Proc. Natl. Acad. Sci. USA
Vol. 96, pp. 6060—6063, May 1999
Biochemistry

Fire-diffuse-fire model of dynamics of intracellular calcium waves
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ABSTRACT When Ca2™ is released from internal stores
in living cells, the resulting wave of increased concentration
can travel without deformation (continuous propagation) or
with burst-like behavior (saltatory propagation). We analyze
the “fire-diffuse—fire” model in order to illuminate the
differences between these two modes of propagation. We show
that the Ca?* release wave in immature Xenopus oocytes and
cardiac myocytes is saltatory, whereas the fertilization wave in
the mature oocyte is continuous.

Traveling waves in living cells can vary greatly in their appear-
ance. For example, the calcium wave in immature Xenopus frog
eggs propagates as a sequence of bursts (1-4) (Fig. la),
whereas the calcium wave that occurs during fertilization in
mature Xenopus eggs appears to be continuous (5, 6) (Fig. 1b).
It is commonly believed that information is encoded in the
time course of the Ca* signal (7-12). Thus, the distinction
between these two modes of propagation likely has physiolog-
ical significance. Remarkably, the waves in both cell types
involve the release of calcium from internal stores via mech-
anisms that are physically and biologically similar.

We report here a simple physical model that allows us to
characterize these behaviors as limiting cases. A prominent
feature of this model is the existence of a new time scale in
addition to the usual chemical time scales, namely the intersite
diffusion time, d?/D. (Here, D is the diffusion coefficient and
d is the source separation.) If intersite diffusion is rate-limiting,
the wave will exhibit burst-like (or saltatory) behavior (Figs. la
and 2a). If chemical processes are rate-limiting (i.e., slow
compared to intersite diffusion), then the resulting wave will
be smooth (Figs. 1o and 2b). Although the intersite diffusion
time is likely to be important for other wave phenomena, our
analysis of recent experiments suggests that it is an essential
feature for intracellular Ca?>" waves.

Ca?* is stored intracellularly in the endoplasmic or sarco-
plasmic reticulum at 2-3 orders of magnitude greater than its
concentration in the cytosol and is released by a process
referred to as Ca’*-induced Ca’* release (CICR). CICR
involves Ca?" release through specialized Ca?* channels that
are activated at slightly elevated levels of cytosolic Ca?* and
then inactivated as the level of Ca?" rises further. After an
open channel closes via inactivation, it cannot reopen for some
time, during which it is in a “refractory” state. Calcium release
provides a mechanism for wave propagation (10-17), whereas
inactivation limits the amount released.

High-resolution imaging of Ca?" in a variety of cell types
reveals localized release events called “puffs” (1-4) (Fig. 1a),
“sparks” (19), or “quantum emission domains” (8, 9). These
events have been correlated with Ca®* release from either
individual or small clusters of channels. In muscle cells, sparks
are observed at the t-tubule structures in the sarcoplasmic
reticulum (20), which are aligned in regular arrays with a
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characteristic separation of ~2 um. In other cell types, inositol
trisphosphate stimulates Ca?* release from clusters of inositol
triphosphate receptors from the endoplasmic reticulum. Al-
though these inositol triphosphate-dependent sites appear to
be randomly distributed, they are characterized by a mean
separation (1-4, 21). The release events are the elementary
processes underlying Ca?* waves.

Our description of these events is called the “fire—diffuse—
fire” model. This model reproduces the full range of wave
propagation, from saltatory (Fig. 2a) to continuous (Fig. 2b).
In contrast, homogeneous reaction diffusion models predict
only continuous propagation with a velocity (v) proportional
to VD/t, with 7 the time scale of a chemical process. When
applied to Ca?* waves, the fire—diffuse—fire model predicts
that the fertilization wave in Xenopus eggs is continuous.
Moreover, it shows, in agreement with experiment, that waves
in immature Xenopus oocytes (1-4) and in cardiac myocytes
are saltatory.

The fire—diffuse—fire model consists of a regular array of
point-source release sites with spacing, d, embedded in a
continuum in which calcium ions diffuse. A related model, in
which the discrete entities are individual cells, has been used
for modeling cAMP (22) waves. In cells in which release sites
do not occur in regular arrays, d should be thought of as a mean
spacing. The pumps that resequester the ions back into the
stores operate on a somewhat slower time scale (23) and are
neglected here for simplicity. Whenever the cytosolic Ca?*
concentration in the vicinity of a release site reaches a
threshold value, [Ca?*]r, the site begins releasing Ca?* ions at
a rate o/7. It remains open for a time 7, and then closes after
having released a quantity, o, of Ca?*. Because the binding
time for Ca* with immobile buffers is faster than the other
time scales in the problem (15), we treat the action of the Ca?*
buffers as instantaneous. To account for the effect of buffer-
ing, we define o as the total amount of Ca>* released divided
by a buffering factor of ~100. We use the data in ref. 24 for
the buffered diffusion coefficient in Xenopus oocytes. Note
that this means that both o and the diffusion coefficient, D,
inherit the temperature dependence of the buffering factor.

