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Abstract 

Cortifias, G., J.A. Guccione and J.J. Guccione, Decomposition of the Hochschild and cyclic 

homology of commutative differential graded algebras, Journal of Pure and Applied Algebra 83 

(1992) 219-235. 

We obtain an expression for the Hochschild and cyclic homology of a commutative differential 

graded algebra under a suitable hypothesis. 

Introduction 

In Theorem 2.4 of [l] the authors show that the Hochschild and cyclic 

homology of a free commutative differential graded k-algebra over a characteris- 

tic zero field are the corresponding homologies of a bigraded S’-chain complex 

which is simpler than the canonical one. This result allows them to compute the 

Hochschild and cyclic homology of an arbitrary commutative differential graded 

k-algebra (A, d) taking a free model p : (A (V), d’)- (A, d) of (A, d) and 

applying Theorem 2.4 of [l] to (A(V), d’). Using this technique they obtain 

Hodge decompositions of the Hochschild and cyclic homology of (A, d) which 

coincide with the ones obtained by Gerstenhaber and Schack in [3] and Loday in 

[5], as ViguC-Poirrier showed in [7]. So, these decompositions do not depend on 

Correspondence to: Professor J.J. Guccione, Departamento de MatemBtica, Facultad de Ciencias 
Exactas y Naturales, Pabell6n 1 - Ciudad Universitaria, Buenos Aires (CP:1428), Argentina. 
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the choice of the model. Moreover, when the chosen model (A (V), d’) is simple 

enough they can make explicit computations. This happens, for instance, when 

withf,, . . . , f, a regular sequence of elements of k[X,, . . . , X,,]. Nevertheless, in 

general the free models are too complex and hard to construct. For instance, with 

this method, it is impossible to compute the cyclic homology of a localization of 

the k-algebra A mentioned above. At the beginning of this investigation, our 

purpose was precisely to solve this problem. With this in mind we prove in this 

work that Theorem 2.4 of [l] remains valid for algebras of the form 

(A, @k A (V), d), with A, homologically regular over a characteristic zero field 

(see Definition 2.1) and V= VI CI3 V, CBV, CD. * * a graded k-vector space. This 

allows us to obtain an elementary and self-contained proof of Theorem 5 of [2]. In 

fact, we study the more general case of a k-algebra 4, with A homologically 

regular and I an ideal which is locally a complete intersection (Corollary 3.4). As 

an example of these algebras consider the localization of the ring of regular 

functions of an affine variety that is locally a complete intersection. 

The paper is divided in four sections. In the first one, a quick review of some 

basic notions of differential graded algebras and S’-chain complexes is given. In 

Sections 2 and 3 we generalize the result of Burghelea and Vigue-Poirrier, 

mentioned in the beginning of this Introduction, and Theorem 5 of [2] to 

homologically regular k-algebras. Finally, in Section 4, we give a theorem that 

unifies the previous ones. 

1. Preliminaries 

In this section we recall some general definitions and properties about com- 

mutative differential graded algebras and S’-chain complexes, that we are going 

to use later. All mentioned definitions and properties are in [l]. 

Definition 1.1. Let k be a field of characteristic zero; a commutative differential 
graded algebra (A, d) over k (k-CDGA) is an associative graded algebra over k, 

A = @nr,, A,, with unit 1 E A,,, equipped with a differential d of degree -1, 

satisfying 

(a) anam = (-1) nmaman if a, E A,, and a, E A,, 

(b) d(A,) = 0 and 1 @Im(d), 

(c) d(ab) = (da)b + (-l)‘a(db) if a E Ai. 

Let V=@ nzO V, be a graded k-vector space; the free commutative graded 
algebra generated by V, that we denote by A(V), is 
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where S is the symmetric algebra and E is the exterior algebra. Now, a k-CDGA 

(A, d) is called free if: 

(a) A= A(V) f or some graded k-vector space V, 

(b) dV L A+ (V), where A+ (V) is the ideal in A (V) generated by the 

elements of V. 

The following result is proved in [l, Proposition 1.11. 

