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FAST COMPUTATION OF A RATIONAL POINT
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Dedicated to Joos Heintz on the occasion of his 60th birthday

Abstract. We exhibit a probabilistic algorithm which computes a rational
point of an absolutely irreducible variety over a finite field defined by a re-
duced regular sequence. Its time-space complexity is roughly quadratic in the
logarithm of the cardinality of the field and a geometric invariant of the input
system. This invariant, called the degree, is bounded by the Bézout number of

the system. Our algorithm works for fields of any characteristic, but requires
the cardinality of the field to be greater than a quantity which is roughly the
fourth power of the degree of the input variety.

1. Introduction

Let q be a prime power, let Fq be the finite field of q elements, and let Fq denote
its algebraic closure. For a given n ∈ N, we denote by An the n-dimensional
affine space F

n

q endowed with its Zariski topology. Let a finite set of polynomials
F1, . . . , Fm ∈ Fq[X1, . . . , Xn] be given and let V denote the affine subvariety of An

defined by F1, . . . , Fm. In this paper we consider the problem of computing a q-
rational point of the variety V , i.e., a point x ∈ Fn

q such that Fi(x) = 0 holds for
1 ≤ i ≤ m.

This is an important problem of mathematics and computer science, with many
applications. It is NP-complete, even if the equations are quadratic and the field
considered is F2. Furthermore, [58] shows that determining the number of rational
points of a sparse plane curve over a finite field is #P-complete. In fact, several
multivariate cryptographic schemes based on the hardness of solving polynomial
equations over a finite field have been proposed and cryptoanalyzed (see, e.g., [12]).
The problem is also a critical point in areas such as coding theory (see, e.g., [15],
[39]), combinatorics [40], etc.

In the case of systems over the complex or real numbers, the series of papers [22],
[45], [21], [20], [23], [2], [3], [4], [5] (see also [29], [25], [38]) introduces a new symbolic
elimination algorithm. Its complexity is roughly the product of the complexity of
the input polynomials and a polynomial function of a certain geometric invariant
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2050 ANTONIO CAFURE AND GUILLERMO MATERA

of the input system, called its degree. The degree is always bounded by the Bézout
number of the input system and often happens to be considerably smaller.

1.1. Main contribution. In this article we extend this family of elimination algo-
rithms to systems over finite fields. More precisely, we exhibit a new probabilistic
algorithm which computes a rational point of an Fq-definable absolutely irreducible
variety. Our main result is summarized in the following theorem (see Corollary 6.5
for a precise complexity statement).

Theorem. Let n ≥ 3 and d ≥ 2. Let F1, . . . , Fr ∈ Fq[X1, . . . , Xn] be polynomials of
degree at most d which form a regular sequence. Suppose that F1, . . . , Fs generate a
radical ideal of Fq[X1, . . . , Xn] for 1 ≤ s ≤ r and let Vs := V (F1, . . . , Fs) ⊂ An. Let
δ := max1≤s≤r deg Vs. Suppose further that V := Vr is absolutely irreducible and
q > 8n2dδ4

r holds. Then, a q-rational point of V can be computed by a probabilistic
algorithm using space O

(̃
Sδ2 log2 q

)
and time O (̃T δ2 log2 q), where T denotes the

number of arithmetic operations in Fq required to evaluate the polynomials F1, . . . , Fr

and S denotes the maximum number of elements of Fq stored during the evaluation.
(Here O˜ refers to the standard Soft-Oh notation which does not take into ac-

count logarithmic terms. Further, we have ignored terms depending on n and d, in
the sense that the Soft-Oh symbol includes polynomial terms in n and d.)

Our algorithm does not impose any restriction on the characteristic p > 0, but
requires the cardinality q of the field Fq to satisfy the condition q > 8n2dδ4

r , where
δr is the degree of the variety V . We observe that [9, Corollary 7.4] asserts that an
absolutely irreducible variety over Fq of dimension n−r and degree δr has a rational
point if q > max{2(n− r + 1)δ2

r , 2δ4
r} holds. As far as the authors know, this is the

best general existence result for an absolutely irreducible variety of fixed dimension
and degree. Since our algorithm cannot work unless there exists a q-rational point
of the variety V , we see that our condition on q comes quite close to this “minimal”
requirement.

In the above statement we assume that the input polynomials F1, . . . , Fr form
a reduced regular sequence, i.e., F1, . . . , Fs generate a radical ideal for 1 ≤ s ≤ r.
We remark that this does not represent a significant restriction to the generality
of our algorithm. In fact, a generic linear combination of polynomials forming a
regular sequence and generating a radical ideal gives a reduced regular sequence
(see, e.g., [34, Proposition 37]). Furthermore, using techniques inspired by [37],
[38] it is possible to extend our algorithm to arbitrary polynomial systems over
Fq defining an absolutely irreducible variety (this extension shall be considered in
a forthcoming work). Finally, we observe that our algorithm can be efficiently
extended to the case of an Fq-definable variety V with an absolutely irreducible Fq-
definable component of dimension equal to dimV . On the other hand, extensions
to the general case of an arbitrary variety over Fq are likely to produce a significant
increase of the time-space complexity of our algorithm (see [30]).

1.2. Related work. There is not much literature on the subject. In [59], an
algorithm for computing the set of q-rational points of a plane curve over a finite
field is proposed. On the other hand, [33] and [12] exhibit algorithms which solve
an overdetermined system of quadratic equations over a finite field, based on a
technique of linearization.

Algorithms for finding rational points on a general variety over a finite field
are usually based on rewriting techniques (see, e.g., [13], [14]). Unfortunately,
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COMPUTATION OF A RATIONAL POINT 2051

such algorithms have superexponential complexity, which makes them infeasible
for realistically sized problems. Indeed, their most efficient variants (see, e.g., [17])
have a worst-case complexity higher than the result of an exhaustive search in
polynomial systems over F2 [12].

A different approach is taken in [30]. In this article, the authors exhibit an algo-
rithm for solving polynomial systems over a finite field by means of deformations,
based on a perturbation of the original system and a subsequent path-following
method. Nevertheless, the perturbation typically introduces spurious solutions
which may be computationally expensive to identify and eliminate in order to ob-
tain the actual solutions. Furthermore, the algorithm is algebraically robust or
universal in the sense of [28] and [10], which implies exponential lower bounds on
its time complexity.

The complexity of our algorithm is polynomial in the degree of the system δ
and the logarithm of q. Therefore, taking into account the worst-case estimate
δ ≤ D :=

∏r
i=1 deg(Fi), we conclude that the complexity is polynomial in the

Bézout number D and log q. This is the first algorithm for solving polynomial
systems over finite fields having such complexity. In particular, we significantly
improve the dO(n2) logO(1)q worst-case estimates of [30] and the algorithms using
rewriting techniques (Gröbner bases).

1.3. Outline of the article. Our algorithm may be divided into three main
parts. The first part is a procedure which has as input a reduced regular sequence
F1, . . . , Fr ∈ Fq[X1, . . . , Xn] and as output a complete description of a generic zero-
dimensional linear section of the input variety V := V (F1, . . . , Fr). Such a descrip-
tion is provided by a K-definable generic linear projection πr : V → An−r and
a parametrization of an unramified generic fiber π−1

r (P (r)), where K is a suitable
finite field extension of Fq (cf. Sections 2.1, 2.2).

In Section 4 we describe this recursive procedure. It proceeds in r − 1 steps.
Its sth step computes a complete description of a generic zero-dimensional linear
section of Vs+1 := V (F1, . . . , Fs+1), which is represented by an unramified fiber
π−1

s+1(P
(s+1)) of a finite K-definable linear projection πs+1 : Vs+1 → An−s−1. For

this purpose, in Section 4.1 the unramified fiber π−1
s (P (s)) of the previous step

is “lifted” to a suitable curve WP (s+1) , contained in Vs := V (F1, . . . , Fs), whose
intersection with the hypersurface defined by Fs+1 yields a complete description of
the fiber π−1

s+1(P
(s+1)). This intersection is considered in Sections 4.2 and 4.3.

In the second part of our algorithm (Section 5), we obtain an Fq-definable de-
scription of an Fq-definable generic zero-dimensional linear section of V . For this
purpose, we develop a symbolic homotopy algorithm, based on a global Newton–
Hensel lifting. It “moves” the K-definable finite morphism πr : Vr → An−r and
the K-definable generic unramified fiber π−1

r (P (r)) previously obtained, into an Fq-
definable finite morphism π : V → An−r and an Fq-definable generic unramified
fiber π−1(Q).

Combining this procedure with an effective version of the first Bertini theorem,
in the third part of our algorithm we obtain an absolutely irreducible plane Fq-
curve C with the property that any q-rational smooth point of C immediately yields
a q-rational point of the input variety V (see Section 6). Then, in Section 6.1
we compute a q-rational point of the curve C with a probabilistic algorithm which
combines Weil’s classical estimate and a procedure based on factorization and gcd
computations.
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A critical point of our algorithm is the determination of the linear projections
πs and the points P (s) for 1 ≤ s ≤ r. In Section 3 we show that this data can
be generically chosen, and we obtain explicit estimates on the degrees of the poly-
nomials underlying this genericity condition. This significantly improves previous
estimates. Using the Zippel–Schwartz test (see [62], [52] and Section 2.3) we may
randomly find such linear projections and points with a high probability of success.

2. Notions and notations

We use standard notions and notations of commutative algebra and algebraic
geometry as can be found in, e.g., [36], [53], [42].

Let Fq and Fq denote the finite field of q elements and its algebraic closure re-
spectively, and let K be a subfield of Fq containing Fq. Let K[X1, . . . , Xn] denote
the ring of n-variate polynomials in indeterminates X1, . . . , Xn and coefficients in
K. Let V be a K-definable affine subvariety of An (a K-variety for short). We shall
denote by I(V ) ⊂ K[X1, . . . , Xn] its defining ideal and by K[V ] its coordinate ring,
namely, the quotient ring K[V ] := K[X1, . . . , Xn]/I(V ). We shall use the notations
{F1 = 0, . . . , Fs = 0} and {F1 = 0, . . . , Fs = 0, G �= 0} to denote the K-variety V
defined by F1, . . . , Fs and the open subset of V defined by the intersection of V
with the complement of the hypersurface {G = 0}.

If V is irreducible as a K-variety (K-irreducible for short), we define its degree
as the maximum number of points lying in the intersection of V with an affine
linear subspace L of An of codimension dim(V ) for which #(V ∩ L) < ∞ holds.
More generally, if V = C1 ∪ · · · ∪ CN is the decomposition of V into irreducible
K-components, we define the degree of V as deg(V ) :=

∑N
i=1 deg(Ci) (cf. [26]). In

the sequel we shall make use of the following Bézout inequality ([26]; see also [18]):
if V and W are K-subvarieties of An, then

(2.1) deg(V ∩ W ) ≤ deg V deg W.

A K-variety V ⊂ An is absolutely irreducible if it is irreducible as an Fq-variety.

2.1. Geometric solutions. In order to describe the geometric aspect of our pro-
cedure we need some more terminology, essentially borrowed from [20]. Let us
consider an equidimensional K-variety W ⊂ An of dimension m ≥ 0 and degree
deg W , defined by polynomials F1, . . . , Fn−m ∈ K[X1, . . . , Xn] which form a regular
sequence. A geometric solution of W consists of the following items:

• a linear change of variables, transforming the variables X1, . . . , Xn into new
ones, say Y1, . . . , Yn, with the following properties:

– the linear map π : W → Am defined by Y1, . . . , Ym is a finite sur-
jective morphism. In this case, the change of variables is called a
Noether normalization of W , and we say that the variables Y1, . . . , Yn

are in Noether position with respect to W , the variables Y1, . . . , Ym

being free. The given Noether normalization induces an integral ring
extension Rm := Fq[Y1, . . . , Ym] ↪→ Fq[W ]. Observe that Fq[W ] is a
free Rm-module whose rank we denote by rankRm

Fq[W ]. Note that
rankRm

Fq[W ] ≤ deg W (see, e.g., [24]) and Fq[W ] ∼= Fq[X1, . . . , Xn]/
(F1, . . . , Fm−n) hold.

– the linear form Ym+1 induces a primitive element of the ring extension
Rm ↪→ Fq[W ], i.e., an element ym+1 ∈ Fq[W ] whose (monic) minimal
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polynomial q(m) ∈ Rm[T ] over Rm satisfies the condition degT q(m) =
rankRm

Fq[W ]. Observe that deg q(m) = degT q(m) ≤ deg W holds.
• the minimal polynomial q(m) of ym+1 over Rm.
• a generic “parametrization” of the variety W by the zeroes of q(m), of

the form (∂q(m)/∂T )(T )Yj − v
(m)
j (T ) with v

(m)
j ∈ Rm[T ] (m + 2 ≤ j ≤

n). We require that degT v
(m)
j < degT q(m) and (∂q(m)/∂T )(Ym+1)Yj −

v
(m)
j (Ym+1) ∈ (F1, . . . , Fn−m) hold for m+2 ≤ j ≤ n. This parametrization

is unique up to scaling by nonzero elements of Fq.
We remark that if W is a zero-dimensional variety, a linear form Y1 is a primitive

element of the ring extension Fq ↪→ Fq[W ] if and only if it separates the points of
W , in other words, Y1(P ) �= Y1(Q) whenever P and Q are distinct points of W .

This notion of “geometric solution” has a long history, going back at least to
L. Kronecker [35] (see also [41], [61]). One might consider [11] and [19] as early
references where this notion was implicitly used for the first time in modern symbolic
computation.

2.2. Lifting points and lifting fibers. Consider as in the previous section an
m-dimensional K-variety W and a Noether normalization π : W → Am. We call
a point P := (p1, . . . , pm) ∈ Am a lifting point of π if π is unramified at P , i.e., if
the equations F1 = 0, . . . , Fn−m = 0, Y1 = p1, . . . , Ym = pm define the fiber π−1(P )
by transversal cuts. We call the zero-dimensional variety WP := π−1(P ) the lifting
fiber of the point P .

Suppose that a geometric solution of W and a lifting point P of π are given.
Suppose further that P is not a zero of the discriminant of the polynomial q(m)

with respect to the variable T . Then the geometric solution of the variety W
induces a geometric solution of the lifting fiber WP . This geometric solution of
WP is given by the linear forms Ym+1, . . . , Yn, the polynomial q(m)(P, T ), and the
parametrizations (∂q(m)/∂T )(P, T )Yj − v

(m)
j (P, T ) (m + 2 ≤ j ≤ n). We call such

a geometric solution of W compatible with the lifting point P .
We observe that π is unramified at a given point P ∈ Am if and only if J(x) �= 0

holds for any x ∈ π−1(P ). Here J ∈ Fq[X1, . . . , Xn] denotes the Jacobian de-
terminant of Y1, . . . , Ym, F1, . . . , Fn−m with respect to the variables X1, . . . , Xn.
Furthermore, [43, Proposición 28] shows that π is unramified at P ∈ Am if and
only if the condition #π−1(P ) = deg W holds.

For 1 ≤ j ≤ n − m, let Fj(Y1, . . . , Yn) denote the element of Fq[Y1, . . . , Yn]
obtained by rewriting Fj(X1, . . . , Xn) in the variables Y1, . . . , Yn. The following
result, probably well known, is included here for lack of a suitable reference.

Lemma 2.1. Let notations and assumptions be as above. Suppose that π is un-
ramified at a point P ∈ Am. Then the Jacobian matrix (∂Fj/∂Ym+k)1≤j,k≤n−m(x)
is nonsingular for any point x ∈ π−1(P ).

Proof. Let WP := π−1(P ), let π̃ : WP → An−m be the projection morphism
defined by the linear forms Ym+1, . . . , Yn, and let π̃∗ : Fq[Ym+1, . . . , Yn] → Fq[WP ]
denote the corresponding morphism of coordinate rings. Let IP denote the ideal
of Fq[Ym+1, . . . , Yn] generated by the polynomials Fj(P, Ym+1, . . . , Yn) for 1 ≤ j ≤
n − m. We claim that IP equals the kernel of the morphism π̃∗. Indeed, it is clear
that the ideal IP is included in the kernel of the morphism π̃∗. On the other hand,
let F ∈ Fq[Ym+1, . . . , Yn] satisfy the condition π̃∗(F ) = 0. This implies that F ,
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considered to be an element of Fq[X1, . . . , Xn], vanishes on any point of the fiber
WP . This implies that the following relation holds:

(2.2) F ∈
(
Y1 − p1, . . . , Ym − pm, F1(Y1, . . . , Yn), . . . , Fn−m(Y1, . . . , Yn)

)
.

Specializing the variables Y1, . . . , Ym into the values p1, . . . , pm in (2.2), we conclude
that F ∈ IP holds.

From the claim and the fact that π̃∗ is surjective we deduce the existence of an
isomorphism of Fq-algebras:

Fq[Y1, . . . , Yn]/
(
F1(P, Ym+1, . . . , Yn), . . . , Fn−m(P, Ym+1, . . . , Yn)

) ∼= Fq[WP ].