The processes of Ca?* release (or firing) and diffusion can
be described by a single evolution equation described in detail
in the Appendix and in ref. 25. The dynamics depends on two
dimensionless parameters, I' and B. The first is defined as

(o/d%

I =lca ], —[ca'],

(1]

where [Ca?"], is the basal Ca®* concentration. The quantity
o/d? is the release concentration, since it is the amount of Ca2*
released per site after buffering (o) divided by the volume per
site (1/d?). So T is the ratio of the release concentration to the
difference between basal and threshold concentrations. The
parameter S is the ratio of the time a site remains open, 7, to
the intersite diffusion time, d?/D, i.e.
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F1G. 1. (a) Space-time (or “waterfall”) plot of the calcium wave in an immature Xenopus oocyte. The image was obtained with high-resolution
confocal microscopy (1). “Warmer” colors indicate elevated calcium levels. The individual release sites are clearly visible as streaks. (b) Relatively
low-resolution snapshot of the calcium fertilization wave in mature Xenopus oocyte (5). The lighter region corresponds to higher calcium
concentration, which is propagating into the region of lower calcium concentration, i.e., the wave is propagating to the left and up. The diameter
is 1.2 mm. The front is ~50 um deep. If the mean site spacing is 2 um, then the zone in which calcium is actively being released (i.e., the front)
is ~25 sites deep. The resolution is too low to see individual sites. One of the predictions of the fire—diffuse—fire model is that even with the spatial
resolution of a, it would not be possible to see the individual sites because the release rate is so slow that the calcium diffuses away before significant
local buildup can occur. The tiny local buildups that do occur are statistical in nature.

Dt
B="- [2]

If release is the rate-limiting process, then 8 >> 1, and the
waves are continuous. If intersite diffusion is the rate-limiting
process, then B << 1, and the waves are saltatory (25).

A traveling saltatory wave solution (8 = 0.08 and I' = 3.05)
to the fire—diffuse—fire model is illustrated in Fig. 2a. The
vertical axis is the Ca?* concentration, and the horizontal axis
is position in site spacing units. The parameters were estimated
from the literature on the immature oocyte (1-4, 26). The
wave is traveling to the right with a velocity of 20 wm/s. Well
behind the front (i.e., for x < ~2), the concentration is
[Ca’*](x, 1) = a/d> + [Ca®"], = 0.66 uM. The time at which
site n begins to fire (i.e., to release Ca?") is denoted by #,. The
first profile in the sequence is the solid line with the short spike
above site 5. This profile occurs just after the Ca?* concen-
tration at site 5 crosses threshold at time ¢ = ¢5s. The second
profile in the sequence is the long-dashed line with the tall
peak above site 5. This is the profile at time t = 5 + 7. The
peak is wider because of diffusion and higher because the total
amount (o) of Ca?" ions have been released at this time. The
third profile is the short-dashed line and corresponds to a time
halfway between ¢5 and ¢, (after site 5 has completed firing, but
before site 6 has reached threshold). The fourth profile is the
solid line with the short spike above site 6. This is the profile
just after the Ca®>* concentration reaches threshold at time ¢ =
te. We see that saltatory propagation consists of a distinct
emission of Ca?* when a particular site fires. Obviously, both
Ca’?* release and Ca?* diffusion occur simultaneously, but the
firing time 7 is so short compared to the intersite diffusion
time, d?/D, that during the time that a single site is firing, very
few ions diffuse to the next site. The shorthand description of

these processes, fire—diffuse—fire, is thus an accurate descrip-
tion of the sequence of events shown in Fig. 2a.