Proposition 1.2. For any k-CDGA, (A, dA) there is a free k-CDGA (A(V), d) 

and a quasi-isomorphism (A (V), d)+ (A, d*). Such an algebra is called a model 
of (A, dA). Cl 

Definition 1.3. An S’-chain complex e = (C,, d,, &),20 is a chain complex of 

k-vector spaces (C, , d,) = (C, , d,),,. equipped with linear maps p, : C, + C, + i 

(n?(l) such that p,opn_i =0 and j3,_lod, + d,+,O& =O. 

To C, one associates the chain complex (pC,, pd*) defined by 

and 

Pd,,(x,, I,_~, . . .) = (dx, + Px,-~, dx,m, + P-4,. . .). 

Definition 1.4. The cyclic and the Hochschild homology HC,(C) and HH,(C) of 

C = (C,, 4, P,z)nrc, are the homologies of (p C,, pd*) and (C, , d,), respectively. 

One sees immediately that ( C p ..+, ad,) is related to the chain complex (C,, d,) 
by the following exact sequence of complexes 

where S is obtained by dividing ( C p *, pd*) by its first factor. This short exact 

sequence gives rise to the long exact sequence 

*. +HH,(C)+ HC,(i;)&HC,&C) 

-+HH,_,(i;)+ HC,_,(z;)+ . . . 

Let C = (C,, d_,, p,),=” and C’ = (CA, d:, PA)nrO be S’-chain complexes. By a 

morphism from C to C’ we mean a family f”: = (f, : C, +_ C,‘&zO>f k-morphisms 

such that d: f,, = f,_,d, and pkfn = fn+l/3, Vn Z- 0. Each f : C+ C’ induces maps 

f * : (C,, d,)-+ (C:, d;) and f, : (,C,, pd*)+ (,,C$, p.d$). It is clear that the 

diagram 
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o-cc,, d*)- (PC,, pd*) A (pC*-23 pd*-2) -0 

I f. I- 
f* 

I 
fr-2 

o- (c;, dl)- (&, ,.d:)~(,.CIL,, p’d::L)-o 

commutes. 

Definition 1.5. A bigraded S’-chain complex (? = (C,,, dk4, dp”,, PPy)P,4z~ is a 

collection of k-vector spaces C,,, (p 2 0, q 2 O), and k-linear maps 

such that 

(d’)2 = 0, (dE)’ = 0, p’ = 0, 

podE+dEq?=O, pOd’+d’o/?=O, d’odE+dEodl=O. 

For any such bigraded S’-chain complex, one has the total S’-chain complex 

(Tot t) = (p+T_ C&, d’ + dE, P) 

Definition 1.6. The cyclic and thz Hochschild homology of E are the cyclic and 

Hochschild homologies of (Tot C). 

Let (A, d) be a k-CDGA and A = A/k. We define: 

VA, 4p,y := @ AiO@Aj,@...Q3A, for p,q>O, 
i0+...+LPC4 

dF,,(aio@. . -a,,) := 5 (-l)'O+"'+i~-'a,o@ *. .@3 d(a,,)@* . . @aaiP, 
j=o 

p-1 

b,,,(ai0@.-*@3ai,):= c (-l)‘aio~...~a,iai,+I~...~aip 
j=O 

and 

~p.q(a,o@~ . .@aiP):= f: (-l)‘“‘l@ai,@~~ .aiP@aio@..*@aa,j_, , 
j=o 

with e(j)=jp+ C[=iih(zkfhik). 
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One can check that ?(A, d) := (T(A, d)p.y, dF,4, bP,Y, BP,4)P,4z,, is a bigraded 

S’-chain complex. 

Remark 1.7. If A = A,, then T(A)Y,4 = 0 Vq >O and the complex 

(,Tot(T(A)),, Bb*) b ecomes the total complex of the double complex B(A),,,, 

defined in [6]. 

Definition 1.8. The cyclic and Hochschild homologies HC,(A, d) and HH,(A, d) 

of (A, d) are the cyclic and Hochschild homologies of f(A) d). 

2. The cyclic homology of a homologically regular k-CDGA 

In [l], the authors show that the cyclic homology of a free k-CDGA (A (V), d) 
can be computed as the cyclic homology of a bigraded S’-chain complex simpler 

than the one given in Definition 1.6, which can be identified with the algebra of 

differential forms of (A (V), d). So Burghelea and Vigue-Poirrier’s result can be 

seen as a version of the Loday-Quillen Theorem [6, Theorem 2.91 for free 

k-CDGA’s. Here we generalize both results; namely, we prove Burghelea and 

Vigue-Poirrier’s result for homologically regular k-CDGA’s. 