This shows that the ideal IP is radical. Since WP is a zero-dimensional variety,
it follows from, e.g., [14, Chapter 4, Corollary 2.6] that WP is a smooth variety.
Therefore, applying the Jacobian criterion finishes the proof of the lemma. �

2.3. On the algorithmic model. Algorithms in elimination theory are usually
described using the standard dense (or sparse) complexity model, i.e., encoding
multivariate polynomials by means of the vector of all (or of all nonzero) co-
efficients. Taking into account that a generic n-variate polynomial of degree d
has

(
d+n

n

)
= O(dn) nonzero coefficients, we see that the dense or sparse repre-

sentation of multivariate polynomials requires an exponential size, and their ma-
nipulation usually requires an exponential number of arithmetic operations with
respect to the parameters d and n. In order to avoid this exponential behavior,
we are going to use an alternative encoding of input, output and intermediate re-
sults of our computations by means of straight-line programs (cf. [27], [55], [45],
[8]). A straight-line program β in K(X1, . . . , Xn) is a finite sequence of rational
functions (F1, . . . , Fk) ∈ K(X1, . . . , Xn)k such that for 1 ≤ i ≤ k, the function Fi

is either an element of the set {X1, . . . , Xn}, or an element of K (a parameter),
or there exist 1 ≤ i1, i2 < i such that Fi = Fi1 ◦i Fi2 holds, where ◦i is one of the
arithmetic operations +,−,×,÷. The straight-line program β is called division-free
if ◦i is different from ÷ for 1 ≤ i ≤ k. Two basic natural measures of the complexity
of β are its space and time (cf. [7], [48]). Space is defined as the maximum num-
ber of arithmetic registers used in the evaluation process defined by β, and time is
defined as the total number of arithmetic operations performed during the evalu-
ation. We say that the straight-line program β computes or represents a subset S
of K(X1, . . . , Xn) if S ⊂ {F1, . . . , Fk} holds.

Our model of computation is based on the concept of straight-line programs.
However, a model of computation consisting only of straight-line programs is not
expressive enough for our purposes. Therefore we allow our model to include de-
cisions and selections (subject to previous decisions). For this reason we shall also
consider computation trees, which are straight-line programs with branchings. Time
and space of the evaluation of a given computation tree are defined analogously as
in the case of straight-line programs (see, e.g., [56], [8] for more details on the notion
of computation trees).

A difficult point in the manipulation of multivariate polynomials over finite
fields is the so-called identity testing problem: given two elements F and G of
K[X1, . . . , Xn], decide whether F and G represent the same polynomial function on
Kn. Indeed, all known deterministic algorithms solving this problem have complex-
ity at least (#K)Ω(1). In this article we are going to use probabilistic algorithms to
solve the identity testing problem, based on the following result.
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Theorem 2.2 ([39], [50]). Let F be a nonzero polynomial of Fq[X1, . . . , Xn] of
degree at most d and let K be a finite field extension of Fq. Then the number of
zeros of F in Kn is at most d(#K)n−1.

For the analysis of our algorithms, we shall interpret the statement of Theo-
rem 2.2 in terms of probabilities. More precisely, given a fixed nonzero polyno-
mial F in Fq[X1, . . . , Xn] of degree at most d, we conclude from Theorem 2.2 that
the probability of randomly choosing a point a ∈ Kn such that F (a) = 0 holds is
bounded from above by d/#K (assuming a uniform distribution of probability on
the elements of Kn).

3. On the preparation of the input data

From now on, let n ≥ 3 and d ≥ 2, and let F1, . . . , Fr ∈ Fq[X1, . . . ,Xn] be
polynomials of degree at most d that generate a radical ideal and form a regular
sequence. Suppose further that F1, . . . , Fs generate a radical ideal for 1 ≤ s ≤ r−1
and that Vr := V (F1, . . . , Fr) is absolutely irreducible.

In the sequel we shall consider algorithms which “solve” symbolically the input
system F1 = 0, . . . , Fr = 0 over Fq. As in [21] and [20], we associate to the system
F1 = 0, . . . , Fr = 0 a parameter δ, called the degree of the system, which is defined
as follows: for 1 ≤ s ≤ r, let Vs ⊂ An be the Fq-variety defined by F1, . . . , Fs and
let δs denote its degree. The geometric degree of the system F1 = 0, . . . , Fr = 0 is
then defined as δ := max1≤s≤r δs.

In this section we are going to determine a genericity condition underlying the
choice of a simultaneous Noether normalization of the varieties V1, . . . , Vr and lifting
points P (s) ∈ An−s (1 ≤ s ≤ r) such that, for 1 ≤ s ≤ r − 1, the lifting fiber
VP (s+1) has the following property: for any point P ∈ VP (s+1) , the morphism πs

is unramified at πs(P ). By a simultaneous Noether normalization we understand
a linear change of variables such that the new variables Y1, . . . , Yn are in Noether
position with respect to Vs for 1 ≤ s ≤ r. Finally, we are going to find an affine
linear subspace L of An of dimension r + 1 such that Vr ∩ L is an absolutely
irreducible curve of An of degree δr.

3.1. Simultaneous Noether normalization. It is well known that a generic
choice of linear forms Y1, . . . , Yn yields a simultaneous Noether normalization of
the varieties V1, . . . , Vr. In order to prove the existence of a simultaneous Noether
normalization defined over a given finite field extension of Fq, we need suitable
genericity conditions. The next proposition yields an upper bound on the degree
of the genericity condition underlying the choice of such linear forms.

In what follows, for 1 ≤ s ≤ r, we shall interpret the elements of A(n−s+1)(n+1)

as (n−s+1)×(n+1)-matrices with entries in Fq. We denote such matrices as (λ, γ),
where λ ∈ A(n−s+1)n represents the entries of the submatrix formed by the first
n columns of (λ, γ) and γ ∈ An−s+1 denotes the last column of (λ, γ). The linear
forms we are looking for will be given in the form Y := (Y1, . . . , Yn−s+1) := λX +γ,
with X := (X1, . . . , Xn).

Proposition 3.1. Fix s with 1 ≤ s ≤ r. Let Λ := (Λi,j)1≤i≤n−s+1,1≤j≤n be a
matrix of indeterminates, let Λ(i) := (Λi,1, . . . , Λi,n) for 1 ≤ i ≤ n − s + 1, and
let Γ := (Γ1, . . . , Γn−s+1) be a vector of indeterminates. Let Ỹ := ΛX + Γ. Then
there exists a nonzero polynomial As ∈ Fq[Λ, Γ] of degree at most 2(n − s + 2)δ2

s
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with the following property: for any (λ, γ) ∈ A(n−s+1)(n+1) with As(λ, γ) �= 0, if
Y := λX + γ := (Y1, . . . , Yn−s+1), then

(i) the mapping πs : Vs → An−s defined by Y1, . . . , Yn−s is a finite morphism,
(ii) the linear form Yn−s+1 induces a primitive element of the integral ring

extension Rs := Fq[Y1, . . . , Yn−s] ↪→ Fq[Vs].

Proof. Let us consider the following morphism of algebraic varieties:

(3.1) Φ : A(n−s+1)(n+1) × Vs → A(n−s+1)(n+1) × An−s+1,
(λ, γ, x) �→ (λ, γ, λx + γ).

Since Φ is the generic linear projection of Vs into An−s+1, the Zariski closure Im(Φ)
is a hypersurface of A(n−s+1)(n+1)×An−s+1, known as the Chow form of Vs (see, e.g.,
[47], [53]). In particular, we have that Im(Φ) is defined by a squarefree polynomial
PVs

∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s+1] which satisfies the following degree estimates:
• degỸ PVs

= degỸn−s+1
PVs

= δs,
• degΛ(i), Γi

PVs
≤ δs for 1 ≤ i ≤ n − s + 1.

Let A1,s ∈ Fq[Λ, Γ] be the (nonzero) polynomial which arises as a coefficient
of the monomial Ỹ δs

n−s+1 in the polynomial PVs
, considering PVs

as an element
of Fq[Λ, Γ][Ỹ ]. The above estimates imply deg A1,s ≤ (n − s + 1)δs. Let Ã1,s ∈
Fq[Λ(i), Γi : 1 ≤ i ≤ n − s] be a nonzero polynomial arising as the coefficient
of a monomial of A1,s, considering A1,s as an element of Fq[Λ(i), Γi : 1 ≤ i ≤
n − s][Λ(n−s+1), Γn−s+1].

Let (λ∗, γ∗) ∈ A(n−s)(n+1) be any point for which Ã1,s(λ∗, γ∗) �= 0 holds, and
let Y := (Y1, . . . , Yn−s) := λ∗X + γ∗. We claim that condition (i) of the statement
of Proposition 3.1 holds. Indeed, since A∗

1,s := A1,s(λ∗, γ∗, Λ(n−s+1), Γn−s+1) is a
nonzero element of Fq[Λ(n−s+1), Γn−s+1], we deduce the existence of Fq-linearly inde-
pendent vectors w1, . . . , wn ∈An and values a1, . . . , an ∈A1 such that A∗

1,s(wj , aj) �=
0 holds for 1 ≤ j ≤ n. Let �j := wjX + aj for 1 ≤ j ≤ n. By construction, for
1 ≤ j ≤ n the polynomial PVs

(λ∗, γ∗, wj , aj , Y1, . . . , Yn−s, �j) is an integral de-
pendence equation for the coordinate function induced by �j in the ring extension
Rs ↪→ Fq[Vs]. Since Fq[�1, . . . , �n] = Fq[X1, . . . , Xn], we conclude that condition (i)
holds.

Furthermore, since Fq[Λ, Γ, Ỹ ]/(PVs
) is a reduced Fq-algebra and Fq is a per-

fect field, from [42, Proposition 27.G] we conclude that the (zero-dimensional)
Fq(Λ, Γ, Ỹ1, . . . , Ỹn−s)-algebra Fq(Λ, Γ, Ỹ1, . . . , Ỹn−s)[Ỹn−s+1]/(PVs

) is reduced. This
implies that PVs

is a separable element of Fq(Λ, Γ, Ỹ1, . . . , Ỹn−s)[Ỹn−s+1], and hence
PVs

and ∂PVs
/∂Ỹn−s+1 are relatively prime in Fq(Λ, Γ, Ỹ1, . . . , Ỹn−s)[Ỹn−s+1]. Then

the discriminant

(3.2) ρs := ResỸn−s+1
(PVs

, ∂PVs
/∂Ỹn−s+1)

of PVs
with respect to Ỹn−s+1 is a nonzero element of Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s]. It

satisfies the following degree estimates:
• degỸ1,..., Ỹn−s

ρs ≤ (2δs − 1)δs.
• degΛ(i), Γi

ρs ≤ (2δs − 1)δs for 1 ≤ i ≤ n − s + 1.

Let ρ1,s ∈ Fq[Λ, Γ] be a nonzero coefficient of a monomial of ρs, considering
ρs as an element of Fq[Λ, Γ][Ỹ1, . . . , Ỹn−s], and let As := ρ1,sÃ1,s. Observe that
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deg As ≤ 2(n − s + 2)δ2
s holds. Let (λ, γ) ∈ A(n−s+1)(n+1) satisfy the condition

As(λ, γ) �= 0, let Y := λX + γ and denote by (λ∗, γ∗) ∈ A(n−s)(n+1) the matrix
formed by the first n−s rows of (λ, γ). Let P ∗

Vs
and ρ∗s be the polynomials obtained

from PVs
and ρs by evaluating Λ(i), Γi (1 ≤ i ≤ n − s) at (λ∗, γ∗). Then ρ∗s is a

nonzero element of Fq[Λ(n−s+1), Γn−s+1, Y1, . . . , Yn−s] which equals the discriminant
of P ∗

Vs
(Λ(n−s+1), Γn−s+1, Y1, . . . , Yn−s, Ỹn−s+1) with respect to Ỹn−s+1. It is clear

that condition (i) holds. We claim that condition (ii) holds.
Let ξ1, . . . , ξn be the coordinate functions of Vs induced by X1, . . . , Xn, let ζi :=∑n
k=1 λi,kξk + γi for 1 ≤ i ≤ n− s, and let Ŷn−s+1 :=

∑n
k=1 Λn−s+1,k ξk + Γn−s+1.

From the definition of the Chow form of Vs we conclude that the identity

(3.3)
0 = P ∗

Vs
(Λ(n−s+1), Γn−s+1, ζ1, . . . ,ζn−s, Ŷn−s+1)

= P ∗
Vs

(Λ(n−s+1), Γn−s+1, ζ1, . . . , ζn−s,
∑n

k=1 Λn−s+1,k ξk + Γn−s+1)

holds in Fq[Λ(n−s+1), Γn−s+1]⊗Fq
Fq[Vs]. Following, e.g., [1] or [46], taking the partial

derivative with respect to the variable Λn−s+1,k at both sides of (3.3) we deduce
that the following identity holds in Fq[Λ(n−s+1), Γn−s+1] ⊗Fq

Fq[Vs] for 1 ≤ k ≤ n:

(∂P ∗
Vs

/∂Ỹn−s+1)(Λ(n−s+1), Γn−s+1, ζ1, . . . , ζn−s, Ŷn−s+1)ξk

+ (∂P ∗
Vs

/∂Λn−s+1,k)(Λ(n−s+1), Γn−s+1, ζ1, . . . , ζn−s, Ŷn−s+1) = 0.
(3.4)

Since ρ∗s is the discriminant of the polynomial P ∗
Vs

with respect to Ỹn−s+1, it can
be written as a linear combination of P ∗

Vs
and ∂P ∗

Vs
/∂Ỹn−s+1. Combining this

observation with (3.3) and (3.4) we conclude that

ρ∗s(Λ
(n−s+1), Γn−s+1, ζ1, . . . , ζn−s)ξk

+ Pk(Λ(n−s+1), Γn−s+1, ζ1, . . . , ζn−s, Ŷn−s+1) = 0
(3.5)

holds, where Pk is a nonzero element of Fq[Λ(n−s+1), Γn−s+1, Z1, . . . , Zn−s+1] for
1 ≤ k ≤ n. Substituting λn−s+1,k for Λn−s+1,k (1 ≤ k ≤ n) and γn−s+1 for
Γn−s+1 in identity (3.5), we conclude that the coordinate function of Fq[Vs] defined
by Yn−s+1 is a primitive element of the Fq-algebra extension Fq(Y1, . . . , Yn−s) ↪→
Fq(Y1, . . . , Yn−s) ⊗Fq

Fq[Vs].
Condition (i) implies that Fq[Vs] is a finite free Rs := Fq[Y1, . . . , Yn−s]-module

and hence Fq(Y1, . . . , Yn−s)⊗Fq
Fq[Vs] is a finite-dimensional Fq(Y1, . . . , Yn−s)-vector

space. Furthermore, the dimension of

Fq(Y1, . . . ,Yn−s) ⊗Fq
Fq[Vs]

as an Fq(Y1, . . . , Yn−s)-vector space equals the rank of Fq[Vs] as an Rs-module. On
the other hand, since Rs is integrally closed, the minimal dependence equation of
any element f ∈ Fq[Vs] over Fq(Y1, . . . , Yn−s) equals the minimal integral dependence
equation of f over Rs (see, e.g., [36, Lemma II.2.15]). Combining this remark with
the fact that Yn−s+1 induces a primitive element of the Fq-algebra extension

Fq(Y1, . . . , Yn−s) ↪→ Fq(Y1, . . . , Yn−s) ⊗Fq
Fq[Vs],

we conclude that Yn−s+1 also induces a primitive element of the Fq-algebra extension
Rs ↪→ Fq[Vs]. This shows that condition (ii) holds and finishes the proof of the
proposition. �
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3.2. Lifting fibers not meeting a discriminant. Our second step is to find
lifting points P (s+1) ∈ An−s−1 for 0 ≤ s ≤ r − 1 such that the corresponding
lifting fiber VP (s+1) has the following property: for any point P ∈ VP (s+1) , the
morphism πs is unramified at πs(P ). With this condition we shall be able to find a
geometric solution of the variety Vs such that no point P ∈ VP (s+1) annihilates the
discriminant of the corresponding minimal polynomial q(s). This in turn will allow
us to avoid dealing with multiplicities during the computations.

For this purpose we need the following technical result. It is a slightly simplified
version of [29, Lemma 1 (iii)] with an improved degree estimate.

Lemma 3.2. With notations and assumptions as above, fix s with 1 ≤ s ≤ r. Let
As be the polynomial of the statement of Proposition 3.1, and let H ∈ Fq[Λ, Γ, X]
be a polynomial of degree at most D. Suppose that the Zariski closure V̂s of the
set (A(n−s+1)(n+1) × Vs) ∩ {H = 0, As �= 0} satisfies the condition dim V̂s ≤
(n− s + 1)(n + 2)− 2. Then the Zariski closure of the image of V̂s under the mor-
phism Φ∗ : A(n−s+1)(n+1) × Vs → A(n−s+1)(n+1) × An−s defined by Φ∗(λ, γ, x) :=
(λ, γ, λ∗x + γ∗) is contained in a hypersurface of A(n−s+1)(n+1) × An−s of degree
at most 2(n − s + 2)Dδ2

s (here λ∗ and γ∗ denote the first n − s rows of λ and γ,
respectively).