Continuous propagation (8 = 50 and I' = 5) is illustrated in
Fig. 2b. The parameters in this case are appropriate for the
fertilization wave in mature Xenopus eggs (5). For D, we used
a higher value (D = 50 um?/s because the Ca?>* concentration
is higher, thus implying less buffering in the egg (24). The wave
is traveling to the right with a velocity of 5.2 um/s. The
experimental observations provide the concentration in the
wave back, from which it is possible only to estimate o/d? but
not o and d separately. Here, DT = 450 um?. Thus, 8 = D7/d>
will be in the range 28—-450 for d in the range 1-4 um. In Fig.
2b, we used d = 3 um. These values of B are large enough so
that the propagation is continuous. In this regime, the velocity
does not depend strongly on d provided I' = 5 is fixed.
Decreasing d to 1 um (while decreasing o by a factor of 27, so
that o/d® remains constant) results in a solution that is
indistinguishable from the one in Fig. 2b, which shows the wave
profile at two different times. It travels nearly without defor-
mation.

For steady propagation, we have derived a relationship (25)
of the form

I'=F(n, 0, [31
where { and ) are dimensionless velocities

{=v\t/D [4]
and

n=vd/D. [5]

Combining Egs. 2, 4, and 5, it follows that
£=\Bn. 6]
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(@) Four snapshots of a rightward saltatory wave solution of the fire—diffuse—fire model. The dashed line denotes the threshold concentration,

[Ca?*]r. The values used here were taken from the literature on the immature Xenopus oocyte (1-4): d = 3.9 um, = = 0.05 s, D = 25 pm?/s [Ca?"]r
= 0.25 pM, [Ca®"], = 0.05 uM, and o = 3.5 X 10~ umol. The wave is traveling to the right with a velocity of 20 um/s. Note that only one site fires
at a time and that the shape of the wave changes with time. (b) Two snapshots of a rightward continuous wave. The vertical lines indicate the sites that
are simultaneously firing at the time of the first snapshot (solid line). The dashed line corresponds to a later time. The parameters used here were taken
from the literature on the fertilization wave in Xenopus eggs (5). The values we used correspond to the interior region of the egg: d = 3 um, D = 50 um?/s,
7=09s, 0= 135X 107 pmol, [Ca?*]r = 0.4 uM, and [Ca>"], = 0.3 uM. The wave is traveling to the right with a velocity of 5.2 um/s. Note that many
sites are firing simultaneously and that the wave travels without observable deformation. Despite the larger diffusion coefficient, the continuum wave is
slower than the saltatory wave. This is because of the difference in release rates (7).

It can be shown that F = 1 so that there is no solution to Eq.
3if I' < 1. This corresponds to the intuition that waves will not
propagate if the release concentration is not sufficient to bring
the neighboring sites up to threshold. In myocytes, the diffu-
sion constant of Ca?" is of the order of D = 30 um?>s~ !, d ~
2 pm, 7~ 15 ms, and [Ca®"]yr =~ 0.2 uM (24, 28). Under
conditions in which isolated sparks are found experimentally,
the unitary Ca?* current at a release site is estimated to be 2pA
(13, 16), so that including the buffering, we find o ~ 1.5 X
10~ wmol. Using Egs. 1 and 2, this gives ' ~ 1 and B ~ 0.1,
in agreement with the observation that waves do not propagate
under these conditions. We have shown for the extreme
saltatory limit (7 — 0) that the fire—diffuse—fire model un-
dergoes a series of bifurcations and crises that lead to chaos as
propagation failure is approached (i.e., as I is decreased) (25,
28). The general feature of complex dynamics should be
observed whenever such a system is driven towards propaga-
tion failure. On the other hand, waves do propagate in
myocytes under conditions of Ca?* overload (20), which
increases the unitary current, thus increasing I'. Simulations
and more detailed calculations (27, 28) suggest that I' ~ 5. This
generates waves with the experimentally observed velocity of
about 65 um/s, and since B =~ 0.1, these waves are saltatory, in
agreement with experiment.

Although the explicit form of F in terms of n and ¢ is
complicated (25), the resulting function is simple. Fig. 3 is a
contour plot of F(m, {) upon which are superimposed straight
lines ¢ = VB for several values of B. Any two of the quantities
I', B, m, and ¢, when different from zero, determine the other
two.

If £?/n << 1 (which holds for small enough B) the propa-
gation is saltatory. In this case, F can be approximated by a
function of 1 only so that Eq. 3 reduces to F(n, 0) = g(n) =
T from which we find that n = g~ (T') so that

ND —1
v="_g D) [7]

Here, g~! denotes the inverse function of g. If T' is large
enough, we get an approximate explicit formula for g~! which
gives v =~ 4D /dlog . If £#/m >> 1 and B >> 1, propagation is
continuous. In this case, F can be approximated by a function
of ¢ only so that Eq. 3 reduces to F(0, {) =f({) = I', from which
we find that { = f~(T) so that

D
v = \ﬁf'm. [8]

Here, if I' is large enough, we get an approximate explicit
formula for f~! that gives v ~ VI'VD/r. This is Luther’s
equation (15, 16) (v = aVD/7) with a« = VT. For the
continuous-fertilization Ca?>* wave in Fig. 1b, I' = 5, and this
approximation is accurate to within a few percent. It is,
however, completely incorrect for saltatory waves.