Definition 2.1. (1) A k-algebra A is called homologically regular if the map 

f3:: (A@j**, b)+(o*(A),O) (see [6]) is a quasi-isomorphism and 0’(A) is flat. 

(2) A k-CDGA (A, d) is h omologically regular if A = A, ak A (V) with A,, 
homologically regular and V= V, CD V, CD V, 69 . . . is a graded k-vector space. 

Example 2.2. Zf A’ is homologically regular, then so is A = Y’(A’[X,: i E Z]) for 
each multiplicative subset S of A’[X,: i E Z]. 

Proof. Let A = K’(A’[X,: i E I]). W e must prove that the map 0: is a quasi- 

isomorphism. Since HH,(S-‘(A’[X,: i E I])) = S-‘(HH,(A’[X,: i E I])), we can 

assume S = {l}. Now the proof is immediate by observing that f32 is the tensor 

product of f3:’ and 13”,‘~~’ rt’l, which are quasi-isomorphisms by hypothesis and [ 1, 

Theorem 2.41. 0 

Definition 2.3. To any homologically regular k-CDGA (A,,@ A(V), d) we as- 

sociate the k-CDGA (R*(A,) @ A (V CB v), S”), defined as follows: 

(1) vI1+l = v, (n 2 I), 
(2) Sd is the unique derivation of degree -1 such that 

where p is the derivation of degree +l verifying 
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6) PW = k&4 f or w E ai( where d,,(w) is the de Rham differential 

of w, 

(ii) p(u) = U for u E V, (n 2 l), 
(iii) p 0 p = 0. 

(Observe that ad(c) = -P(du) (u E V) and ad(u) = 0 (w E @(A,,)).) 

Definition 2.4. Let (A, d) = (A 0 8 A (V), d) be a homologically regular k- 
CDGA. Let us call Am (v) (m 2 0) the vector subspace in A (v) generated by 

the monomials U1 . . . CT,,, . With (A, d) we associate the bigraded S’-chain complex 

where 

@XA> d),,, .- .-~ni(A,,)~(A(V)~~p-‘(~))p+~~~ 
if p?Oand 420, 

%(A, d),,, := 0 ifp<O or q<O, 

6$&J (8.x) = (-l)‘W . ad(x) 

&(w @xx> = dw . x + (-l)iw . P(x) 

Remark 2.5. Note that if A, = k[X,: i E I], then ;(A, d) is the complex defined 

in [l]. 

The main result of this section is the following: 

Theorem 2.6. The cyclic (resp. the Hochschild) homology of a homologically 
regular k-CDGA (A, d) is the cyclic (resp. Hochschild) homology of the bigraded 

S’-chain complex ;(A, d). 

Proof. Let 0 : ?(A, d)-t i(A, d) defined by 

e(ai”@-- .@ua,,) := ((P1)~:‘2+~‘~jai~j. p(a,,).. . p(a,,) 
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As shown in [l], 8 is a map of bigraded S’-chain complexes (i.e. 0 op = 0, 

8 0 d@ = Sd and 0 0 B = p 0 19). In order to see that 19 is an isomorphism we can 

assume d = 0. Now the proof is immediate by noticing that 

(1) Tot(A, O),,,, 0, b) = (A,@&, 6)~Tot(T(A(V),O),,,,O, b), 

(2) Tot(g(A, O),,,, 0,O) is the tensor product of Tot(%( A (V), O),,,, 0,O) with 

the complex A,, a-n’(A,,) AO*(AO) t”--‘(A,) -&-o . ., 

(3) 8 is the tensor product of the quasi-isomorphisms 

(A,,@A;, b)*(fl*(A,),O) of Definition 2.1 and (T(A(V),O),,,,O, b)+ 

(%(A (V), O),,,, 0,O) in [l, Section 21. 0 

Corollary 2.7. (1) The cyclic homology of (A, d) splits into the sum of the 
homologies HC’,“(A, d) (j 2 0) of the double complexes %“‘(A, d) 

where %~I~~(A, d) = @!i,” fl’(A,,)@(A(V)@ A’-“P’(v)),_,,_, and S”, p are 

as in Definition 2.3. 
(2) The Hochschild homology of (A, d) splits into the sum of the homologies 

HH’,“(A, d) of the complexes %‘“(A, d)Tz, := the first column of %“‘(A, d) 
(j?O). 