Proof. We use the notations of the proof of Proposition 3.1. Since the Chow form
PVs

of the variety Vs is a separable element of Fq(Λ, Γ, Ỹ1, . . . ,Ỹn−s)[Ỹn−s+1], we
conclude that ∂PVs

/∂Ỹn−s+1 is not a zero divisor of Fq[Λ, Γ, Ỹ ]/(PVs
), and hence of

the Fq-algebra Fq[Λ, Γ] ⊗
Fq

Fq[Vs]. Taking the partial derivative with respect to the

variable Λn−s+1,k at both sides of the identity PVs
(Λ, Γ, Ŷ ) = 0 of Fq[Λ, Γ]⊗

Fq
Fq[Vs]

for 1 ≤ k ≤ n, we see that the following identity holds in Fq[Λ, Γ]⊗
Fq

Fq[Vs] (cf. [1],
[46]):

(3.6) (∂PVs
/∂Ỹn−s+1)(Λ, Γ, Ŷ ) ξk + (∂PVs

/∂Λn−s+1,k)(Λ, Γ, Ŷ ) = 0,

where Ŷ := Λξ + Γ and ξ := (ξ1, . . . , ξn) is the vector of coordinate functions of Vs

induced by X.
Let Ĥ ∈ Fq[Λ, Γ, Ỹ ] be the polynomial obtained by replacing in H the variable

Xk by −(∂PVs
/∂Ỹn−s+1)−1(∂PVs

/∂Λn−s+1,k) for 1 ≤ k ≤ n and clearing denomi-
nators. Observe that degỸ Ĥ = degỸn−s+1

Ĥ ≤ Dδs and degΛ,Γ Ĥ ≤ (n−s+1)Dδs

holds.
Let R := ResỸn−s+1

(PVs
, Ĥ) ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s] be the resultant of PVs

and Ĥ with respect to the variable Ỹn−s+1. Observe that the Sylvester matrix of
PVs

and Ĥ is a matrix of size at most (D + 1)δs × (D + 1)δs with at most Dδs

columns consisting of coefficients of PVs
or zero entries, and δs columns consisting

of coefficients of Ĥ or zero entries. This shows that deg R ≤ 2(n − s + 2)Dδ2
s

holds. On the other hand, from identity (3.6) and the properties of the resultant
we conclude that R(Λ, Γ, Ỹ1, . . . , Ỹn−s) vanishes on the variety V̂s. Furthermore,
the assumption dim V̂s ≤ (n − s + 1)(n + 2) − 2 implies R(Λ, Γ, Ỹ1, . . . , Ỹn−s) �= 0.
This finishes the proof of the lemma. �

Now we are ready to prove the main theorem of this section. This result states
an appropriate upper bound for the degree of a certain polynomial. The nonvanish-
ing of this polynomial expresses a suitable genericity condition for the coefficients
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of the linear forms Y1, . . . , Yn and the coordinates of the lifting points P (s+1)

(1 ≤ s ≤ r − 1) we are looking for. We remark that a similar result is proved
in [29, Theorem 3] for a Q-definable affine equidimensional variety of Cn. Un-
fortunately, the proof of [29, Theorem 3] makes essential use of the fact that the
underlying variety is defined over Q and therefore cannot be used in our situation.
Furthermore, we obtain a significant improvement of the degree estimates of [29,
Theorem 3]. This is a critical point for our subsequent purposes.

Theorem 3.3. Let notations be as in Proposition 3.1 and fix s with 1 ≤ s < r.
Then there exists a nonzero polynomial Bs ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s], of degree at
most 4(n−s+3)2ndδ2

sδ2
s+1, such that for any (λ, γ, P ) ∈ A(n−s+1)(n+1)×An−s with

Bs(λ, γ, P ) �= 0 the following conditions are satisfied: if Y := (Y1, . . . , Yn−s+1) :=
λX + γ, then

(i) the mapping πs : Vs → An−s defined by Y1, . . . , Yn−s is a finite morphism,
P ∈ An−s is a lifting point of πs, and Yn−s+1 is a primitive element of
π−1

s (P ).
(ii) Let P ∗ ∈ An−s−1 be the vector that consists of the first n−s−1 coordinates

of P . Then the mapping πs+1 : Vs+1 → An−s−1 defined by Y1, . . . , Yn−s−1

is a finite morphism, P ∗ is a lifting point of πs+1, and Yn−s is a primitive
element of π−1

s+1(P
∗).

(iii) Any point Q ∈ πs

(
π−1

s+1(P
∗)

)
is a lifting point of πs, and Yn−s+1 is a

primitive element of π−1
s (Q) for any Q ∈ πs

(
π−1

s+1(P
∗)

)
.

Proof. Let As and As+1 be the polynomials obtained by applying Proposition 3.1 to
the varieties Vs and Vs+1, respectively. Let Ds, Ds+1 ∈ Fq[Λ, Γ, X] be the following
polynomials:

Ds := det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1,1 · · · Λ1,n

...
...

Λn−s,1 · · · Λn−s,n
∂F1
∂X1

· · · ∂F1
∂Xn

...
...

∂Fs

∂X1
· · · ∂Fs

∂Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ds+1 := det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1,1 · · · Λ1,n

...
...

Λn−s−1,1 · · · Λn−s−1,n
∂F1
∂X1

· · · ∂F1
∂Xn

...
...

∂Fs+1
∂X1

· · · ∂Fs+1
∂Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We claim that the Zariski closure of the set (A(n−s+1)(n+1)×Vs)∩{Ds = 0, As �=
0} is empty or an equidimensional affine subvariety of A(n−s+1)(n+1) × An of di-
mension (n − s + 1)(n + 2) − 2.

In order to prove this claim, let Vs = C1 ∪ · · · ∪ CN be the decomposition
of Vs into irreducible components. Then we have that A(n−s+1)(n+1) × Vs =⋃ N

i=1 A(n−s+1)(n+1) ×Ci is the decomposition of A(n−s+1)(n+1) ×Vs into irreducible
components. Let A(n−s+1)(n+1) ×C be any of these irreducible components and let
x ∈ C be a nonsingular point of Vs. Then Ds(Λ, x) �= 0 holds and therefore there
exists λ ∈ A(n−s+1)n such that Ds(λ, x) �= 0 holds. This shows that there exists
a point (λ, γ, x) ∈ A(n−s+1)(n+1) × C not belonging to the hypersurface {Ds = 0}.
On the other hand, Ds(0, x) = 0 holds for any x ∈ Vs, where 0 represents the
zero matrix of A(n−s+1)n. This proves that (A(n−s+1)(n+1) × Vs) ∩ {Ds = 0} is an
equidimensional variety of dimension (n− s + 1)(n + 2) − 2, and hence the Zariski
closure of the set (A(n−s+1)(n+1) × Vs) ∩ {Ds = 0, As �= 0} is either empty or an
equidimensional variety of dimension (n− s + 1)(n + 2)− 2. This proves the claim.
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A similar argument shows that the Zariski closure of the set

(A(n−s)(n+1) × Vs+1) ∩ {Ds+1 = 0, As+1 �= 0}
is empty or an equidimensional affine subvariety of A(n−s)(n+1) × An of dimension
(n − s)(n + 2) − 2. We leave the details to the reader.

Consider the following morphisms:

Φs : (A(n−s+1)(n+1) × Vs) ∩ {Ds = 0, As �= 0} → A(n−s+1)(n+1) × An−s

(λ, γ, x) �→
(
λ, γ, Y1(x), . . . , Yn−s(x)

)
,

Φs+1 : (A(n−s)(n+1) × Vs+1) ∩ {Ds+1 = 0, As+1 �= 0} → A(n−s)(n+1) × An−s−1

(λ∗, γ∗, x) �→
(
λ∗, γ∗, Y1(x), . . . , Yn−s−1(x)

)
.

From the claims above and Lemma 3.2 we deduce that the Zariski closure of
Im(Φs) is contained in a hypersurface of A(n−s+1)(n+1) × An−s of degree at most
2(n − s + 2)n(d − 1)δ2

s , and the Zariski closure of Im(Φs+1) is contained in a hy-
persurface of A(n−s)(n+1) × An−s−1 of degree at most 2(n − s + 1)n(d − 1)δ2

s+1.
We denote by B̂s ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s] and B̂s+1 ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s−1] the
polynomials defining these hypersurfaces, respectively.

Let ρs, ρs+1 ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−s] be the (nonzero) discriminants of the vari-
eties Vs and Vs+1, as defined in (3.2) of the proof of Proposition 3.1. Recall that
deg ρs ≤ (n − s + 2)(2δ2

s − δs) and deg ρs+1 ≤ (n − s + 1)(2δ2
s+1 − δs+1) holds.

Claim. The Zariski closure of the set (A(n−s+1)(n+1)×Vs+1)∩{ρsB̂s = 0, As+1 �= 0}
has dimension at most (n − s + 1)(n + 2) − 3.

Proof of Claim. We observe that the mapping Φs above can be regularly extended
to A(n−s+1)(n+1) × Vs. From the definition of the polynomial As, we deduce that
this extension induces the following finite morphism, denoted also by Φs with a
slight abuse of notation:

Φs : (A(n−s+1)(n+1) × Vs) ∩ {As �= 0} →
(
A(n−s+1)(n+1) × An−s

)
∩ {As �= 0}

(λ, γ, x) �→
(
λ, γ, Y1(x), . . . , Yn−s(x)

)
.

Since (A(n−s+1)(n+1) × Vs) ∩ {Ds = 0, As �= 0} is an equidimensional subvariety of
(A(n−s+1)(n+1) × Vs) ∩ {As �= 0} of dimension (n − s + 2)(n + 1) − 2, we see that
Φs({Ds = 0}) is a hypersurface of (A(n−s+1)(n+1) × An−s) ∩ {As �= 0}, which is
therefore definable by the polynomial B̂s. This means that the identity

Φs({Ds = 0, As �= 0}) = {B̂s = 0, As �= 0}
holds.

From the cylindrical structure of the variety A(n−s+1)(n+1) × Vs+1 we conclude
that no irreducible component of this variety is contained in {As = 0}. This implies
that D ∩ {As �= 0} is a dense open subset of D for any irreducible component D
of A(n−s+1)(n+1) × Vs+1. Suppose that there exists an irreducible component D of
A(n−s+1)(n+1) × Vs+1 contained in Φ−1

s ({ρsB̂s = 0}). Then

D ∩ {As �= 0} ⊂ Φ−1
s ({ρsB̂s = 0}) ∩ {As �= 0} = Φ−1

s ({ρsB̂s = 0} ∩ {As �= 0}),
which implies

Φs(D ∩ {As �= 0}) ⊂ Φs ◦ Φ−1
s ({ρsB̂s = 0} ∩ {As �= 0}) ⊂ {ρsB̂s = 0} ∩ {As �= 0}.

We conclude that Φs(D) ⊂ {ρsB̂s = 0} holds. Now we are going to show that the
condition Φs(D) ⊂ {ρsB̂s = 0} leads to a contradiction. Indeed, we observe that
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there exists an irreducible component D0 of Vs+1 for which D = A(n−s+1)(n+1)×D0

holds. Let x ∈ D0 be a nonsingular point of Vs+1, which is also a nonsingular point
of Vs. Hence, for a generic choice of a point (λ, γ) ∈ A(n−s+1)(n+1), the fiber
Ws := Vs ∩ {λ∗X + γ∗ = λ∗x + γ∗} is unramified (see, e.g., [44, §5A]) and the
linear form λ(n−s+1)X + γn−s+1 separates the points of Ws. This shows that any
point y ∈ Vs ∩ {λ∗X + γ∗ = λ∗x + γ∗} satisfies the conditions Ds(λ, γ, y) �= 0
and ρs(λ, γ, y) �= 0. We conclude that the point (λ, γ, λ∗x + γ∗) belongs to the set
Φs(D) \ {ρsB̂s = 0}, thus contradicting the condition Φs(D) ⊂ {ρsB̂s = 0}. This
finishes the proof of our claim. �

From the claim and Lemma 3.2 we deduce that the image of the morphism

Ψs : (A(n−s+1)(n+1) × Vs+1) ∩ {ρsB̂s = 0, As+1 �= 0} → A(n−s+1)(n+1) × An−s−1

(λ, γ, x) �→
(
λ, γ, Y1(x), . . . , Yn−s−1(x)

)
is contained in a hypersurface of A(n−s+1)(n+1) × An−s−1 of degree at most
4(n − s + 2)2ndδ2

sδ2
s+1. Let B̃s denote the defining equation of this hypersurface.

Let Bs := AsAs+1ρsρs+1B̂sB̂s+1B̃s. Observe that deg Bs ≤ 4(n−s+3)2ndδ2
sδ2

s+1

holds. Let (λ, γ, P ) ∈ A(n−s+1)(n+1) × An−s be a point satisfying Bs(λ, γ, P ) �= 0.
We claim that (λ, γ, P ) satisfies conditions (i), (ii), and (iii) of the statement of
Theorem 3.3. Let (λ∗, γ∗) denote the first n−s rows of (λ, γ) and let P ∗ denote the
vector consisting of the first n−s−1 coordinates of P . Since As(λ, γ)As+1(λ∗, γ∗) �=
0 holds, from Proposition 3.1 we conclude that the mappings πs : Vs → An−s and
πs+1 : Vs+1 → An−s−1 defined by the linear forms Y1, . . . , Yn−s and Y1, . . . , Yn−s−1

are finite morphisms. Since As(λ, γ) �= 0 holds, the condition B̂s(λ, γ, P ) �= 0
implies that Ds(λ, γ, x) �= 0 holds for any x ∈ π−1

s (P ). Therefore, we see that P
is a lifting point of the morphism πs. A similar argument as above shows that P ∗

is a lifting point of the morphism πs+1. Finally, the conditions ρs(λ, γ, P ) �= 0 and
ρs+1(λ∗, γ∗, P ∗) �= 0 show that Yn−s+1 and Yn−s are primitive elements of π−1

s (P )
and π−1

s+1(P
∗), respectively. On the other hand, the conditions B̃s(λ, γ, P ∗) �= 0

and As+1(λ∗, γ∗) �= 0 imply that (ρsB̂s)
(
λ, γ, P ∗, Yn−s(x)

)
�= 0 holds for any x ∈

π−1
s+1(P

∗). Therefore, since As(λ, γ) �= 0 holds, we deduce that Ds(λ, γ, Q) �= 0 and
ρs(λ, γ, πs(Q)) �= 0 hold for any point Q ∈ π−1

s (P ∗, Yn−s(x)) with x ∈ π−1
s+1(P

∗).
This shows that condition (iii) of the statement of Theorem 3.3 holds. �

In order to find a rational point of our input variety V we are going to determine
a suitable absolutely irreducible plane Fq-curve of the form V ∩ L, where L is an
Fq-definable affine linear subspace of An of dimension r + 1. For this purpose, we
are going to find an Fq-definable Noether normalization of V , represented by a (Fq-
definable) finite linear projection π : V → An−r, and a lifting point P ∈ Fn−r

q

of π. Unfortunately, the existence of the morphism π and the point P cannot be
guaranteed unless the number of elements of Fq is high enough. Our next result
exhibits a genericity condition underlying the choice of π and P whose degree
depends on δr := deg Vr, rather than on δ := max1≤s≤r δs.

Corollary 3.4. With notations as in Proposition 3.1 and Theorem 3.3, there exists
a nonzero polynomial B̂ ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−r] of degree at most

(n − r + 2)(2ndδ2
r − δr)
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such that for any (λ, γ, P ) ∈ A(n−r+1)(n+1)×An−r with B̂(λ, γ, P ) �= 0 the following
conditions are satisfied.

Let Z := (Z1, . . . , Zn−r+1) := λX +γ. Then the mapping π : Vr → An−r defined
by π(x) :=

(
Z1(x), . . . , Zn−r(x)

)
is a finite morphism, P ∈ An−r is a lifting point

of π, and Zn−r+1 is a primitive element of π−1(P ).

Proof. Let B̂ := ArρrB̂r, where Ar is the polynomial of the statement of Proposi-
tion 3.1, the polynomial B̂r is that of the proof of Theorem 3.3 with s = r− 1, and
ρr is the discriminant introduced in (3.2) of the proof of Proposition 3.1. Observe
that deg B̂ ≤ (n−r+2)(2ndδ2

r −δr) holds. Now, if (λ, γ, P ) ∈ A(n−r+1)(n+1)×An−r

is any point for which B̂(λ, γ, P ) �= 0 holds, a similar argument as in the last para-
graph of the proof of Theorem 3.3 shows that the linear forms Z := λX + γ and
the point P satisfy the conditions in the statement of the corollary. �

Combining Theorem 2.2 and Corollary 3.4 we conclude that, if

q > (n − r + 2)(2ndδ2
r − δr)

holds, then there exists an Fq-definable Noether normalization of the variety V and
a lifting point P ∈ Fn−r

q of π.

3.3. A reduction to the bidimensional case. In this section we finish our con-
siderations about the preparation of the input data by reducing our problem of
computing a rational point of the absolutely irreducible Fq-variety V := Vr to that
of computing a rational point of an absolutely irreducible plane Fq-curve. For this
purpose, we have the first Bertini theorem (see, e.g., [54, §II.6.1, Theorem 1]),
which asserts that the intersection V ∩L of V with a generic affine linear subspace
L of An of dimension r + 1 is an absolutely irreducible plane curve. If V ∩ L is
an absolutely irreducible Fq-curve, then Weil’s estimate (see, e.g., [39], [50]) assures
that we have a “good probability” of finding a rational point in V ∩ L. The main
result of this section exhibits an estimate on the degree of the genericity condition
underlying the choice of L.