Typically, propagation is saltatory if 8 << 1 and continuous
if 3>> 1. Given avalue of I', it is clear from Fig. 3 that for small
enough B the intersection between the line ¢ = V87 and the
contour will occur at values that satisfy {2/n << 1. This is the
saltatory case. On the other hand, for large enough 8, the
intersection will occur at values that satisfy £2/m >> 1. This is
the continuous case. One of the most distinctive physical
differences between continuous and saltatory waves is the
number of sites that are simultaneously firing. This is given by
1 +vr/d =1+ {?/m. The curve n = ?is shown as the dashed
line in Fig. 3. Data points lying below this curve have only a
single site firing at a time and those above have two or more.
As illustrated by the vertical lines in Fig. 2b, many sites fire
simultaneously during continuous propagation. On the other
hand, as shown in Fig. 2a, only a single site fires at a time during
saltatory propagation. More detailed models will share this
and other general features of the fire—diffuse—fire model.
Thus, whether a wave is saltatory or continuous will be
determined by B. The trend of increasing velocity with in-
creasing release concentration and the approach to propaga-
tion failure as the release density is decreased will both hold.
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Fic. 3. Contour plot of F(m, {) with straight lines { = VBn
superimposed. The dashed line is the line = {2 *, m, and ¢ denote
three of the cases discussed in the text: the mature oocyte, the
immature oocyte, and the myocyte in overload, respectively. The latter
two are such that 7 > 2 and thus correspond to saltatory waves. For
¥, m << {2, and the propagation is continuous.

The parameter values used here for oocytes, myocytes, and
eggs are within experimentally accepted ranges. However, the
specific values were chosen to reproduce the experimental
velocities. Other values within the experimentally observed
range give velocities that are off by as much as a factor of 5.
The match (or mismatch) between experimentally observed
and theoretically predicted velocities cannot be used either to
validate or to invalidate a particular model. For example, using
the Luther equation as in refs. 15 and 16 (v = VD/7) gives a
velocity of 22 um/s for the waves in the immature oocyte as in
Fig. 2a. These values (D = 25 um?/s, 7= 0.05s, and v = 22u/s)
are all within the experimental uncertainty. However, the
Luther equation is manifestly wrong since the wave is saltatory
(1,2). Decreasing 7 by a factor of 50 in Fig. 2a results in a
change in v of only a few percent, whereas the Luther equation
yields a velocity of 160 wm/s! The fact that V' D/ is approx-
imately equal to the velocity of the model saltatory wave is
purely coincidental.

Whether the mode of propagation is continuous or saltatory
is at least as important a fact as the numerical value of the
velocity. Our analysis provides a simple, robust prescription for
predicting the mode of propagation: estimate . If estimates of
B are all <0.1, it is safe to assume that propagation is saltatory;
if they are >10, propagation is continuous. For intermediate
values of B (0.1 = B = 10), a more accurate model (namely,
ref. 25) would be necessary to determine the mode of prop-
agation. As it is widely held that information is encoded in the
Ca?* signal (7-12), the distinction between saltatory and
continuous waves likely has considerable physiological signif-
icance.

The fire—diffuse—fire model of calcium propagation is de-
scribed by the single-evolution equation

a[Ca**] 9’[Ca*"]
- > +
ot 0°x

o
i 2 Sl —x)H( — )H(t+ 7= 1), [9]
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where [Ca?"](x, t) is the average concentration of calcium in
the directions perpendicular to that of propagation (x), 8({) is
the & function, H({) is the Heaviside step function [H({) = 0
for { < 0, H({) = 1 for { = 0], D is the diffusion coefficient
of calcium, ¢; is the first time at which the ith site takes on the
threshold value, [Ca®"]z, o is the total number of ions released
by a site, and 7 is the “rise time” for the receptor (i.e., the
length of time the receptor is open during a release event). The
6 function density for the receptors means we are treating the
receptor/channels as point sources. As stated in the text, the
binding to buffers is assumed instantaneous. Thus, the effect
of buffering is reflected in the values used for D and o. Details
can be found at http://www-xdiv.lanl.gov/XCM/pearson/fdf.
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