(3) The Gysin-Connes long exact sequence is the sum of the long exact 
sequences of homology associated with the short exact sequences of complexes 

O+ %‘“‘(A, d),,,+Tot(%““(A, d)).+Tot(@-“(A, d)),_,+O. 

Proof. It follows from the fact that 

Gd(@Ih’(A d)) c %?Ih)_ (A d) m2h ) m2hl ) 
and 

@‘Ih’(A d)) c ‘&‘(jIh) m2h ) m 2h+l(A> d). 0 

Remark 2.8. Let f : (A, d)+ (A’, d’) b e a morphism of homologically regular 

k-CDGA’s. The family of maps 
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given by 

%yf),,,(w . x . v, . * * tippi > = ‘(.f>(w> ’ f(‘> ’ P(.fl”l>> ’ ’ ’ P(f(‘p-i)> 

(w E R'(A,), x E A(V), 6, . . . t&i E AP-’ (v)) , 

is a morphism of bigraded S’-chgin complexes from g(A, d) into ;(A’, d’). 

Moreover, the maps induced by g(f) between the respective Hochschild and 

cyclic homologies coincide with those induced by the canonical map 

f(f) : ?(A, d)+ f(A’, d’). 

Proof. Since=p and Sd are derivations, to prove that p 0 g(f) = 6(f) 0 p and 

ad 0 g(f) = 8(f) 0 ad it is enough to verify these equalities on the elements 

w E f2’(A,), u E V and V E I? But, 

P 0 g(f)(w) = P o W.f)(~> = 4, o fi(.f)(w> = ‘@f> o P(w) 

= g(f) o d,,(w) = Wf) o d,,(w) 7 

PO q.mu> = P”f(u> = %(f)(4 = ~(.n”P(u> Y 

/3o8(f)(C)=Pop~f(C)=O and %‘(f)~j3(6)= %‘(f)(O)=O, 

sd4(f)(W)=8d42(f)(f.0)=0 and %‘(f)oL?“(~) = %(f)(O) = 0, 

ado %(f)(u) = S”of(u) = dof(u) =fod(u) 

= %‘(f)od(u) = SY(f)Gid(u), 

Sdo %‘(f)(~?) = S”+f(u) = -fbSd~f(u) = -podof 

= -Pofod(u) = --PO g(f)od(u) 

= -Z(f)oPod(u) = 8(f)Gd(~). 

To finish the proof it is enough to observe that the diagram 

= 
?(A, d)a f(A’, d’) 

1 
0 

gA, d) &f, , 

commutes. 0 
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3. Some computations 

In [2, Theorem 51, the authors compute the cyclic homology for an algebra of 

the type 4, where A is the ring of regular functions of a nonsingular variety and I 

is locally a complete intersection ideal of A. In this section we give an elementary 

and self-contained proof of this result. We also give a similar decomposition for 

the Hochschild homology. This last theorem generalizes the main result of [S] and 

also appears in [4]. 

3.1. Let (A, d) be a homologically regular k-CDGA and I := d(A,) C A,. For 

each j 2 0 we consider the complexes 

L;“,,(AoIZ): O- 
Z’fiO(Ao) d,, Zi%!‘(Ao) 

Zi+‘i20(Ao) - Z’L”(A,,) 

dDR -. dm R’(Ao) +. 
“- Z.n’(A,,) 

and 

D;j,(AolZ): O- 
fl’(Ao) dDR R’(A,,) 

Zj+b’(A,,) - Z’Q’(A,,) 

dm -. d,, fi’(Ao) +. 
‘*- Z.n’(A,) ’ 

where d,, is induced by the de Rham differential. We define morphisms 

Cpt’ from Tot(%Y”‘(A, d)) to D~,*(A,lZ) and cpy’ from %“‘(A, d),ll to 

L~,*(A,lZ), setting 

G(i)( 
m w . x . 6, * . * ti,_h_i) 