Let (λ, γ, P ) ∈ A(n−r+1)(n+1) × An−r be a point for which B̂(λ, γ, P ) �= 0 holds,
where B̂ is the polynomial of Corollary 3.4. Let (Z1, . . . , Zn−r+1) = λX + γ,
let Yn−r+2, . . . , Yn be linear forms such that Z1, . . . , Zn−r+1, Yn−r+2, . . . , Yn are Fq-
linearly independent, and let P := (p1, . . . , pn−r). Then the mapping π : V → An−r

defined by π(x) :=
(
Z1(x), . . . , Zn−r(x)

)
is a finite morphism, and therefore the

image W := π̃(V ) of V under the mapping π̃ : V → An−r+1 defined by π̃(x) :=(
Z1(x), . . . , Zn−r+1(x)

)
is a hypersurface of An−r+1. The choice of Z1, . . . , Zn−r+1

implies that this hypersurface has degree δr and is defined by a polynomial q(r) ∈
Fq[Z1, . . . , Zn−r+1] that is monic in Zn−r+1.

Let Ṽ := {x ∈ An : (∂q(r)/∂Zn−r+1)(Z1(x), . . . , Zn−r+1(x)) = 0} and W̃ :=
{z ∈ An−r+1 : (∂q(r)/∂Zn−r+1)(z) = 0}. Our following result shows that the
variety V is birationally equivalent to the hypersurface W ⊂ An−r+1.

Lemma 3.5. The map π̃|V \Ṽ : V \ Ṽ → W \ W̃ is an isomorphism of Zariski open
sets.

Proof. We observe that π̃(V \ Ṽ ) ⊂ W \ W̃ holds. Then π̃|V \Ṽ : V \ Ṽ → W \ W̃

is a well-defined morphism.
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We claim that π̃ is an injective mapping. Indeed, making the substitutions
Λn−r+1,j := λn−r+1,j (1 ≤ j ≤ n) and Γn−r+1 = γn−r+1 in identity (3.4) of
the proof of Proposition 3.1, we deduce that there exist polynomials v1, . . . , vn ∈
Fq[Z1, . . . , Zn−r+1] such that for 1 ≤ k ≤ n the following identity holds:

(3.7) vk(Z1, . . . , Zn−r+1)−Xk ·(∂q(r)/∂Zn−r+1)(Z1, . . . , Zn−r+1) ≡ 0 mod I(V ) .

Let x := (x1, . . . , xn), x′ := (x′
1, . . . , x

′
n) ∈ V \ Ṽ satisfy π̃(x) = π̃(x′). We have

Zk(x) = Zk(x′) for 1 ≤ k ≤ n − r + 1. Then from (3.7) we conclude that xk = x′
k

for 1 ≤ k ≤ n, which shows our claim.
Now we show that π̃|V \Ṽ : V \ Ṽ → W \ W̃ is a surjective mapping. Let

q0 := ∂q(r)/∂Zn−r+1. Let z := (z1, . . . , zn−r+1) be an arbitrary point of W \ W̃ ,
and let

x :=
(
(v1/q0)(z), . . . , (vn/q0)(z)

)
.

We claim that x belongs to V \ Ṽ . Indeed, let F be an arbitrary element of
the ideal I(V ) and let F̃ := (q0(Z1, . . . , Zn−r+1))NF , where N := deg F . Then
there exists G ∈ Fq[T1, . . . , Tn+1] such that F̃ = G(q0X1, . . . , q0Xn, q0) holds. Since
F̃ ∈ I(V ), for any z′ ∈ V we have F̃ (z′) = 0, and hence from (3.7) we conclude that
G(v1, . . . , vn, q0)(Z1(z′), . . . , Zn−r+1(z′)) = 0 holds. This shows that q(r) divides
F̂ := G(v1, . . . , vn, q0) in Fq[Z1, . . . , Zn−r+1], and therefore F̂ (z) = q0(z)NF (x) = 0
holds. Taking into account that q0(z) �= 0 we conclude that F (x) = 0 holds, i.e.,
x ∈ V \ Ṽ .

In order to finish the proof of the surjectivity of π̃ there remains to prove that
π̃(x) = z holds. We observe that (3.7) shows that any z′ ∈ V satisfies

Zi(z′)q0

(
Z1(z′), . . . , Zn−r+1(z′)

)
−

n∑
k=1

λi, k vk

(
Z1(z′), . . . , Zn−r+1(z′)

)
= 0

for 1 ≤ i ≤ n − r + 1. Then q(r) divides the polynomial Ziq0 −
∑n

k=1λi,kvk in
Fq[Z1, . . . , Zn−r+1], which implies zi =

∑n
k=1 λi, k(vk/q0)(z) =

∑n
k=1 λi, k xk for

1 ≤ i ≤ n − r + 1. This proves that π̃(x) = z holds.
Finally we show that π̃|V \Ṽ : V \ Ṽ → W \ W̃ is an isomorphism. Let

φ : W \ W̃ → V \ Ṽ ,
z �→

(
(v1/q0)(z), . . . , (vn/q0)(z)

)
.

Our previous discussion shows that φ is a well-defined morphism. Furthermore, our
arguments above show that π̃ ◦ φ is the identity mapping of W \ W̃ . This finishes
the proof of the lemma. �

We remark that a similar result for the varieties V1, . . . , Vr−1 can be easily es-
tablished following the proof of Lemma 3.5.

Now we prove the main result of this section.

Theorem 3.6. Let notations and assumptions be as above. Suppose further that
the variety V := Vr is absolutely irreducible. Let Ω := (Ω1, . . . , Ωn−r) and T be new
indeterminates. Then there exists a nonzero polynomial C ∈ Fq[Ω] of degree at most
2δ4

r with the following property: let ω := (ω1, . . . , ωn−r) ∈ An−r satisfy C(ω) �= 0,
and let Lω be the (r + 1)-dimensional affine linear subvariety of An parametrized
by Zk = ωkT + pk (1 ≤ k ≤ n− r). Then V ∩Lω is an absolutely irreducible affine
variety of dimension 1.
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Proof. Lemma 3.5 shows that V is birational to the hypersurface W ⊂ An−r+1

defined by {q(r)(Z1, . . . , Zn−r+1) = 0}. Since V is absolutely irreducible, we
conclude that W is absolutely irreducible and therefore q(r) is an absolutely ir-
reducible polynomial. Following [32], let q̃ ∈ Fq[Ω, T ][Zn−r+1] be the polynomial
q̃ := q(r)

(
Ω1T + p1, . . . , Ωn−rT + pn−r, Zn−r+1

)
.

Since q(r) is a monic element of Fq[Z1, . . . , Zn−r][Zn−r+1], we easily conclude
that q̃ is a monic element of Fq[Ω, T ][Zn−r+1].

We claim that q̃(Ω, 0, Zn−r+1) is a separable element of Fq[Ω][Zn−r+1]. Indeed, we
have that q̃(Ω, 0, Zn−r+1) = q(r)(P, Zn−r+1) holds. Then the proof of Proposition
3.1 shows that the choice of P implies that the discriminant of the polynomial
q(r)(P, Zn−r+1) does not vanish. This means that q̃(Ω, 0, Zn−r+1) is a separable
element of Fq[Ω][Zn−r+1].

Therefore, applying [32, Theorem 5] we conclude that there exists a polynomial
C ∈ Fq[Ω] of degree bounded by 3

2δ4
r − 2δ3

r + 1
2δ2

r ≤ 2δ4
r such that for any ω ∈ An−r

with C(ω) �= 0, the polynomial q̃(ω, T, Zn−r+1) is absolutely irreducible. From this
we immediately deduce the statement of the theorem. �

4. The computation of a geometric solution of V

Let notations and assumptions be as in Section 3. In this section we shall exhibit
an algorithm which computes a geometric solution of a K-definable lifting fiber VP (r)

of the input variety V , where K is a suitable finite field extension of Fq.
In order to describe this algorithm, we need a simultaneous Noether normaliza-

tion of the varieties V1, . . . , Vr and lifting points P (s+1) ∈ An−s−1 for 0 ≤ s ≤ r− 1
such that the corresponding lifting fiber VP (s+1) has the following property: for
any point P ∈ VP (s+1) , the morphism πs is unramified at πs(P ). For this pur-
pose, let Λ := (Λi,j)1≤i,j≤n be a matrix of indeterminates and let Γ := (Γ1, . . . , Γn)
be a vector of indeterminates. Let X := (X1, . . . , Xn) and let Ỹ := ΛX + Γ. Let
Bs ∈ Fq[Λ, Γ, Ỹ ] be the polynomial of the statement of Theorem 3.3 for 1 ≤ s ≤ r−1
and let B := det(Λ)

∏r−1
s=1 Bs. Observe that deg B ≤ 4n4dδ4 holds.

Let K be a finite field extension of Fq of cardinality greater than 60n4dδ4 and
let (λ, γ, P ) be a point randomly chosen in the set Kn(n+1) × Kn−1. Theorem 2.2
shows that B(λ, γ, P ) does not vanish with probability at least 14/15. From now
on, we shall assume that we have chosen (λ, γ, P ) ∈ Kn(n+1) × Kn−1 satisfying
B(λ, γ, P ) �= 0. Let (Y1, . . . , Yn) := λX + γ and P := (p1, . . . , pn−1).

From Theorem 3.3 we conclude that Y1, . . . , Yn induce a simultaneous Noether
normalization of the varieties V1, . . . , Vr, and the point P (s+1) := (p1, . . . , pn−s−1)
satisfies the condition above for 0 ≤ s ≤ r−1. We observe that the fact that the lin-
ear forms Y1, . . . , Yn belong to K[X1, . . . , Xn] and P belongs to Kn−1, immediately
implies that the lifting fiber VP (s) is a K-variety for 1 ≤ s ≤ r.

The algorithm for computing a geometric solution of VP (r) is a recursive proce-
dure which proceeds in r−1 steps. In the sth step we compute a geometric solution
of the lifting fiber VP (s+1) from a geometric solution of the lifting fiber VP (s) . Recall
that VP (s) := π−1

s (P (s)) = Vs ∩ {Y1 = p1, . . . , Yn−s = pn−s}. For this purpose, we
first “lift” the geometric solution of the fiber VP (s) to a geometric solution of the
affine equidimensional unidimensional K-variety

WP (s+1) := Vs ∩ {Y1 = p1, . . . , Yn−s−1 = pn−s−1}
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(see Section 4.1 below). The variety WP (s+1) is called a lifting curve. Then, from
this geometric solution we obtain a geometric solution of the lifting fiber VP (s+1) =
WP (s+1) ∩ V (Fs+1). This is done by computing the minimal equation satisfied by
Yn−s+1 in VP (s+1) (see Section 4.2), from which we obtain a geometric solution of
VP (s+1) by an effective version of the Shape Lemma (see Section 4.3).

4.1. From the lifting fiber VP (s) to the lifting curve WP (s+1). In this section
we describe the procedure which computes a geometric solution of the lifting curve
WP (s+1) from a geometric solution of the lifting fiber VP (s) .

Let πs : Vs → An−s and π̃s : Vs → An−s+1 be the linear projection mappings
defined by the linear forms Y1, . . . , Yn−s and Y1, . . . , Yn−s+1, respectively. From
Theorem 3.3 we know that πs is a finite morphism and that Yn−s+1 is a primitive
element of the integral ring extension Fq[Y1, . . . , Yn−s] ↪→ Fq[Vs]. Furthermore, the
minimal polynomial q(s) ∈ Fq[Y1, . . . , Yn−s+1] of the coordinate function of Fq[Vs]
defined by Yn−s+1 has degree δs and is a defining polynomial of the hypersurface
π̃s(Vs). Since π̃s(Vs) is a K-hypersurface, we may assume without loss of generality
that q(s) belongs to K[Y1, . . . , Yn−s+1]. This assumption, together with the proof
of Lemma 3.5, shows that there exists a geometric solution of Vs consisting of
polynomials q(s), v

(s)
n−s+2, . . . , v

(s)
n of K[Y1, . . . , Yn−s+1].

Our choice of P (s) implies that the discriminant of q(s) with respect to Yn−s+1

does not vanish in P (s). Therefore, the above geometric solution of Vs is compatible
with P (s) in the sense of Section 2.2, and q(s)(P (s), Yn−s+1), v

(s)
n−s+k(P (s), Yn−s+1)

(2 ≤ k ≤ s) form a geometric solution of VP (s) with Yn−s+1 as primitive element.
We shall assume that we are given such a geometric solution of VP (s) .

We observe that WP (s+1) can be described as the set of common zeros of the poly-
nomials Y1−p1, . . . , Yn−s−1−pn−s−1, F1, . . . , Fs or, equivalently, of the polynomials
Y1−p1, . . . , Yn−s−1−pn−s−1, F1(P (s+1), Yn−s, . . . , Yn), . . . , Fs(P (s+1), Yn−s, . . . , Yn).
In particular we see that WP (s+1) is a K-variety. In order to find a geometric solu-
tion of WP (s+1) we are going to apply the global Newton–Hensel procedure of [25].
For this purpose, we need the following result.

Lemma 4.1. The polynomials F1(P (s+1), Yn−s, . . . ,Yn), . . . ,Fs(P (s+1), Yn−s, . . . ,Yn)
generate a radical ideal and form a regular sequence of K[Yn−s, . . . , Yn]. Further,
WP (s+1) has degree δs.

Proof. We first show that Fj(P (s+1), Yn−s, . . . , Yn) (1 ≤ j ≤ s) form a regular se-
quence. Let Ls+1 ⊂ An be the affine linear variety Ls+1 := {Y1 = p1, . . . , Yn−s−1 =
pn−s−1}. Observe that {Fj(P (s+1), Yn−s, . . . , Yn) = 0; 1 ≤ j ≤ s} = Vi ∩ Ls+1 =
π−1

i (Ls+1) for 1 ≤ i ≤ s. Since πi is a finite morphism, we conclude that dim Vi ∩
Ls+1 = dimAn−i Ls+1 = n − i − (n − s − 1) = s + 1 − i for 1 ≤ i ≤ s. This proves
our first assertion.

Now we prove that deg WP (s+1) = δs holds. Our previous argumentation shows
that WP (s+1) = Vs ∩ Ls+1 is an equidimensional variety of dimension 1. By the
Bézout inequality (2.1), we have deg WP (s+1) ≤ δs. On the other hand, since πs

is a finite morphism, the restriction mapping πs|W
P (s+1) : WP (s+1) → Ls+1 ⊂

An−s is also a finite morphism. Furthermore, our choice of P (s) implies that
#(πs|W

P (s+1) )
−1(P (s)) = # π−1

s (P (s)) = δs holds. Then

δs = #π−1
s (P (s)) = #(WP (s+1) ∩ {Yn−s = pn−s}) ≤ deg WP (s+1) ≤ δs,

which proves our second assertion.
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There remains to prove that Fj(P (s+1), Yn−s, . . . , Yn) (1 ≤ j ≤ s) generate a
radical ideal of K[Yn−s, . . . , Yn]. Since P (s) is a lifting point of πs, from Lemma 2.1
we conclude that the Jacobian determinant

JF (P (s+1), Yn−s, . . . , Yn) := det
(
∂Fi(P (s+1), Yn−s, . . . , Yn)/∂Yn−s+j

)
1≤i,j≤s

does not vanish at any point of WP (s+1)∩{Yn−s = pn−s}. Furthermore, the equality
#(WP (s+1)∩{Yn−s = Pn−s}) = δs = deg WP (s+1) shows that the affine linear variety
{Yn−s = pn−s} meets every irreducible component of WP (s+1) . This proves that
the coordinate function of WP (s+1) defined by JF (P (s+1), Yn−s, . . . , Yn) is not a zero
divisor of Fq[WP (s+1) ]. Hence, from [16, Theorem 18.15] we conclude that the ideal
generated by Fj(P (s+1), Yn−s, . . . , Yn) (1 ≤ j ≤ s) is radical. �

Now we can describe the algorithm for computing the geometric solution of the
lifting curve WP (s+1) . In order to state the complexity of our algorithms, we shall
use the quantity U(m) := m log2 m log log m. We remark that the bit-complexity of
certain basic operations (such as addition, multiplication, division, and gcd) with
integers of bit-size m is O

(
U(m)

)
, and the number of arithmetic operations in a

given domain R necessary to compute the multiplication, division, resultant, gcd,
and interpolation of univariate polynomials of R[T ] of degree at most m is also of
order O

(
U(m)

)
(cf. [57], [6]). In particular, an arithmetic operation in a finite

field K of cardinality #K can be (deterministically) performed with O(U(log #K))
bit operations, using space O(log #K). Our assumptions on K imply log #K ≤
O(log(qδ)).

Proposition 4.2. There exists a deterministic Turing machine M which has as
input

• a straight-line program using space S and time T which represents the poly-
nomials F1, . . . , Fs,

• the dense representation of elements of K[Yn−s+1] which form a geometric
solution of VP (s),

and outputs the dense representation of polynomials of K[Yn−s, Yn−s+1] which
form a geometric solution of WP (s+1). The Turing machine M runs in space
O

(
(S + n)δ2

s log(qδ)
)

and time O
(
(nT + n5)U(δs)2U(log(qδ))

)
.

Proof. Since every point P ∈ WP (s+1) has fixed its first n−s−1 coordinates, the lift-
ing curve WP (s+1) is naturally isomorphic to the affine space curve W ∗

P (s+1) ⊂ As+1

obtained by projecting WP (s+1) on the (s + 1)-dimensional affine linear space with
coordinates Yn−s, . . . , Yn. This projection identifies the lifting fiber VP (s+1) with the
zero-dimensional affine variety V ∗

P (s+1) := W ∗
P (s+1) ∩ {Yn−s = pn−s}. Furthermore,

the projection π̂s+1 : W ∗
P (s+1) → A1 induced by Yn−s is a finite generically unrami-

fied morphism of degree δs, in other words, a generic fiber of π̂s has cardinality δs.
In particular, the fiber π̂−1

s+1(pn−s) = V ∗
P (s) is unramified of cardinality δs.

