , and

EC
pipe =

Vpipe

VL

EB
L , where the last energy is the one in-

side the “pipe”. Then, once the right barrier is removed
in going C → A′, one redraws the boundary of what R
is, so EA′

L = EC
L and EA′

R = EC
R + EC

pipe. Putting it all
together, we have

∆EA→A′

L =

(

1−
Vpipe

VL

)

(

EA
L − pLVpipe

)

− EA
L

= − (eL + pL)Vpipe + . . . , (2a)

∆EA→A′

R =
Vpipe

VL

(

EA
L − pLVpipe

)

+ pRVpipe

= (eL + pR)Vpipe + . . . , (2b)

where . . . stand for terms down by powers of Vpipe/VL,R,
and eR,L = ER,L/VR,L are the intensive energy densities

in the two sides. All the work done occurs between A →
B, and is given by

WA→A′

= (pR − pL)Vpipe + . . . , (2c)

where the leading term is insensitive to changes in the
pressures pL,R as the volume expands. Notice that
the first law of thermodynamics is clearly satisfied via
Eqs. (2a,2b,2c). All entropy increase occurs when the
barrier is removed in going C → A′, and the second law
is also satisfied.

From this analysis, we can compute the energy flux
out of the left reservoir per unit time of operation of the
cycle:

J E
L = (eL + pL) vB, (3)

where vB is the barrier speed. Here we use for total time
the duration of the A → B stroke, assuming that the
equilibration in the entropy production part C → A′ is
fast compared to this time.

The expression in Eq. (3) holds for a gas of parti-
cles, photons, or phonons. For our case of interest,
eL = ηdT

d+1
L /cd and pL = γ eL/d, where d is the

spatial dimension, c is the phonon velocity and ηd =
2g d! ζ(d + 1)/[(4π)d/2Γ(d/2)]. The Riemann zeta func-
tion and the Gamma function are denoted by ζ(z) and
Γ(z), respectively while g is a degeneracy factor. Notice
that the energy flux depends only on the intensive quan-
tities for the system on the left (and thus on TL), and
not on any property on the right-hand side of the bar-
rier, in particular its temperature. Of course, this is a
straightforward consequence of the fact that the barrier
is perfectly reflective, so one is not faced with the diffi-
culty of fighting a thermal gradient between the hot and
cold reservoirs. The idealized situation, however, serves
the purpose of displaying clearly the main principle for
the cooling mechanism we discuss in this paper.

Let us then turn the discussion to the less idealized
situation when the barrier is not perfectly reflective, al-
lowing some heat to be transmitted from the hot to the
cold side. In this case, we intuitively expect that the
slower we move the barrier, the more difficult it becomes
to cool, because the energy transferred in the operation
A → B → C → A′ depends only on the volume swept by
the barrier, but not on the rate (as long as the A → B
stroke is done in a quasi-equilibrium situation, allowing
for thermal equilibration on both sides of the barrier). In
addition, the longer we take to move the barrier to the
right in the A → B stroke, the more heat is transferred
through the transmitting barrier (the total transfer scales
linearly with the sweeping time). So let us now compute
the heat flow through the moving barrier, and the con-
ditions to attain net cooling for a semi-reflective barrier
moving with speed vB . Hereafter, for the sake of simplic-
ity, we focus on a purely one-dimensional case.
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For concreteness, consider a “moving mirror” corre-
sponding to a region in space where the atoms are cou-
pled to an external short-range potential, which is lo-
calized in space. The position of this pinning potential
is modulated in time so as to make it travel at speed
vB, causing the reflection and transmission coefficients
to depend on the red and blue shifted frequencies of
the phonons coming from the two reservoirs. Acous-
tic phonons in a one-dimensional chain, interacting with
such a “moving mirror” potential of strength λ, obey the
following wave equation in the continuum limit:

∂2
t u(x, t)− c2∂2

xu(x, t) = −λ c δ(x− vB t) u(x, t), (4)

It is simpler to work in the reference frame of the barrier,
t′ = t and x′ = x−vBt, where the wave equation becomes

[

(∂t′ − vB ∂x′)
2
− c2∂2

x′

]

u(x′, t′) = −λ c δ(x′)u(x′, t′).