=i 

0 ifdg(x)>Oordg(u,)>lforsomel~t~j-h-i, 

(-l)‘~“~‘w.~.d(u,)...d(u,~,~~) otherwise, 

(note that dg(x) = 0 and dg(u,) = 1 Vls t f j - p - i is equivalent to 2j - m = i) 
and 

q(j) : %‘;‘(A, d)+ 
Zm-lfizj-m(AO) 

m Z”-j+‘fl2/-“(A,) ’ 

diY m 
w . x * 6, . . . C,J = cp;yw * x . u1 . . . rY_J 
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It follows easily from the definitions that Go(*i’ and cpt’ are morphisms of 

complexes. 

Remark 3.2. (1) The diagram with exact rows 

0- %“‘(A, d)7z, - Tot@“‘(A, d)),+Tot(@-“(A, d)),_,-0 

I 
$!I) 

1 
&-;” 

------+D;j,*(A,/Z) -D;:;,(A,IZ)-0 

commutes. 

(2) Given a morphism f : (A, d)+ (A’, d’) of homologically regular k- 

CDGA’s, the diagram 

0- %“‘(A’, d’)Tzl -Tot(@‘(A’, cl’)),-Tot@-‘)(A’, d’)),_,-0 

0- %“‘(A, d),,, 

o~~~~~~~~~~~~~~~_o 

O- Lz,*(A,lI) ---+;*(A,,lI) - D:;:;,(A,,II) - 0 

where the upper face arrows are induced by gci)( f) and cx ii, * ( f), 7;;; * ( f), 
rzl F,( f) are all induced by f, commutes. 

Theorem 3.3. Let (A, d) be a homologically regular k-CDGA satisfying: 
H,(A, d) = 0 Vi > 0 and I : = d(A ,) c A,, is locally a complete intersection. Hence, 
-(I) cp * and 9’;” are quasi-isomorphisms. 

Proof. From Remark 3.2 one sees (through induction on j) that it suffices to 

prove the theorem for cp, . (j) We shall prove that the map @,_O cpt’, from 

Tot(g(A, d),,,, ad, 0) = ejZci (%?(“(A, d),,l), into BjZO L:j,*(A,IZ) is an iso- 

morphism. Since, after localization, (A, d) = (A,, @ A(V), d) is quasi-isomorphic 

to a quotient q where AI, has the same properties as A(,, and I’ = (P,, . , P,) 
with PI,..., P, a regular sequence, we can work with the Koszul complex 

K*(A,,, P,, . . . , P,) (Remark 3.2). So we assume that (A, d) = 

K*(A,, P,, . . . , P,). Recall that this complex has the form (A, @ A (V,), d) with 

V, = @r=, k. ei, d(e,) = Pi. Now, the quasi-isomorphism r : (A, d)+ $! induces 

a quasi-isomorphism rr @A0 id from 

Tot(VA, d),,,, sd.0)l(A,,~/\(V,),d)~~~(R*(A,,)~/j(V,),6d) 



Decomposition of the Hochschild and cyclic homology of CDGAs 229 

into 

On the other hand, since I is generated by a regular sequence, 5 is a free q 

module generated by (cl Pi, . . . , cl P,) where cl P, is the class of Pi in A, and we 

have an isomorphism of (+)-algebras between 

I" 
and $ - 

nz” In+’ ’ 

where S* A0,l( A) is the polynomial algebra constructed on the q free module 5. 

Let us consider that the elements of fi have degree 2n. We have the following 

isomorphisms of graded algebras 

(since v, z $) 

g B z’Q*(A,) 
nro zn+l fl*(A,) 

(since fi*(A,) is AU-flat) 

It is easy to see that this map defines an isomorphism ?P.+ of k-CDGA’s from 

? @AU(O*(A,,)@ A(v,), ad) onto eizO LT;,*(A,lZ). To finish the proof it is 

enough to check that @,_. cpv’ = r,!~,o(rr@~~id), which is immediate. 0 

Corollary 3.4. Under the same hypothesis of Theorem 3.3, we have: 

(1) 

(2) 

(3) The 

[n/21 

HC,(A,IZ) = 2 ZF2’(D;_,,(A,IZ)). 