The polynomials q(s)(P (s), Yn−s+1), v
(s)
n−s+k(P (s), Yn−s+1) (2 ≤ k ≤ s), intro-

duced before the statement of Lemma 4.1, form a geometric solution of V ∗
P (s) . Under

these conditions, applying the Global Newton algorithm of [25, II.4] we conclude
that there exists a computation tree β in K which computes a geometric solution
of W ∗

P (s+1) , which is also a geometric solution of WP (s+1) . The fact that the input
geometric solution of V ∗

P (s) consists of univariate polynomials with coefficients in K
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implies that the output geometric solution of WP (s+1) also consists of polynomials
with coefficients in K.

The evaluation of the computation tree β requires O
(
(nT +n5)U(δs)2

)
arithmetic

operations in K, using at most O
(
(S + n)δ2

s

)
arithmetic registers. Taking into

account the cost of the basic arithmetic operations in K we deduce the complexity
estimate of the statement of the proposition. �

4.2. Computing a hypersurface birational to VP (s+1). The purpose of this
section is to exhibit an algorithm which computes the minimal equation satisfied
by the coordinate function induced by a linear form Lλ := Yn−s + λYn−s+1 in
Fq[VP (s+1) ], for a suitable choice of λ ∈ K.

In order to simplify notations, during this section we shall denote the lifting
point P (s+1) by P , the lifting fiber VP (s+1) by VP , and the lifting curve WP (s+1) by
WP .

For any λ ∈ K, let Lλ ∈ K[Yn−s, Yn−s+1] denote the linear form Lλ := Yn−s +
λYn−s+1, and let π̂s+1,λ : WP → A1 be the projection morphism defined by
π̂s+1,λ(x) := Lλ(x). Our next result yields a sufficient (and consistent) condi-
tion on λ, which assures that replacing the variable Yn−s by Lλ does not change
the situation obtained after the preprocessing of Section 3.2, namely π̂s+1,λ is a
finite morphism, and any element of the set π̂s+1,λ(VP ) defines an unramified fiber
of π̂s+1,λ.

Lemma 4.3. Let Λ be an indeterminate. There exists a nonzero polynomial Es ∈
Fq[Λ] of degree at most 4δ3, with the following property: for any λ ∈ A1 with
Es(λ) �= 0, if Lλ := Yn−s + λYn−s+1, then

(i) the projection mapping π̂s+1,λ : WP (s+1) → A1 defined by Lλ is a finite
morphism,

(ii) Lλ separates the points of the lifting fiber VP (s+1),
(iii) every element of π̂s+1,λ(VP (s+1)) is a lifting point of π̂s+1,λ.

Proof. By the choice of the linear forms Y1, . . . , Yn−s+1 and the point P , we have
that the coordinate function defined by Yn−s+1 represents a primitive element
of the integral ring extension Fq[Yn−s] ↪→ Fq[WP ], whose minimal polynomial is
q(s)(P, Yn−s, Yn−s+1). Furthermore, Fq[WP ] is a free Fq[Yn−s]-module of rank δs.

First we determine a genericity condition for (i). Let LΛ := Yn−s + ΛYn−s+1,
and let q

(s)
Λ be the following element of K[Λ, Y1, . . . , Yn−s−1,LΛ, Yn−s+1]:

q
(s)
Λ := q(s)(Y1, . . . , Yn−s−1,LΛ − ΛYn−s+1, Yn−s+1).

Since q(s) has (total) degree δs and LΛ − ΛYn−s+1 is linear in LΛ, Yn−s+1, and
also in Lλ, Λ, we conclude that degLΛ,Yn−s+1

q
(s)
Λ ≤ δs and degLΛ,Λ q

(s)
Λ ≤ δs hold.

Therefore, we may express q
(s)
Λ (P, Λ,LΛ, Yn−s+1) in the following way:

q
(s)
Λ (P, Λ,LΛ, Yn−s+1) = aδs

(Λ)Y δs
n−s+1 + aδs−1(Λ,LΛ)Y δs−1

n−s+1 + · · · + a0(Λ,LΛ),

where aδs
, . . ., a0 ∈K[Λ,LΛ] have degree at most δs. Since q

(s)
Λ (P, 0, Yn−s, Yn−s+1)

= q(s)(P, Yn−s, Yn−s+1) holds and the polynomial q(s)(P, Yn−s, Yn−s+1) is a monic
element of K[Yn−s][Yn−s+1] of degree δs in Yn−s+1, we conclude that the leading
coefficient aδs

is a nonzero element of K[Λ] (of degree at most δs). We shall prove
below that for any λ with aδs

(λ) �= 0 condition (i) holds.
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Now we consider condition (ii). Let VP := {Q1, . . . , Qδs+1}, and consider the
following polynomial:

Es,1(Λ) =
∏

1≤j<k≤δs+1

(
LΛ(Qj) − LΛ(Qk)

)
.

Observe that LΛ(Qj)−LΛ(Qk)=Yn−s(Qj)−Yn−s(Qk)+Λ
(
Yn−s+1(Qj)−Yn−s+1(Qk)

)
holds for 1 ≤ j < k ≤ δs+1. Therefore, since Yn−s separates the points of the lifting
fiber VP , we conclude that Es,1 is a nonzero element of Fq[Λ] of degree at most δ2

s+1.
We shall show below that for any λ with Es,1(λ) �= 0 condition (ii) holds.

Finally, we consider condition (iii). Let π̂s+1,Λ : A1 × VP → A2 be the mapping
defined by π̂s+1,Λ(λ, x) :=

(
λ,Lλ(x)

)
. Observe that the image of π̂s+1,Λ is a K-

hypersurface of A2 of degree δs+1, defined by the polynomial q
(s+1)
LΛ

(Λ,LΛ) :=∏
1≤j≤δs+1

(LΛ − LΛ(Qj)) ∈ K[Λ,LΛ]. We claim that q
(s+1)
LΛ

and the discriminant

ρ
(s)
Λ (P, Λ,LΛ) ∈ K[Λ,LΛ] of the polynomial q

(s)
Λ (P, Λ,LΛ, Yn−s+1) introduced above

have no nontrivial common factors in K(Λ)[LΛ]. Arguing by contradiction, suppose
that there exists a nontrivial common factor h̃ ∈ K(Λ)[LΛ]. Since q

(s+1)
LΛ

is a monic
element of K[Λ][LΛ], we deduce that there exists a common factor h ∈ K[Λ,LΛ]\K[Λ]
not divisible by Λ. Taking into account that q

(s+1)
LΛ

(0, Yn−s) = q(s+1)(P, Yn−s)

and ρ
(s)
Λ (P, 0, Yn−s) equals the discriminant ρ(s)(P, Yn−s) of q(s)(P, Yn−s, Yn−s+1)

with respect to Yn−s+1, we see that h(0, Yn−s) is a nontrivial common factor of
ρ(s)(P, Yn−s) and q(s+1)(P, Yn−s). Let α ∈ Fq be a root of h(0, Yn−s) and let Q be
a point of VP for which α = Yn−s(Q) holds. Then (p1, . . . , pn−s−1, α) = πs(Q),
and q(s)(πs(Q), Yn−s+1) has less than δs roots. We conclude that either πs(Q) is
not a lifting point of πs or Yn−s+1 is not a primitive element of π−1

s (πs(Q)), thus
contradicting condition (iii) of Theorem 3.3. This proves our claim.

From our claim we see that the resultant Es,2 ∈ K[Λ] of q
(s+1)
LΛ

(Λ,LΛ) and

ρ
(s)
Λ (P, Λ,LΛ) with respect to the variable LΛ is a nonzero element of Fq[Λ] of degree

at most 2(2δs − 1)δsδs+1. The nonvanishing of Es,2 is the genericity condition we
are looking for, as will be shown below.

Let Es := aδs
Es,1Es,2 ∈ Fq[Λ]. Observe that deg Es ≤ 4δ3 holds. Let λ ∈ A1

satisfy Es(λ) �= 0 and let Lλ := Yn−s + λYn−s+1. We claim that conditions (i), (ii)
and (iii) of the statement of Lemma 4.3 hold.

Let �λ, yn−s and yn−s+1 denote the coordinate functions of Fq[WP ] induced by
Lλ := Yn−s + λYn−s+1, Yn−s and Yn−s+1, respectively. We have �λ = yn−s +
λyn−s+1. From q(s)(P, yn−s, yn−s+1) = 0 we deduce that q

(s)
Λ (λ, P, �λ, yn−s+1) = 0

holds. Let q
(s)
λ := q

(s)
Λ (λ, Y1, . . . , Yn−s−1,Lλ, Yn−s+1). Since aδs

(λ) �= 0 holds, we
see that q

(s)
λ (P,Lλ, Yn−s+1) is a monic (up to a nonzero element of Fq) element of

Fq[Lλ][Yn−s+1], which represents an integral dependence equation over Fq[Lλ] for
the coordinate function yn−s+1. Assuming without loss of generality that λ �= 0
holds, we see that π̂s+1,λ : WP → A1 is a dominant mapping, because otherwise
π̂s+1 : WP → A1 would not be dominant. We conclude that Fq[Lλ] ↪→ Fq[�λ, yn−s+1]
is an integral ring extension. Combining this with the fact that Fq[�λ, yn−s+1] ↪→
Fq[WP ] is an integral ring extension, we see that Fq[Lλ] ↪→ Fq[WP ] is an integral
extension. This proves that π̂s+1,λ is a finite morphism and shows that condition
(i) holds.
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Next, taking into account that Es,1(λ) =
∏

1≤i<j≤δs+1

(
Lλ(Qi) − Lλ(Qj)

)
�= 0

holds, we conclude that Lλ separates the points of the fiber VP . This shows that
condition (ii) holds.

Finally, let Q be an arbitrary point of VP . Since Es,2(λ) �= 0 holds, the discrimi-
nant ρ

(s)
λ (P,Lλ) of the polynomial q

(s)
λ (P,Lλ, Yn−s+1) with respect to Yn−s+1 does

not vanish in Lλ(Q). Then q
(s)
λ (P,Lλ(Q),Yn−s+1) has δs distinct roots in Fq. There-

fore, the fiber π̂−1
s+1,λ(Lλ(Q)) has δs distinct points, in other words, it is unramified.

This shows that condition (iii) holds and finishes the proof of the lemma. �

Since the cardinality of the field K is greater than 60n4dδ4, from Theorem 2.2
we see that, for a randomly chosen value λ ∈ K, the condition Es(λ) �= 0 holds with
probability at least 1 − 1/60n4. Assume that we are given such a value λ ∈ K and
let Lλ := Yn−s + λYn−s+1. We are going to exhibit an algorithm that computes
the minimal equation of the coordinate function of VP induced by Lλ.

Let (∂q
(s)
λ /∂Yn−s+1)−1(P,Lλ, Yn−s+1) be the monic element of K(Lλ)[Yn−s+1]

of degree at most δs − 1 that is the inverse of (∂q
(s)
λ /∂Yn−s+1)(P,Lλ, Yn−s+1)

modulo q
(s)
λ (P,Lλ, Yn−s+1), and let w

(s)
n−s+k(P,Lλ, Yn−s+1) ∈ K(Lλ)[Yn−s+1] be

the remainder of the product v
(s)
n−s+k(P,Lλ − λYn−s+1, Yn−s+1)(∂q

(s)
λ /∂Yn−s+1)−1

(P,Lλ, Yn−s+1) modulo q
(s)
λ (P,Lλ, Yn−s+1) for 2 ≤ k ≤ s. Finally, let

fs+1 := Fs+1

(
P,Lλ, Yn−s+1, w

(s)
n−s+2(P,Lλ, Yn−s+1), . . . , w(s)

n (P,Lλ, Yn−s+1)
)
,

gs+1 := ResYn−s+1

(
q
(s)
λ (P,Lλ, Yn−s+1), fs+1

)
,(4.1)

where ResYn−s+1(f, g) denotes the resultant of f and g with respect to Yn−s+1.
We observe that fs+1 ∈ K(Lλ)[Yn−s+1] has degree at most dδs in Yn−s+1, and

that the denominators of its coefficients are divisors of a polynomial of K[Lλ] of
degree bounded by (2δs −1)δs. On the other hand, from [25, Corollary 2] it follows
that gs+1 is an element of K[Lλ] of degree bounded by dδs. Our next result shows
that the minimal equation of Lλ in K[VP ] can be efficiently computed.

Proposition 4.4. There exists a probabilistic Turing machine M which has as
input

• a straight-line program using space S and time T which represents the poly-
nomial Fs+1,

• the dense representation of elements of K[Yn−s, Yn−s+1] which form a geo-
metric solution of WP (s+1), as computed in Proposition 4.2,

• a value λ ∈ K satisfying the conditions of Lemma 4.3,

and outputs the dense representation of the minimal polynomial q
(s+1)
Lλ

(P (s+1),Lλ)
∈ K[Lλ] of the coordinate function of VP (s+1) induced by Lλ. The Turing machine
M runs in space O

(
(S + d)δ2

s log(qδ)
)

and time O
(
(T + n)U(dδs)U(δs)U(log(qδ))

)
and outputs the right result with probability at least 1 − 1/45n3.

Proof. Let λ ∈ K satisfy the conditions of Lemma 4.3. Then [29, Lemma 8] shows
that the following identity holds:

q
(s+1)
Lλ

(P,Lλ) =
gs+1

gcd(gs+1, g′s+1

) .
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Therefore, the computation of q
(s+1)
Lλ

(P,Lλ) can be efficiently reduced to that of
the polynomial gs+1 of (4.1). The latter may be defined as the resultant with re-
spect to the variable Yn−s+1 of two elements of K(Lλ)[Yn−s+1] of degrees bounded
by δs and δs − 1, namely q

(s)
λ (P,Lλ, Yn−s+1) and the remainder of fs+1 modulo

q
(s)
λ (P,Lλ, Yn−s+1). Following [57, Corollary 11.16], such a resultant can be com-

puted using the Extended Euclidean Algorithm (EEA for short) in K(Lλ)[Yn−s+1],
which requires O

(
U(δs)

)
arithmetic operations in K(Lλ) storing at most O(δs)

elements of K(Lλ). Furthermore, the computation of fs+1 requires the (modu-
lar) inversion of (∂q

(s)
λ /∂Yn−s+1)−1(P,Lλ, Yn−s+1), which can also be computed

by applying the EEA in K(Lλ)[Yn−s+1] to the polynomials q
(s)
λ (P,Lλ, Yn−s+1) and

(∂q
(s)
λ /∂Yn−s+1)(P,Lλ, Yn−s+1).
In order to compute the dense representation of the polynomial gs+1, we shall

perform the EEA over a ring of power series K[[Lλ − α]] for some “lucky” point
α ∈ K. Therefore, we have to determine a value α ∈ K such that all the elements of
K[Lλ] which are inverted during the execution of the EEA are invertible elements of
the ring K[[Lλ −α]]. Further, in order to make our algorithm “effective”, during its
execution we shall compute suitable approximations in K[Lλ] of the intermediate
results of our computations, which are obtained by truncating the power series
of K[[Lλ − α]] that constitute these intermediate results. Therefore, we have to
determine the degree of precision of the truncated power series required to output
the right results.

In order to determine the value α ∈ K, we observe that, similar to the proof
of [57, Theorem 6.52], one deduces that all the denominators of the elements
of K(Lλ) arising during the application of the EEA to q

(s)
λ (P,Lλ, Yn−s+1) and

fs+1 are divisors of at most δs + 1 polynomials of K[Lλ] of degree bounded by
(dδs + δs)(2δs − 1)δs. On the other hand, the denominators arising during the ap-
plication of the EEA to q

(s)
λ (P,Lλ, Yn−s+1) and (∂q

(s)
λ /∂Yn−s+1)(P,Lλ, Yn−s+1) are

divisors of at most δs+1 polynomials of K[Yn−s] of degree at most (2δs−1)δs. Hence
the product of all the denominators arising during the two applications of the EEA
has degree at most (dδs + δs + 1)(2δs − 1)δs(δs + 1) ≤ 4dδ4

s . Since #K > 60n4dδ4

holds, from Theorem 2.2 we conclude that there exists α ∈ K that does not annihi-
late any denominator arising as an intermediate results of the EEA. Furthermore,
the probability of finding such an α by a random choice in K is at least 1− 1/45n3.

On the other hand, since the output of our algorithm is a polynomial of degree
at most dδs, computing all the power series which arise as intermediate results up
to order dδs + 1 allows us to output the right result.