(5)
The function u(x′, t′) and its partial time derivatives

are continuous, but its partial space derivative is not.
Then, integrating Eq. (5) between 0− and 0+, we get
the following boundary conditions in the barrier reference
frame:

u(0−, t′) = u(0+, t′), (6a)

(

v2B − c2
) [

∂x′u(0+, t′)− ∂x′u(0−, t′)
]

=

−
λ c

2

(

u(0+, t′) + u(0−, t′)
)

. (6b)

Let us consider plane wave solutions to Eq. (5) in the
two regions, to the left of the barrier (with amplitudes
A−

ω and B−
ω ) and to its right (with A+

ω and B+
ω ):

u±(x
′, t′) =

∫

dω eiωt′
(

A±
ω e

−iωx′/vR +B±
ω eiωx′/vL

)

,

(7)
with vR = c − vB and vL = c + vB . The boundary
conditions (6a,6b) can be recast in a matrix form,

M+(ω)

(

A+
ω

B+
ω

)

= M−(ω)

(

A−
ω

B−
ω

)

(8a)

where

M±(ω) =

(

1 1
−iω vL ∓ λ c/2 iω vR ∓ λ c/2

)

. (8b)

The transfer matrix T (ω) relating

(

A+
ω

B+
ω

)

to

(

A−
ω

B−
ω

)

is

T (ω) = [M+(ω)]
−1

M−(ω) . From this transfer matrix,
one obtains the needed scattering matrix:

S(ω) =

(

1
1+i2ω/λ

i2ω/λ
1+i2ω/λ

−i2ω/λ
1+i2ω/λ

−1
1+i2ω/λ

)

. (9)

Now, to determine the heat transmission and reflec-
tion coefficients, one needs to go back to the frame of
reference of laboratory (i.e., that of the reservoirs). The
reason is that the Bose-Einstein occupation numbers of
the phonons are known in the rest frame of the reservoirs.
In the laboratory frame, the solutions to Eqs. (4) away
from the barrier are (to the left and right, respectively)

u±(x, t) =

∫

dω eiωt
(

a±ω e
−iωx/c + b±ω e

iωx/c
)

. (10)

These solutions can be matched to the mirror frame so-
lutions Eq. (7) via the frequency rescalings

A±
ω =

(

c

vR

)

a±ωc/vR
, B±

ω =

(

c

vL

)

b±ωc/vL
. (11)

We know that the phonons leaving the reservoirs sat-
isfy Bose-Einstein distributions at temperatures TL,R:

〈a−ω
†
a−ω 〉 = nL(ω) and 〈b+ω

†
b+ω 〉 = nR(ω). Moreover,

phonons incoming from different reservoirs are uncorre-

lated: 〈a−ω
†
b+ω 〉 = 〈b+ω

†
a−ω 〉 = 0. Thus, the heat current

leaving the left reservoir is

J Q
L = Ia− − Ib− (12)

where

Ia− =

∫ ∞

0

dω ω [nL(ω) + 1] , (13)

Ib− =

∫ ∞

0

dω ω
[

〈b−ω
†
b−ω 〉+ 1

]

. (14)

To compute Ib− we need to express 〈b−ω
†
b−ω 〉 in terms of

the known distributions nL,R(ω). Using the scattering
matrix elements, after a few manipulations we can write

〈b−ω
†
b−ω 〉 =

(

vL
vR

)2
∣

∣

∣
S11

(ωvL
c

)∣

∣

∣

2

nL

(

ωvL
vR

)

+
∣

∣

∣
S12

(ωvL
c

)∣

∣

∣

2

nR(ω) , (15)

from which we obtain (using |S11|
2 + |S12|

2 = 1 and
rescaling some integration variables)

JQ
L =

∫

dω ω |S12 (ω)|
2
[nL(ω)− nR(ω)]

+

∫

dω ω |S11(ω)|
2

{[

nL(ω)−

(

c

vR

)2

nL

(

ωc

vR

)

]

−

[

nR(ω)−

(

c

vL

)2

nR

(

ωc

vL

)

]}

. (16)

The first line of Eq. (16) is the thermal heat current
Ithermal from left to right in the presence of a non-moving
barrier. The second line, which we name Ipump, re-
sults from the barrier motion and it is clearly zero when
vB → 0 (vL = vR = c). In the limit when the barrier
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amplitude is high, λ ≫ TR,L, we obtain for the total heat
current