[n/21 

HH,(A,IZ) = p0 H”-Z’(L;_;,(A,,IZ)) . 

Gysin-Connes long exact sequence is the sum of the long exact 
sequences of homology associated with the short exact sequences of complexes 

O-+ L;;)(A,,IZ)+ D;“,,(A,lZ)+ D;"i_,)(A,,lZ)+O . 

Proof. It follows immediately from Corollary 2.7 and Theorem 3.3. 0 
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4. Final result 

In this section we obtain a generalization of Corollary 2.7, for k-CDGA’s 

(B, dB) with B = q gk A(V) (V= VI $ V, @ V3 $ * e.), where A,, is a homologi- 

tally regular k-algebra and Z c A,, is locally a complete intersection ideal of A,. 
When Z= 0 we recover Corollary 2.7 and when V= (0) (i.e. A(V) = k) we 
recover Theorem 3.3. 

Proposition 4.1. Let A, be a homologically regular k-algebra, Z c A, an ideal and 
y:(A,dA)-+q a model of?, with A=A,,BkA(W) (W=W,@W,$W,@ 
** *). For each k-CDGA (B, dB), with B=q@,A(V) (V=V,@V,@V,@ 

.. .), there exists a k-CDGA (C, dC) and a quasi-isomorphism 7 : (C, dC)+ 

(B, dB), verifying: 

(i) C= A,& A(W)@‘, A(V), 

(ii) dCI, = dA, 

(iii) 7 = y Bid,,,,,. 

Proof. For each j 2 1 we will denote with A”’ (W) the vectorial subspace of 

A (W) formed by the elements of degree j. We have to define a differential dC of 

C that extends dA and such that y @id ,,(“): 

is a quasi-isomorphism. 

For each ir0, let C’=A~~A(V,~...~V,)=A,~~A(W)~~A(V,~... 
@v.) and let (B’, dB’) be the differential graded subalgebra of (B, dB) generated 

by $8, A(V,@** . CI3y). We will prove the existence of dC by showing that 

each differential d”’ of C’ such that 

yi : (Ci, dC’) 
Y@idAp,~.--w,) 

> (B’, dBi) 

is a quasi-isomorphism, can be extended to a differential dCL+’ of C’+’ in such a 

way that 

Y 
i+l : (ci+l, dC’+‘) y@idA(v*@. -@“c+l) cBi+l, dBi+‘) 

is a quasi-isomorphism. 

Let ("j)jElr+, 
be a basis of y+l. For each j E Z,,, there exists aj E C: verifying 

y ‘((yl) = y 8 id r\(v,B...Bvi)(aj) = dB(vj) and dc’(a,) = 0 . 
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In fact, since yi is a quasi-isomorphism, there exists c$ E Cl such that &‘(a;.) = 0 

and y’(cr,) = dE(uj) + dB’(a) for some a E B;,,. Now, as yi is an epimorphism we 

can modify c$ by taking cyj = ai - de’(b) with b = Ci,, such that y’(b) = a. 

Now we define dCL” as the unique derivative of degree -1 of C”’ verifying 

dc”‘(u,) = a, v,i E Z,+, and dC’+‘lcr = dC’ 

It is clear that (d”+l)’ = 0. It remains to prove that y Q3id,,,(,,,,..,Vz+1, is a 

quasi-isomorphism, which follows immediately from the following statements: 

(1) CT’ is the total complex of the double complex 

(2) B’,+’ is the total complex of the double complex 

B~tBf~~(‘+“(V,+,)tB:~/\‘2’+2)(Vl+,)t.. . , 

and 

(3) Y’+l is the morphism from Cy’ to B’,+’ induced by 

and the vertical arrows y i @ id A (St +Sj(V, + ,) are quasi-isomorphisms. 0 

Theorem 4.2. Let A,, be a homologically regular k-algebra. I c A, an ideal which 
locally is a complete intersection and (B, dB) a k-CDGA, with B = $! Bk A(V) 
(V=V,@V,@V?@*.*). Then we verify that: 