Our algorithm computing gs+1 inverts (∂q
(s)
λ /∂Yn−s+1)(P,Lλ, Yn−s+1) modulo

q
(s)
λ (P,Lλ, Yn−s+1), computes w

(s)
n−s+k(P,Lλ, Yn−s+1) for 2 ≤ k ≤ s, then computes

fs+1 modulo q
(s)
λ (P,Lλ, Yn−s+1), and finally computes gs+1. All these steps require

O
(
(T + n)U(δs)

)
arithmetic operations in K(Lλ), storing at most O(Sδs) elements

of K(Lλ). Each of these arithmetic operations is performed in the power series ring
K[[Lλ −α]] at precision dδs + 1, and then requires O

(
U(dδs)

)
arithmetic operations

in K, storing at most O(dδs) elements of K. Therefore, we conclude that the whole
algorithm computing gs+1 requires O

(
(T + n)U(dδs)U(δs)

)
arithmetic operations

in K, storing at most O
(
(S + d)δ2

s

)
elements of K.
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Finally, the computation of gs+1/gcd(gs+1, g
′
s+1) requires O

(
U(dδs)

)
operations

in K, storing at most O(dδs) elements of K. This finishes the proof of the proposi-
tion. �

The algorithm underlying Proposition 4.4 is essentially an extension to the finite
field context of [25, Algorithm II.7]. We have contributed further to the latter by
quantifying the probability of success of our algorithm. We also remark that the
complexity estimate of Proposition 4.4 significantly improves that of [29, Proposi-
tion 1].

4.3. Computing a geometric solution of VP (s+1) . In this section we exhibit an
algorithm which computes a parametrization of the variables Yn−s+1, . . . , Yn by the
zeros of q(s+1)(P (s+1), Yn−s), thus completing the sth recursive step of our main
procedure for computing a geometric solution of the input variety V .

In order to simplify notations, in this section we shall denote, as in the previous
section, the lifting point P (s+1) by P , the lifting fiber VP (s+1) by VP , and the lifting
curve WP (s+1) by WP .

First we discuss how we obtain the parametrization of Yn−s+1 by the zeros of
q(s+1)(P, Yn−s). Recall that such a parametrization is represented by a polyno-
mial (∂q(s+1)/∂Yn−s)(P, Yn−s)Yn−s+1 − v

(s+1)
n−s+1(P, Yn−s) ∈ K[Yn−s, Yn−s+1], with

v
(s+1)
n−s+1(P, Yn−s) of degree at most δs+1 − 1.

Let λ1, λ2 ∈ K \ {0} satisfy the conditions of Lemma 4.3 and let Li := Yn−s +
λiYn−s+1 for i = 1, 2. Observe that the value λ = 0 also satisfies the condi-
tions of Lemma 4.3. By Proposition 4.4 we may assume that we have already
computed the minimal equations q

(s+1)
1 (P,L1), q

(s+1)
2 (P,L2), and q(s+1)(P, Yn−s)

satisfied by L1, L2, and Yn−s in Fq[VP ]. Interpreting these polynomials as ele-
ments of K[Yn−s, Yn−s+1], assume further that L2 separates the common zeros of
q(s+1)(P, Yn−s) and q

(s+1)
1 (P,L1). Arguing as in the proof of Lemma 4.3, we eas-

ily conclude that there exists a nonzero polynomial Ês ∈ Fq[Λ] of degree at most
δ4 such that, for any λ2 with Ês(λ2) �= 0, the linear form L2 satisfies our last
assumption.

In our subsequent argumentations we shall consider the following (zero-dimen-
sional) K-variety:

Ws+1 :=
{
(x1, x2) ∈ A2 : q(s+1)(P, x1) = 0, q

(s+1)
i (P, x1 + λix2) = 0 for i = 1, 2

}
.

Let π̃s : VP → A2 be the projection mapping induced by Yn−s, Yn−s+1. Observe
that π̃s(VP ) ⊂ Ws+1 holds. Furthermore, since L2 separates the common zeros of
q(s+1)(P, Yn−s) and q

(s+1)
1 (P,L1), and q

(s+1)
2 (P,L2) vanishes in the set L2

(
π̃s(VP )

)
(of cardinality δs+1) and has degree δs+1, we conclude that Ws+1 = π̃s(VP ) holds.

Our intention is to reduce the computation of v
(s+1)
n−s+1(P, Yn−s) to gcd com-

putations over suitable field extensions of K. From our previous argumentation
and the fact that Yn−s separates the points of VP , it follows that Yn−s also sep-
arates the points of Ws+1. Then, applying the classical Shape Lemma to this
(zero-dimensional) K-variety (see, e.g., [14]), we see that there exists a polynomial
wn−s+1 ∈ K[Yn−s] of degree at most δs+1 − 1 such that Yn−s+1 − wn−s+1(Yn−s)
vanishes on the variety Ws+1.

Let α ∈ Fq be an arbitrary root of q(s+1)(P, Yn−s) and let β := wn−s+1(α). Then
the fact that Yn−s separates the points of Ws+1 shows that (α, β) is the only point
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of Ws+1 with Yn−s-coordinate α. Hence, Yn−s+1 = β is the only common root of
q
(s+1)
1 (P, α+λ1Yn−s+1) and q

(s+1)
2 (P, α+ λ2Yn−s+1). Furthermore, the assumption

on λ2 implies that q
(s+1)
2 (P, α + λ2Yn−s+1) is squarefree. Therefore, we conclude

that the following identity holds in K(α)[Yn−s+1]:

(4.2) gcd
(
q
(s+1)
1 (P, α + λ1Yn−s+1), q

(s+1)
2 (P, α + λ2Yn−s+1)

)
= Yn−s+1 − β.

Let q(s+1)(P, Yn−s) = h1 · · ·hN be the irreducible factorization of the polynomial
q(s+1)(P, Yn−s) in K[Yn−s]. Every irreducible factor hj represents a K-irreducible
component Cj of Ws+1. Let αj ∈ Fq be an arbitrary root of hj . Taking into account
the field isomorphism K(αj) � K[Yn−s]/

(
hj(Yn−s)

)
, from identity (4.2) we conclude

that there exists vj ∈ K[Yn−s] of degree at most deg hj − 1 such that the following
identity holds in

(
K[Yn−s]/

(
hj(Yn−s)

))
[Yn−s+1]:

(4.3) gcd
(
q
(s+1)
1 (P, Yn−s+λ1Yn−s+1), q

(s+1)
2 (P, Yn−s+λ2Yn−s+1)

)
=Yn−s+1−vj(Yn−s).

Fix j ∈ {1, . . . , N}. From the Bézout identity we deduce that the congruence
relation Yn−s+1−vj(Yn−s) ≡ 0 mod I(Cj) holds. This implies that h′

j ·(Yn−s+1−vj)
belongs to the ideal I(Cj) for 1 ≤ j ≤ N . Hence, h′

j

( ∏
i �=j hi

)
(Yn−s+1−vj) belongs

to the ideal I(Ws+1) ⊂ I(VP ) for 1 ≤ j ≤ N .
Let

(4.4) v
(s+1)
n−s+1(P, Yn−s) :=

∑
1≤j≤N

h′
jvj

∏
i �=j

hi mod q(s+1)(P, Yn−s).

By construction we have that v
(s+1)
n−s+1(P, Yn−s) is an element of K[Yn−s] of de-

gree at most δs+1 − 1. Furthermore, our previous argumentation shows that
(∂q(s+1)/∂Yn−s)(P, Yn−s)Yn−s+1−v

(s+1)
n−s+1(P, Yn−s)=

∑N
j=1h

′
j

(∏
i �=jhi

)
(Yn−s+1−vj)

belongs to the ideal I(VP ), and hence it represents the parametrization of Yn−s+1

by the zeros of q(s+1)(P, Yn−s) we are looking for.
Now we estimate the complexity and probability of the success of the algorithm

described above.

Lemma 4.5. The algorithm described above takes as input
• a straight-line program using space S and time T which represents the poly-

nomial Fs+1,
• the polynomials q(s)(P (s+1), Yn−s, Yn−s+1) and v

(s)
n−s+k(P (s+1), Yn−s, Yn−s+1)

(2 ≤ k ≤ s). They form the geometric solution of the lifting curve WP (s+1)

computed in Proposition 4.2,
and outputs

• the minimal polynomial q(s+1)(P (s+1), Yn−s) of the coordinate function of
K[VP (s+1) ] defined by Yn−s,

• the parametrization of Yn−s+1 by the zeros of q(s+1)(P (s+1), Yn−s).
This algorithm can be implemented in a probabilistic Turing machine M running in
space O

(
(S+n+d)δ2 log(qδ)

)
and time O

(
(T +n)U(δ)

(
U(dδ)+log(qδ)

)
U(log(qδ))

)
,

and outputs the right result with probability at least 1 − 1/60n.

Proof. Let Es be the polynomial of the statement of Lemma 4.3 and let Ês be the
polynomial introduced at the beginning of this section. Recall that deg Es ≤ 4δ3

and deg Ês ≤ δ4 hold. Let λ1, λ2 be two distinct values of K randomly chosen
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and let Li := Yn−s + λiYn−s+1 (i = 1, 2). Applying Theorem 2.2 we conclude
that Es(λ1)Es(λ2)Ês(λ2) �= 0 holds with probability at least 1 − 1/72n3. Sup-
pose that this is the case. Then, applying the algorithm underlying Proposi-
tion 4.4, we conclude that the minimal equations q(s+1)(P, Yn−s), qi(P,Li) (i =
1, 2) satisfied by Yn−s,Li (i = 1, 2) in K[VP ] can be computed by a probabilis-
tic Turing machine which runs in space O

(
(S + d)δ2

s log(qδ)
)

and time O
(
(T +

n)U(dδs)U(δs)U(log(qδ))
)
, with probability of success at least 1 − 1/15n3.

Next we compute the irreducible factorization q(s+1)(P, Yn−s) = h1 · · ·hN of
q(s+1)(P, Yn−s) in K[Yn−s]. From [57, Corollary 14.30] we conclude that such a
factorization can be computed with space O(δ2

s+1log(qδ)) and time

O
(
log(n)

(
U(δ2

s+1) + U(δs+1) log(qδ)
)
U(log(qδ))

)
,

with probability of success at least 1 − 1/16n3.
Then we compute the polynomials v1, . . . , vN of (4.3) and the polynomial v

(s+1)
n−s+1

of (4.4) by using the EEA (see, e.g., [6], [57]). According to [57, Corollary 11.16],
this step can be done deterministically using space O(δsδs+1 log(qδ)) and time
O

(
δs+1U(δs)U(log(qδ))

)
. Adding the complexity and probability estimates of each

step, we easily deduce the statement of the proposition. �

Now we discuss how we can obtain the parametrizations of the remaining vari-
ables Yn−s+k for 2 ≤ k ≤ s.

Lemma 4.6. Given the geometric solution of the lifting curve WP (s+1) and the out-
put of the algorithm underlying Lemma 4.5, the polynomials v

(s+1)
n−s+k(P (s+1), Yn−s)

which parametrize Yn−s+k by the zeros of q(s+1)(P (s+1), Yn−s) for 2 ≤ k ≤ s can
be deterministically computed in space O(δ log(qδ)) and time O(sδU(δ) log(qδ)).

Proof. Let (∂q(s+1)/∂Yn−s)−1(P, Yn−s) ∈ K[Yn−s] denote the inverse of the poly-
nomial (∂q(s+1)/∂Yn−s)(P, Yn−s) modulo q(s+1)(P, Yn−s). This polynomial can be
computed by means of the EEA using space O(δs log(qδ)) and time O(U(δs) log(qδ)).
Let w

(s+1)
n−s+1(P, Yn−s) := (∂q(s+1)/∂Yn−s)−1(P, Yn−s) v

(s+1)
n−s+1(P, Yn−s). Observe that

Yn−s+1−w
(s+1)
n−s+1(P, Yn−s) belongs to the ideal I(VP ). With this parametrization we

shall “eliminate” the variable Yn−s+1 of the polynomials v
(s)
n−s+k(P, Yn−s, Yn−s+1).

For this, we observe that the polynomials q(s)
(
P, Yn−s, w

(s+1)
n−s+1(P, Yn−s)

)
and

(∂q(s)/∂Yn−s+1)
(
P,Yn−s,w

(s+1)
n−s+1(P,Yn−s)

)
Yn−s+k−v

(s)
n−s+k

(
P,Yn−s,w

(s+1)
n−s+1(P,Yn−s)

)
(2 ≤ k ≤ s) belong to the ideal I(VP ). Furthermore, we have that the polynomial
(∂q(s)/∂Yn−s+1)

(
P, Yn−s, w

(s+1)
n−s+1(P, Yn−s)

)
is a unit of K[Yn−s]/

(
q(s+1)(P, Yn−s)

)
, be-

cause otherwise the discriminant ρ(s)(P, Yn−s) would have common roots with
q(s+1)(P, Yn−s), thus contradicting condition (iii) of Theorem 3.3. Therefore, its
inverse bn−s+1 modulo q(s+1)(P, Yn−s) is a well-defined element of K[Yn−s], and
Yn−s+k−bn−s+1 ·v(s)

n−s+k

(
P, Yn−s, w

(s+1)
n−s+1(P, Yn−s)

)
belongs to I(VP ) for 2 ≤ k ≤ s.

Therefore, if we let

(4.5) wn−s+k := bn−s+1 · v(s)
n−s+k

(
P, Yn−s, w

(s+1)
n−s+1(P, Yn−s)

)
(2 ≤ k ≤ s),

we see that Yn−s+k −wn−s+k belongs to I(VP ) for 2 ≤ k ≤ s. Multiplying wn−s+k

by (∂q(s+1)/∂Yn−s)(P, Yn−s) for 2 ≤ k ≤ s, and reducing modulo q(s+1)(P, Yn−s),
we obtain the polynomials v

(s+1)
n−s+k ∈ K[Yn−s] (2 ≤ k ≤ s) we are looking for.
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The polynomials bn−s+1 and wn−s+k (2 ≤ k ≤ s) of (4.5) can be computed
with space O(sδs+1 log(qδ)) and time O(sδsU(δs+1) log(qδ)), and the polynomials
v
(s+1)
n−s+k(P (s+1), Yn−s) for 2 ≤ k ≤ s can be computed with the same asymptotic

complexity estimate. This finishes the proof of the lemma. �

As a consequence of Proposition 4.4 and Lemmas 4.5 and 4.6, we have an algo-
rithm for computing the polynomials q(s+1)(P, Yn−s), v

(s+1)
n−s+k(P, Yn−s) ∈ K[Yn−s]

(1 ≤ k ≤ s). These polynomials form a geometric solution of VP . We summarize
the complexity and probability estimates of this algorithm in the next proposition.

Proposition 4.7. The algorithm underlying Proposition 4.4 and Lemmas 4.5 and
4.6 has as input

• a straight-line program using space S and time T which represents the poly-
nomial Fs+1,

• the polynomials q(s)(P (s+1), Yn−s, Yn−s+1) and v
(s)
n−s+k(P (s+1), Yn−s, Yn−s+1)

(2 ≤ k ≤ s). They form the geometric solution of the lifting curve WP (s+1)

computed in Proposition 4.2,

and outputs a geometric solution of the lifting fiber VP (s+1). It can be implemented
in a probabilistic Turing machine running in space O

(
(S + n + d)δ2 log(qδ)

)
and

time O
(
(T + n)U(δ)

(
U(dδ) + log(qδ)

)
U(log(qδ))

)
, and outputs the right result with

probability at least 1 − 1/60n.

The algorithm underlying Proposition 4.7 extends to the positive characteristic
case the algorithms of [29] and [25], having a better asymptotic complexity esti-
mate (in terms of the number of arithmetic operations performed) than [29], and a
similar complexity estimate as in [25]. We also contribute to the latter by providing
estimates on the probability of success of the algorithm, which are not present in
[25]. Finally, we remark that by means of our preprocessing we have significantly
simplified both the algorithms of [29] and [25].

4.4. A K-definable geometric solution of V . Now we have all the ingredients
necessary to describe our algorithm computing the K-definable geometric solution
of our input variety V := Vr. We recall that K is a field extension of Fq of cardinality
greater than 60n4dδ4. Let (λ, γ, P ) be a point randomly chosen in the set Kn(n+1)×
Kn−1. Theorem 2.2 shows that B(λ, γ, P ) does not vanish with probability at least
14/15, where B is the polynomial defined at the beginning of Section 4. Assume that
we have chosen such a point and let (Y1, . . . , Yn) := λX+γ and P := (p1, . . . , pn−1).
Then Y1, . . . , Yn and P (s) := (p1, . . . , pn−s) satisfy the conditions of Theorem 3.3
for 1 ≤ s ≤ r − 1.

Therefore, we may recursively apply, for 1 ≤ s ≤ r−1, the algorithms underlying
Propositions 4.2 and 4.7, which compute a geometric solution of the lifting curve
WP (s+1) and of the lifting fiber VP (s+1) , respectively. In this way, at the end of the
(r − 1)-th recursive step we obtain a geometric solution of the lifting fiber VP (r) .
Taking into account the complexity and probability estimates of Propositions 4.2
and 4.7, we easily deduce the following result.

Theorem 4.8. The algorithm described above takes as input a straight-line program
which represents the input polynomials F1, . . . , Fr with space S and time T , and
outputs a geometric solution of the lifting fiber VP (r) . It can be implemented to run
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in a probabilistic Turing machine M using space O
(
(S +n+d)δ2 log(qδ)

)
and time

O
(
(nT + n5)U(δ)

(
U(dδ) + log(qδ)

)
U(log(qδ))

)
.

This Turing machine outputs the right result with probability at least 1 − 1/12.

The complexity estimate of Theorem 4.8 significantly improves the O(dn2
) com-

plexity estimate of [30], the O(d2r) estimate of [31], and the estimates of the algo-
rithms of the so-called Gröbner solving. Furthermore, let us remark that, combining
the algorithm underlying Theorem 4.8 with techniques of p-adic lifting, as those of
[25], for a “lucky” choice of prime number p one obtains an efficient probabilistic
algorithm for computing the geometric solution of an equidimensional variety over
Q given by a reduced regular sequence.