J Q
L ≈

4π4

15

1

λ2c2
(

T 4
L v2R − T 4

R v2L
)

. (17)

Notice that this current is always negative if TL < TR and
vB > 0 (with vR > vL), thus, as expected, we are fighting
this heat flux with the energy flux of Eq. (3). A net flux

of energy is indeed possible if we satisfy J E
L + J Q

L > 0,
which requires

T 2
L >

8π3

5

1

λ2cvB(1 + γ)

(

T 4
Rv

2
L − T 4

Lv
2
R

)

. (18)

As mentioned earlier, for a fully reflective barrier (λ →
∞), cooling can be obtained for any temperature gra-
dient. For a semi-reflective barrier, to leading order
in vB/c, cooling requires TL > Tmin, where Tmin is
given by Eq. (1) with TH = TR. Notice that when
TL = TR = T , the proposed mechanism also allows
one to transfer heat between reservoirs provided that
T/λ < (1/4π)

√

5(1 + γ)/2π, independently of the bar-
rier speed.
A few remarks are in order. First, even though the in-

equality (18) is weakly dependent on γ, anharmonicity is
crucial for the operation of the cooling mechanism. With-
out anharmonicity, there would be no equilibration and
thermalization with the left and right reservoirs as the
barrier moves and heat tranverses the barrier. A lower
bound on the the value of the Grüneisen parameter that
can lead to refrigeration can be established by imposing
that the phonon relaxation time is much shorter than the
time required to move the barrier at speed vB between
reservoirs. Second, work is inevitably done when the bar-
riers are activated and deactivated during the B → C
and C → A′ processes. However, during a fixed cycle,
this work does not scale with the length of the cavity
connecting the two reservoirs, while the amount of en-
ergy extracted from the cold reservoirs does. Therefore,
the contribution of this work to the energy balance of the
cooling process can be made very small for a sufficiently
long cavity and we neglected it. Finally, although Eq.
(16) has been derived assuming coherent heat transport,
Eq. (3) does not rely on quantum coherence. Therefore,
coherence is not an essential ingredient of the present
heat pump.
For a practical implementation of this cooling mecha-

nism, one has to produce a local and propagating pinning
potential which couples to the atomic vibrational motion,
or alternatively a propagating variation of the sound ve-
locity of the medium. In fact, it is likely unavoidable that
both effects occur simultaneously and what is most im-
portant is that the combined effect consists of creating a
propagating barrier for phonons. An effective way of gen-
erating a moving pinning potential is by using some sort
of electromechanical coupling (for instance by back gat-
ing), which is prefered to a purely mecanical one because

it allows for faster switching times. Following this reason-
ing, strongly electrostrictive materials at the nanoscale,
in which local changes in the phonon couplings arise from
anharmonic effects, should be the most attractive active
media for realizing our heat pump. In particular, car-
bon or boron nitride nanotubes appear to be a promising
class of materials for several reasons: (1) Measurements
of nanoscale heat transport in nanotubes, although chal-
lenging, have already been performed by several groups
[12–14]; (2) There are theoretical predictions of giant
electrostrictive effects for both carbon [15] and boron
nitride [16]; (3) Current technology and engineering of
nanotube electromechanical devices are at an advanced
level, as exemplified by development of carbon-nanotube
nonvolatile electromechanical memories [17]. Another
promising class of materials are strongly electrostrictive
polymers such as poly-vinylidene fluoride (PVDF), in
which giant electrostriction has been observed [18]. Re-
cent theoretical predictions show that electric fields can
virtually block the torsion modes contribution to heat
transmission in PVDF [19], which would be equivalent
to introducing an infinite barrier for such phonons in our
scheme. Graphene is also an attractive possibility, since
it has been experimentally demonstrated that substrate
interactions (which can be tuned by gating) can strongly
modulate the contribution of the ZA flexural modes to
the thermal conductance of this material [20]. These
modes, which have quadratic dispersion (zero sound ve-
locity) for an unperturbed graphene sheet, can become
linearly dispersive in strained graphene, therefore leading
to substantial variations in the phonon propagation for
these modes.
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