(1) The cyclic homology of (B, dB) splits into the direct sum of the homologies 
HC’,‘)(B, dB) ( j Z- 0) of the double complexes %“‘(B, dB) 
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s*(W@x)=(-l)‘W~~d(X) and 

/3(w 8x) = d,,(o) * x + (-l)‘w . P(x) w E zpylz(; 
0 

) 

(with the same notations as in Definition 2.3). 
(2) The Hochschild homology of (B, dR) splits into the direct sum of the 

homologies HH(,“(B, dB) of the double complexes @“(B, dB) 

= j$ Z’R’(A,) 
L=rJ p+* 

nitA 

0 

6d(~@x)=(-1)1~~~d(~) and 

P(w ‘Xx> = d,,(u). x + (-1)‘~. P(x) 
Z’R’(A ,J 

w E zh+loi(A ) . 

0 

(3) The Gysin-Connes long exact sequence is the sum of the long exact 
sequences of homology associated with the short exact sequences of complexes 

O+Tot@“(B dB)),+Tot(‘@)(B, dB)) 

+Tot(&-l’(h, dB)).+m2+0. 

* 
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Proof. Let y : (A, dA) +q be a model of q, with A= A,,@, A(W) (W= 

W, CE3 W2 @ W, @. . .). Let (C, dC) and 7 : (C, dC)+ (B, dB) be as in Proposition 

4.1. We define morphisms (c, ‘,” from Tot(%“‘(C, d”)) to Tot(Z”‘(B, d’)) and 

$‘*i’ from 8”‘(C, dC)T1, to Tot(@“(B, dB)), setting: 

m-j m-j 

where (p is the morphism of 3.1, o ‘x,,, . W, . . . Wimr. x, . U1 . . . fijphpi E R’(A,) @ 

((A (W) @3 Afmr(l@)) @ (A (V) @ A’-h-i(v))),,_2h~, and (Y = dg(w . x, . W, . . . 

Wimr), and 

&‘(w . x, . w, . . . wi+. . x, .u, . . . v,_J 

= $(i)(, . x 

m w * w, . . . Wipr. X” . 6, . . . v,_,) . 

Since the diagram 

o-P(C, dC)T,l- Tot(&““(C, &)),- Tot@“-“(C, &))+,-0 

I 
*(I) * I 

$(I) * 1 
$~‘_;I) 

0-Tot(Z (i) (B, dB)) *-Tot(@(B, dB)),- Tot(%‘“~“(B, dB),_, -0 

commutes, it is enough to see that $I!$ is a quasi-isomorphism. Now, 

@‘(C, dC)+, is the total complex of the double complex 

1 J” 1 J" 1 J" I J" 

M0,j+2 P1-Ml.i+Z~M2.it2fll-MMJ.jtl~... 

M(i) 
I 

J” 

1 

J” 

I 

J” 

I 

J” 

Mo,j+l+h PEM,~+,Z-M 
Jh 

I./+1 3.lfl 
f-. . . 

I 
J” 

1 

JV 

Jh Jh 1 

J” 

1 

J” 

M.-M.-M 
0.1 1.1 2.1 

c$- M3,j _ah.., 
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where 

G. CortirZas et al. 

~(Aw@A’-‘(~))q_,~ 
dh(w . x, * w, . . . w,_, * X” .u, . . . IY_J 

= GdA(W * x, . w, . . . Wi_,). X” .lT, . . * ly, ) 

a”(w . x, . WI . . . wi_r . X” .u, . . . Cj_,) 

= (-q’+p&l. x,. 6, . . . Wi_r * SdC(X” .u, . . . v,_;) ) 

for 

w . x, * WI . . . w,_ . X” .u, . . . cj_i 

E @?,(A dA)~(rj(V)~r\i-‘(V))o~; 
and I,!J(*~’ is the morphism induced by the double complex morphism 

I,!J(,‘), : M(j)+ Z”‘(B, dB), defined by 

lq&J~ x, . w, * . . wimr. x, . u1 . . . Gj_,) 

= e(j) ( p+4 w . x, . WI . . . w,_, . x, .u, ’ * . u,_;) . 

In order to finish the proof it is enough to observe that, from Theorem 3.3, (crtfi is 

a quasi-isomorphism for each q 2 0. 0 
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