5. An Fq-definable lifting fiber of V

Let notations and assumptions be as in Section 4.4. In this section we obtain
a geometric solution of an Fq-definable lifting fiber of V . For this purpose, we
shall homotopically deform the K-definable geometric solution of the lifting fiber
VP (r) := π−1

r (P (r)), computed in the previous section, into a geometric solution of
an Fq-definable lifting fiber π−1(Q) of the linear projection mapping π : V → An−r.
This geometric solution is determined by suitable linear forms Z1, . . . , Zn−r+1

∈ Fq[X1, . . . , Xn]. The deformation will be given as a homotopy of the form
(1 − T )Yj + TZj for 1 ≤ j ≤ n − r + 1, where T is a new indeterminate.

Let (λ, γ, P ) ∈ Kn(n+1) × Kn−r be the point fixed in Section 4, which yields
the linear forms Y := (Y1, . . . , Yn) := λX + γ and the point P ∈ Kn−r. Write
γ := (γ1, . . . , γn) and P := (p1, . . . , pn−r). Let Λ be an (n − r + 1) × n matrix
of indeterminates. For 1 ≤ i ≤ n − r + 1, let Λ(i) := (Λi,1, . . . , Λi,n) denote
its ith row and let Λ[1:i] denote the i × n submatrix of Λ consisting of the first
i rows of Λ. Let Γ := (Γ1, . . . , Γn−r+1) be a vector of indeterminates, and let
Ỹ := (Ỹ1, . . . , Ỹn−r+1) := ΛX + Γ.

Let B̂ ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−r] be the polynomial of Corollary 3.4, and let B′ :=
det(∆1) det(∆2)B̂, where ∆1 is the n × n matrix that has Λ[1:n−r] as its upper
(n− r)×n submatrix, and the coefficients of the linear forms Yn−r+1, . . . , Yn in its
last r rows, and ∆2 is the n×n matrix having Λ[1:n−r+1] as its upper (n−r+1)×n
submatrix, and the coefficients of Yn−r+2, . . . , Yn in its last r − 1 rows. Observe
that deg B′ ≤ 2(n − r + 2)ndδ2

r holds.
Suppose that q > 8n2dδ4

r holds, and let (ν, η, Q) ∈ F
(n−r+1)(n+1)
q × Fn−r

q be a
point such that B′(ν, η, Q) �= 0. Theorem 2.2 shows that such a point (ν, η, Q) can
be randomly chosen in the set F

(n−r+1)(n+1)
q × Fn−r

q with probability of success at
least 1 − 1/16.

Let ν := ν[1:n−r+1], η := (η1, . . . , ηn−r+1), Q := (q1, . . . , qn−r), and Z :=
(Z1, . . . , Zn−r+1) := νX+η. The condition det(∆1 ·∆2)(ν) �= 0 implies that the sets
of linear forms Z1, . . . , Zn−r, Yn−r+1, . . . , Yn and Z1, . . . , Zn−r+1, Yn−r+2, . . . , Yn in-
duce linear changes of coordinates. Furthermore, from the condition B̂(ν, η, Q) �= 0
and Corollary 3.4, we conclude that the linear projection mapping π : V → An−r

defined by Z1, . . . , Zn−r is a finite morphism, Q ∈ Fn−r
q is a lifting point of π, and

Zn−r+1 is a primitive element of the lifting fiber VQ := π−1(Q).
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Let T be a new indeterminate, and let Λ̂ ∈ K[T ]n×n and Γ̂ ∈ K[T ]n be the matrix
and column vector defined in the following way:

Λ̂ := (1 − T )λ + T∆1(ν[1:n−r]),
Γ̂ := (1 − T )γt + T (η1, . . . , ηn−r, γn−r+1, . . . , γn)t,

where ν[1:n−r] denotes the (n − r) × n matrix consisting of the first n − r rows
of ν and the symbol t denotes transposition. Let Λ̂[1:n−r] denote the (n − r) × n

submatrix of Λ̂ consisting of the first n− r rows of Λ̂ and let Γ̂[1:n−r] be the vector
consisting of the first n − r entries of Γ̂, respectively.

Let W be the subvariety of An
(
Fq(T )

)
defined by the set of common zeros of

F1, . . . , Fr. Let Ẑ := (Ẑ1, . . . , Ẑn) := Λ̂X+Γ̂ and P̂ := (p̂1, . . . , p̂n−r) := (1−T )P +
TQ. Since Λ̂ is an invertible element of Fq(T )n×n, we have that X = Λ̂−1(Ẑ − Γ̂)
holds, and hence F̂j := Fj(Λ̂−1(Ẑ−Γ̂)) is a well-defined element of Fq(T )[Ẑ1, . . . , Ẑn]
for 1 ≤ j ≤ r. Observe that the point (Λ̂, Γ̂, P̂ ) ∈ An(n+1)

(
Fq(T )

)
× An−r

(
Fq(T )

)
does not annihilate the polynomial B̂ of the statement of Corollary 3.4. There-
fore, applying Corollary 3.4, replacing the field Fq by Fq(T ), we conclude that
Fq(T )[Ẑ1, . . . , Ẑn−r] ↪→ Fq(T )[X]/(F1, . . . , Fr) is an integral ring extension, P̂ is
a lifting point of the linear projection mapping πe : W → Fq(T )

n−r
defined by

Ẑ1, . . . , Ẑn−r, and Ẑn−r+1 = Yn−r+1 is a primitive element of the (zero-dimensional)
lifting fiber WP̂ := (πe)−1(P̂ ).

Let q̂Ẑn−r+1
:= q̂Ẑn−r+1

(P̂ , Ẑn−r+1) ∈ Fq(T )[Ẑn−r+1] denote the minimal equa-

tion satisfied by Ẑn−r+1 in Fq(T )[WP̂ ]. By the K(T )-definability of WP̂ and Ẑn−r+1,
we see that q̂Ẑn−r+1

belongs to K(T )[Ẑn−r+1]. Furthermore, our choice of P̂ and

Ẑ1, . . . , Ẑn−r+1 implies that q̂Ẑn−r+1
is a separable element of K(T )[Ẑn−r+1] of de-

gree δr. Let ρ̂ ∈ K[T ] be the product of its denominator and the numerator of its
discriminant with respect to Ẑn−r+1. In order to perform the homotopic deforma-
tion mentioned at the beginning of this section, we need the following preliminary
result.

Lemma 5.1. The polynomials F̂j(P̂ , Yn−r+1, . . . , Yn) (1 ≤ j ≤ r) form a regu-
lar sequence and generate a radical ideal ÎP̂ of K[T ]ρ̂[Yn−r+1, . . . , Yn]. The ring
extension

(5.1) K[T ]ρ̂ ↪→ K[T ]ρ̂[Yn−r+1, . . . ,Yn]/ÎP̂

is integral of rank δr.

Proof. Arguing by contradiction, suppose that there exists 1 ≤ j ≤ r such that
F̂j(P̂ , Yn−r+1, . . . , Yn) is a zero divisor modulo the ideal generated by the polyno-
mials F̂1(P̂ , Yn−r+1, . . . , Yn), . . . , F̂j−1(P̂ , Yn−r+1, . . . , Yn). Substituting T = 0 in
these polynomials, we conclude that Fj(P, Yn−r+1, . . . , Yn) is a zero divisor mod-
ulo F1(P, Yn−r+1, . . . , Yn), . . . , Fj−1(P, Yn−r+1, . . . , Yn), thus contradicting Lemma
4.1. This shows that F̂j(P̂ , Yn−r+1, . . . , Yn) (1 ≤ j ≤ r) form a regular sequence. A
similar argument shows that det

(
∂F̂i(P̂ , Yn−r+1, . . . , Yn)/∂Yn−r+j

)
1≤i,j≤r

is not a

zero divisor modulo ÎP̂ . Hence, [16, Theorem 18.15] implies that the ideal ÎP̂ is
radical.
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By the remarks before the lemma, we see that q̂Ẑn−r+1
∈ K[T ]ρ̂[Ẑn−r+1] yields

an integral dependence equation for the coordinate function ẑn−r+1 induced by
Ẑn−r+1 in the ring extension (5.1). We conclude that K[T ]ρ̂ ↪→ K[T ]ρ̂[ẑn−r+1] is an
integral ring extension.

Let ξ1, . . . , ξn denote the coordinate functions of K[T ]ρ̂[Yn−r+1, . . . , Yn]/ÎP̂ in-
duced by X1, . . . , Xn. Arguing as in (3.5) of the proof of Proposition 3.1, we
conclude that there exist polynomials P̂1, . . . , P̂n ∈ K[T ]ρ̂[Ẑn−r+1] such that ξk =
P̂k(ẑn−r+1) holds for 1 ≤ k ≤ n. This shows that K[T ]ρ̂[ẑn−r+1] ↪→ K[T ]ρ̂[ξ1, . . . , ξn]
= K[T ]ρ̂[Yn−r+1, . . . , Yn]/ÎP̂ is an integral ring extension and, combined with the
fact that K[T ]ρ̂ ↪→ K[T ]ρ̂[ẑn−r+1] is an integral ring extension, proves that (5.1) is
integral.

Our previous assertions imply that K[T ]ρ̂[Yn−r+1, . . . , Yn]/ÎP̂ is a free K[T ]ρ̂-
module of rank at most δr. Since q̂Ẑn−r+1

(P̂ , Ẑn−r+1) is the minimal dependence
equation satisfied by ẑn−r+1 in the extension (5.1), we conclude that the rank of
K[T ]ρ̂[Yn−r+1, . . . , Yn]/ÎP̂ as a K[T ]ρ̂-module is exactly δr. This finishes the proof
of the lemma. �

Let V̂ ⊂ Ar+1 be the affine equidimensional variety defined by ÎP̂ and let π̂ :
V̂ → A1 be the mapping induced by the projection onto the coordinate T . Lemma
5.1 implies that V̂ has dimension 1 and degree δr, and π̂ is a dominant morphism.
Furthermore, taking into account the equalities V̂ ∩ {T = 0} = {0} × VP and
V̂ ∩ {T = 1} = {1} × VQ, we conclude that T = 0 and T = 1 are lifting points
of the morphism π̂. Therefore, applying the Newton–Hensel procedure mentioned
in Section 4.1, we obtain a geometric solution of the lifting fiber VQ. This is the
content of our next result.

Proposition 5.2. Suppose that q > 8n2dδ4
r holds. Given as input

• a straight-line program using space S and time T which represents the input
polynomials F1, . . . , Fr,

• the polynomials q(r)(P (r), Yn−r+1), v
(r)
n−r+k(P (r), Yn−r+1) (2 ≤ k ≤ r),

which form the geometric solution of the lifting fiber VP (r) computed in
Theorem 4.8,

the polynomials q(Q, Zn−r+1) ∈ Fq[Zn−r+1], vn−r+k(Q, Zn−r+1) ∈ K[Zn−r+1] (2 ≤
k ≤ r) which form a geometric solution of the lifting fiber VQ can be computed
using space O

(
(S + n)δ2

r log(qδ)
)

and time O
(
(nT + n5)U(δr)2U(log(qδ))

)
. This

algorithm outputs the right result with probability at least 1 − 1/16.

Proof. Let (ν, η, Q) be a point randomly chosen in the set F
(n−r+1)(n+1)
q × Fn−r

q .
Let B′ ∈ Fq[Λ, Γ, Ỹ1, . . . , Ỹn−r] be the polynomial introduced at the beginning of
this section. Since deg B′ ≤ 2(n− r + 2)ndδ2

r holds, from Theorem 2.2 we conclude
that B′(ν, η, Q) �= 0 holds with probability at least 1 − 1/16.

By the remarks before the statement of the proposition, we see that T = 0 and
T = 1 are lifting points of the morphism π̂. Then, applying the Newton–Hensel
procedure of [51], we see that there exists a computation tree in K, computing
polynomials q̂(T, Yn−r+1), v̂n−r+k(T, Yn−r+1) (2 ≤ k ≤ r) which form a geometric
solution of V̂ . This computation tree requires O

(
(nT + n5)U(δr)2

)
operations in

K, using at most O
(
(S +n)δ2

r

)
arithmetic registers. Making the substitution T = 1
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in these polynomials we obtain polynomials q̂(1, Yn−r+1), v̂n−r+k(1, Yn−r+1) (2 ≤
k ≤ r), which form a geometric solution of the lifting fiber V̂ ∩{T = 1} = {1}×VQ

(and therefore of VQ), using Yn−r+1 as a primitive element.
Our next goal is to compute a geometric solution of VQ, using Zn−r+1 as a prim-

itive element. In order to do this, let ŵn−r+k(1, Yn−r+1) ∈ K[Yn−r+1] denote the
remainder of the product (∂q̂/∂Yn−r+1)(1, Yn−r+1)−1 · v̂n−r+k(1, Yn−r+1) modulo
q̂(1, Yn−r+1) for 2 ≤ k ≤ r. Observe that Yn−r+k = ŵn−r+k(1, Yn−r+1) holds in
K[VQ] for 2 ≤ k ≤ r. Write Zn−r+1 = α1Z1 + · · · + αn−rZn−r + αn−r+1Yn−r+1 +
· · · + αnYn. Then, from the identity

Res
(
q̂(1, Yn−r+1), g

)
=

∏
x∈VQ

g(Yn−r+1(x)),

we easily see that the minimal equation satisfied by the linear form Zn−r+1 +
TYn−r+1 in Fq[T ] ⊗ Fq[VQ] is given by

(5.2)

qZn−r+1+TYn−r+1(Q, T, S)

= ResU

(
q̂(1, U), S −

n−r∑
k=1

αkqk − (αn−r+1 + T )U −
n∑

k=n−r+2

αkŵk(1, U)
)
.

Following [1], [46] as in the proof of Proposition 3.1, we have the congruence relation

qZn−r+1+TYn−r+1(Q, T, Zn−r+1) ≡ q(Q, Zn−r+1)

+ T
(
∂q/∂Zn−r+1(Q, Zn−r+1)Yn−r+1 − vn−r+1(Q, Zn−r+1)

)
mod (T 2),

where q(Q, Zn−r+1) is the minimal polynomial of the coordinate function defined
by Zn−r+1 in K[VQ] and (∂q/∂Zn−r+1)(Q, Zn−r+1)Yn−r+1 = vn−r+1(Q, Zn−r+1)
holds in K[VQ].

We compute the right-hand side term of (5.2), up to order T 2, by interpolation
in the variable S, thus reducing the computation to δr resultants of univariate
polynomials of K[T ] of degree at most 1. Using fast algorithms for univariate
resultants and interpolation over K (see, e.g., [6], [57]), we conclude that the dense
representation of q(Q, S) and vn−r+1(Q, S) can be deterministically computed with
O(δrU(δr)) arithmetic operations over K, using at most O(δ2

r) arithmetic registers.
Finally, it remains to compute the polynomials vn−r+k(Q, Zn−r+1) (2 ≤ k ≤ r)

which parametrize Yn−r+k by the zeros of q(Q, Zn−r+1). For this purpose, we shall
compute polynomials wn−r+k(Q, Zn−r+1) (1 ≤ k ≤ r) of degree at most δr −1 such
that Yn−r+k ≡ wn−r+k(Q, Zn−r+1) holds in K[VQ]. From these data the polyno-
mials vn−r+k(Q, Zn−r+1) (2 ≤ k ≤ r) can easily be obtained by multiplication by
(∂q/∂Zn−r+1)(Q, Zn−r+1) and modular reduction.

The polynomial wn−r+1(Q, Zn−r+1) can be computed as the remainder of the
product (∂q/∂Zn−r+1)(Q, Zn−r+1)−1 · vn−r+1(Q,Zn−r+1) modulo q(Q,Zn−r+1).
Then, since the identities Yn−r+k = ŵn−r+k(1, Yn−r+1) and Yn−r+1 =
vn−r+1(Zn−r+1) hold in K[VQ] for 2 ≤ k ≤ r, we conclude that the polynomial
wn−r+k(Q, Zn−r+1) equals the remainder of ŵn−r+k

(
1, vn−r+1(Zn−r+1)

)
modulo

q(Q, Zn−r+1) for 2 ≤ k ≤ r. Therefore, the polynomials wn−r+k(Q, Zn−r+1)
(2 ≤ k ≤ r) can be computed with O(δrU(δr)) arithmetic operations in K, us-
ing at most O(δ2

r) arithmetic registers.
Putting together the complexity and probability of success of each step of the

procedure above finishes the proof of the proposition. �
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6. The computation of a rational point of V

In this section we exhibit a probabilistic algorithm which computes a rational
point of the variety V := Vr. For this purpose, let K be the finite field extension
of Fq introduced in Section 4 and assume that we are given Fq-linearly independent
linear forms Z1, . . . , Zn−r+1, Yn−r+2, . . . , Yn ∈ Fq[X], with Z1, . . . , Zn−r+1 ∈ Fq[X]
and Yn−r+2, . . . , Yn ∈ K[X], and a point Q := (q1, . . . , qn−r) ∈ Fn−r

q , such that
the linear projection mapping π : V → An−r determined by Z1, . . . , Zn−r is a
finite morphism and Q is a lifting point of π. Furthermore, assume that we are
given polynomials q(Q, Zn−r+1) ∈ Fq[Zn−r+1], vn−r+k(Q, Zn−r+1) ∈ K[Zn−r+1]
(2 ≤ k ≤ r) which form a geometric solution of the lifting fiber VQ, as provided by
Proposition 5.2.

Let ω := (ω1, . . . , ωn−r) be an arbitrary point of An−r, let Lω ⊂ An be the
(r + 1)-dimensional affine linear subvariety of An parametrized by Zj = ωjT + qj

(1 ≤ j ≤ n− r) and let Cω := V ∩Lω. We may consider Cω as the affine subvariety
of Ar+1 defined by the set of common zeros of the polynomials

Fj(ωT + Q, Zn−r+1, Yn−r+2, . . . , Yn) (1 ≤ j ≤ r).

With this interpretation, let πω : Cω → A1 be the projection mapping induced by
T . We have the following result.

Lemma 6.1. The variety Cω ⊂ Ar+1 is equidimensional of dimension 1 and degree
δr, the mapping πω is a finite morphism, and 0 is an unramified value of πω.

Proof. Observe that Cω = V ∩ Lω = π−1(Lω). Since π is a finite morphism, we
conclude that dim Cω = dimAn−r Lω = 1. Further, Cω is defined by r polynomials in
Ar+1, and thus it cannot have irreducible components of dimension 0. This shows
that Cω is equidimensional of dimension 1.

The fact that the injective mapping Fq[Z1, . . . , Zn−r] ↪→ Fq[V ] induces an integral
ring extension implies that Fq[T ] ↪→ Fq[Cω] is an injective mapping which induces
an integral ring extension, thus showing that πω is a finite morphism. From the
Bézout inequality (2.1), we see that deg Cω ≤ δr holds. On the other hand, since
π−1

ω (0) = VQ holds, we have δr = deg VQ ≤ deg Cω. We conclude that deg Cω = δr

holds and 0 is an unramified value of πω. �

Our intention is to find a rational point of the curve Cω for a suitably chosen
ω ∈ Fn−r

q . For this purpose, we are going to find a rational point (t, zn−r+1)
of the plane curve Wω defined by the polynomial h := q(ωT + Q, Zn−r+1) such
that (t, zn−r+1) does not belong to the plane curve W̃ω defined by the polynomial
∂h/∂Zn−r+1. Here q(ωT + Q, Zn−r+1) denotes the minimal polynomial of the
coordinate function defined by Zn−r+1 in the integral ring extension Fq[T ] ↪→ Fq[Cω].
Observe that the Fq-definability of Cω and Wω imply that h ∈ Fq[T, Zn−r+1]. Let
π̃ω : Cω → A2 be the mapping defined by T, Zn−r+1. From Lemma 3.5 we deduce
that π̃ω induces a birational mapping π̃ω : Cω → Wω, whose inverse is an Fq-
definable rational mapping defined on Wω\W̃ω. This inverse can easily be expressed
in terms of the polynomials vn−r+k(ωT +Q, Zn−r+1) (2 ≤ k ≤ r) which parametrize
Yn−r+k by the zeros of h. Therefore, using this inverse we shall be able to obtain
a rational point of our input variety V .

Unfortunately, the existence of a rational point of the plane curve Wω cannot be
asserted if Wω does not have at least one absolutely irreducible component defined
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over Fq. In order to assure that this condition holds, let C ∈ Fq[Ω1, . . . , Ωn−r] be the
(nonzero) polynomial of the statement of Theorem 3.6. Recall that C has degree
bounded by 2δ4

r . Theorem 3.6 asserts that, for any ω ∈ Fn−r
q with C(ω) �= 0,

the curve Wω is absolutely irreducible. Assume as in Section 5 that q > 8n2dδ4
r

holds. Theorem 2.2 shows that a random choice of ω in Fn−r
q satisfies the condition

C(ω) �= 0 with probability at least 1− 1/72. From now on we shall assume that we
have chosen such ω.

Proposition 6.2. Let q > 8n2dδ4
r . Suppose that we are given:

• a straight-line program using space S and time T which represents the poly-
nomials F1, . . . , Fr,

• the dense representation of elements of K[Zn−r+1] which form a geometric
solution of the lifting fiber VQ, as provided by Proposition 5.2.

Then, we can deterministically compute the dense representation of elements

q(ωT + Q, Zn−r+1) ∈ Fq[T, Zn−r+1],

vn−r+k(ωT + Q, Zn−r+1) ∈ K[T, Zn−r+1] (2 ≤ k ≤ r)

which form a geometric solution of the absolutely irreducible curve Cω. The algo-
rithm runs in space O

(
(S + n)δ2 log(qδ)

)
and time O

(
(nT + n5)U(δ)2U(log(qδ))

)
.

Proof. Arguing as in the proof of Lemma 4.1, we easily conclude that

Fj(ωT + Q, Zn−r+1, Yn−r+2, . . . , Yn) (1 ≤ j ≤ r)

form a regular sequence and generate a radical ideal of

Fq[T, Zn−r+1, Yn−r+2, . . . , Yn].

Then the deterministic algorithm underlying Proposition 4.2 yields a geometric
solution of the curve Cω. From the complexity estimate of Proposition 4.2 we deduce
the statement of the proposition. �

6.1. Computing a rational point of a plane curve. In this subsection we
exhibit a probabilistic algorithm which computes a rational point of the curve
Cω ⊂ V previously defined.

Let h := q(ωT+Q, Zn−r+1). Recall that h is an absolutely irreducible polynomial
of Fq[T, Zn−r+1] of degree δr > 0. Let as in the previous section Wω, W̃ω ⊂ A2

denote the plane curves defined by h and ∂h/∂Zn−r+1, respectively. As remarked
in the previous section, our aim is to compute a point in the set (Wω \ W̃ω) ∩ F2

q ,
from which we shall immediately obtain a rational of point V .

Lemma 6.3. If q > 8n2dδ4
r , then

(6.1) #
(
(Wω \ W̃ω) ∩ F2

q

)
≥ q − q1/2δ2

r − δ2
r .

In particular, there exists at least a rational point of Wω \ W̃ω, and thus of V .

Proof. Weil’s classical estimate on the number of rational points of an absolutely
irreducible nonsingular projective plane curve [60] implies that the set of rational
points of Wω satisfies the estimate (see, e.g., [49])

|#(Wω ∩ F2
q ) − q| ≤ (δr − 1)(δr − 2)q1/2 + δr + 1 ≤ δ2

rq1/2.

We deduce the lower bound #(Wω ∩ F2
q ) ≥ q − δ2

rq1/2.
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On the other hand, by the absolute irreducibility of h we conclude that h has no
nontrivial common factor with ∂h/∂Zn−r+1. This implies that Wω ∩ W̃ω is a zero-
dimensional variety. By the Bézout inequality we have deg(Wω ∩ W̃ω) ≤ δr(δr −1),
which implies #(Wω ∩ W̃ω ∩ F2

q ) ≤ δr(δr − 1). Combining this upper bound with
the previous lower bound, we obtain (6.1).

Finally, since q > 8n2dδ4
r holds, it is easy to see that the right-hand side of

(6.1) is a strictly positive real number, which implies that there exists at least one
rational point of Wω \ W̃ω. �

We remark that [9, Corollary 7.4] asserts that for q > max{2(n − r + 1)δ2
r , 2δ4

r}
there exists a rational point of V . This is, as far as the authors know, the best
existence result known for a general absolutely irreducible variety V of fixed dimen-
sion and degree. In this sense, Lemma 6.3 gives us an existence result “close” to
[9, Corollary 7.4].

Our goal is to find a value a ∈ Fq for which there exists a rational point (Wω \
W̃ω) ∩ F2

q of the form (a, zn−r+1). In order to find such value a, we observe that
for any a ∈ Fq there exist at most δr points (t, zn−r+1) ∈ Wω \ W̃ω with t = a.
Combining this observation with (6.1), we obtain the following estimate:

#
{
a ∈ Fq : (Wω \ W̃ω) ∩ F2

q ∩ {T = a} �= ∅
}
≥ q − q1/2δ2

r − δ2
r

δr
.

From this we immediately deduce the following lower bound on the probability of
finding at random a value a for which there exists a rational point with t = a:

(6.2) Prob
(
a ∈ Fq : (Wω \ W̃ω) ∩ F2

q ∩ {T = a} �= ∅
)
≥ q − q1/2δ2

r − δ2
r

qδr
.

Let q > 8n2dδ4
r . Then the probability estimate (6.2) implies that, after at most

δr random choices, we shall find a value a ∈ Fq for which there exists a rational
point of Wω \ W̃ω of the form (a, zn−r+1) with probability at least 1 − 2q−1/2δ2

r ≥
1−1/6. Having such a ∈ Fq and applying, e.g., [57, Corollary 14.16], we see that the
computation of zn−r+1 ∈ Fq can be reduced to gcd computations and factorization
in Fq[Zn−r+1]. Our next result describes the algorithm we have just outlined.

Proposition 6.4. Let q > 8n2dδ4
r . Suppose that we have a geometric solution of

the plane curve Cω, as provided by Proposition 6.2. Then a rational point of Cω can
be computed using space O(δr log q log(qδ)) and time O

(
nδrU(δr) log q U(log(qδ))

)
.

The algorithm outputs the right results with probability at least 1 − 25/144.

Proof. For a ∈ Fq, let ha := gcd
(
h(a, Zn−r+1), Z

q
n−r+1 − Zn−r+1

)
∈ Fq[Zn−r+1].

From [57, Corollary 11.16] we have that the computation of ha can be performed
with O

(
U(δr) log q

)
operations in Fq, storing O(δr log q) elements of Fq. Further-

more, deciding whether h(a, Zn−r+1) is a squarefree polynomial requires O
(
U(δr)

)
operations in Fq, storing O(δr) elements of Fq. From the probability estimate (6.2)
we see that, after at most δr random choices, with probability at least 1 − 1/6 we
shall find a value a ∈ Fq such that h(a, Zn−r+1) is squarefree and ha is a nonconstant
polynomial of Fq[Zn−r+1]. Therefore, computing such a ∈ Fq and the polynomial
ha requires at most O

(
δrU(δr) log q

)
operations in Fq, storing O(δr log q) elements

of Fq.
Observe that ha factors into linear factors in Fq[Zn−r+1]. Therefore, apply-

ing [57, Theorem 14.9] we see that the factorization of ha in Fq[Zn−r+1] requires
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O(U(δr) log q) operations in Fq, storing at most O(δr log q), and outputs the right
result with probability at most 1 − 1/144. Any root b ∈ Fq of ha yields a rational
point (a, b) of Wω \ W̃ω.

Evaluating the parametrizations of Yn−r+k (2 ≤ k ≤ r) by the zeros of
q(ωT + Q, Zn−r+1) at T = a and Zn−r+1 = b, we obtain a rational point of Cω

(observe that our choice of a assures that such evaluations are well defined). This
completes the proof of the proposition. �

Now we can describe the whole algorithm computing a rational point of the
input variety V := Vr. First, we execute the algorithm underlying Theorem 4.8
in order to obtain a geometric solution of the lifting fiber VP (r) . Then we obtain
a geometric solution of the lifting fiber VQ and of the absolutely irreducible Fq-
curve Cω, applying the algorithms underlying Propositions 5.2 and 6.2. Finally, the
algorithm of Proposition 6.4 outputs a rational point of Cω ⊂ V . We summarize
the result obtained in the following corollary.

Corollary 6.5. Let q > 8n2dδ4
r . Suppose that we have a straight-line program using

space S and time T which represents the input polynomials F1, . . . , Fr. Then the
coordinates of a rational point of the variety V := Vr can be computed using space
O

(
(S+n+d)δ log q(δ+log(qδ))

)
and time O

(
(nT +n5)U(δ)U(dδ) log q U(log(qδ))

)
.

The algorithm outputs the right result with probability at least 2/3 > 1/2.

We remark that our algorithm can be easily extended to the case of an equidimen-
sional Fq-variety V (given by a reduced regular sequence), which has an absolutely
irreducible component defined over Fq. Indeed, the algorithm of Theorem 4.8 may
be applied in this case, because it only requires the variety V to be equidimensional
and to be given by a reduced regular sequence. With a similar argument as in
Theorem 3.6 and Proposition 6.2, we obtain a geometric solution of an Fq-curve C,
contained in V , with at least one absolutely irreducible component defined over Fq.
Then, using fast algorithms for bivariate factorization and absolute irreducibility
testing (see, e.g., [32]), we compute such an absolutely irreducible component, to
which we apply the algorithm underlying Proposition 6.4. Under the assumption
that q > 8n2dδ4

r holds, the asymptotic complexity and probability estimates of our
algorithm in this case are the same as in Corollary 6.5.
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[25] M. Giusti, G. Lecerf, and B. Salvy, A Gröbner free alternative for polynomial system solving,
J. Complexity 17 (2001), no. 1, 154–211. MR1817612 (2002b:68123)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2120995
http://www.ams.org/mathscinet-getitem?mr=2120995
http://www.ams.org/mathscinet-getitem?mr=2152713
http://www.ams.org/mathscinet-getitem?mr=1289412
http://www.ams.org/mathscinet-getitem?mr=1289412
http://www.ams.org/mathscinet-getitem?mr=1440179
http://www.ams.org/mathscinet-getitem?mr=1440179
http://www.ams.org/mathscinet-getitem?mr=2009683
http://www.ams.org/mathscinet-getitem?mr=2009683
http://www.ams.org/mathscinet-getitem?mr=1772028
http://www.ams.org/mathscinet-getitem?mr=1189133
http://www.ams.org/mathscinet-getitem?mr=1189133
http://www.ams.org/mathscinet-getitem?mr=1639811
http://www.ams.org/mathscinet-getitem?mr=1639811
http://www.ams.org/mathscinet-getitem?mr=1679927
http://www.ams.org/mathscinet-getitem?mr=1679927
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.ams.org/mathscinet-getitem?mr=2035234
http://www.ams.org/mathscinet-getitem?mr=2035234
http://www.ams.org/mathscinet-getitem?mr=0732620
http://www.ams.org/mathscinet-getitem?mr=0732620
http://www.ams.org/mathscinet-getitem?mr=1008541
http://www.ams.org/mathscinet-getitem?mr=1008541
http://www.ams.org/mathscinet-getitem?mr=1457843
http://www.ams.org/mathscinet-getitem?mr=1457843
http://www.ams.org/mathscinet-getitem?mr=1600277
http://www.ams.org/mathscinet-getitem?mr=1600277
http://www.ams.org/mathscinet-getitem?mr=1448166
http://www.ams.org/mathscinet-getitem?mr=1448166
http://www.ams.org/mathscinet-getitem?mr=1490129
http://www.ams.org/mathscinet-getitem?mr=1490129
http://www.ams.org/mathscinet-getitem?mr=1220078
http://www.ams.org/mathscinet-getitem?mr=1220078
http://www.ams.org/mathscinet-getitem?mr=1817612
http://www.ams.org/mathscinet-getitem?mr=1817612


2084 ANTONIO CAFURE AND GUILLERMO MATERA

[26] J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret.
Comput. Sci. 24 (1983), no. 3, 239–277. MR0716823 (85a:68062)

[27] , On the computational complexity of polynomials and bilinear mappings. A survey,
Proceedings 5th International Symposium on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, AAECC–5, Menorca, Spain, June 15–19, 1987 (Berlin) (L. Huguet
and A. Poli, eds.), Lecture Notes in Comput. Sci., vol. 356, Springer, 1989, pp. 269–300.
MR1008524 (90d:94001)

[28] J. Heintz, G. Matera, L.M. Pardo, and R. Wachenchauzer, The intrinsic complexity of
parametric elimination methods, Electron. J. SADIO 1 (1998), no. 1, 37–51. MR1675449
(2000b:65249)

[29] J. Heintz, G. Matera, and A. Waissbein, On the time–space complexity of geometric elim-
ination procedures, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 4, 239–296.
MR1818975 (2002c:68108)

[30] M.-D. Huang and Y.-C. Wong, Solvability of systems of polynomial congruences modulo a
large prime, Comput. Complexity 8 (1999), no. 3, 227–257. MR1737238 (2000j:11044)

[31] , Extended Hilbert irreducibility and its applications, J. Algorithms 37 (2000), no. 1,
121–145. MR1783251 (2001h:12002)

[32] E. Kaltofen, Effective Noether irreducibility forms and applications, J. Comput. System Sci.
50 (1995), no. 2, 274–295. MR1330258 (96g:68053)

[33] A. Kipnis and A. Shamir, Cryptanalysis of the HFE PublicKeyCryptosystem by relineariza-
tion, Proceedings of Advances in Cryptology – CRYPTO’99, Santa Barbara, California, USA,
August 15–19, 1999 (Berlin) (M.J. Wiener, ed.), Lecture Notes in Comput. Sci., vol. 1666,
Springer, 1999, pp. 19–30. MR1729291 (2000i:94052)

[34] T. Krick and L.M. Pardo, A computational method for Diophantine approximation, Al-
gorithms in Algebraic Geometry and Applications, Proceedings of MEGA’94 (Boston)
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MR0027151 (10:262c)

[61] O. Zariski, Algebraic surfaces, Classics Math., Springer, Berlin, 1995. MR1336146
(96c:14024)

[62] R. Zippel, Probabilistic algorithms for sparse polynomials, EUROSAM ’79: Proceedings of
International Symposium on Symbolic and Algebraic Computation, Marseille 1979 (Berlin),
Lecture Notes in Comput. Sci., vol. 72, Springer, 1979, pp. 216–226. MR0575692 (81g:68061)
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