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Introduction 

Vector fields in infinite-dimensional manifolds play an important role in differen- 
tial topology-geometry. In particular the case when the manifolds are C°°-map 
spaces. The well developed theory modeled in Banach spaces does not apply here. 
Instead a theory modeled in Frechet spaces is being considered. This is a theory 
which seems to be a much less straightforward generalization of the finite- 
dimensional case. The well adapted models of S.D.G. lead naturally to treat these 
spaces. We investigate here the case of the 'manifold' R R, whose space of global 
sections is Coo(JR). We prove that to integrate a vector field in R R is equivalent to 
a certain differential problem in Coo(IR). To do this, we previously characterize the 
maps RR~R R, RRX R-~R R in the topos by means of the functions they induce in 
the respective spaces of global sections. 

Let ~ denote the category dual to that of finitely generated C~-rings Coo(I~)/I 
presented by an ideal of local character. We recall that Ic_ C~(IR n) is of local 
character (or of local nature) if, f ~  C°°(R n) implies: f ~ I  iff there exists an open 
covering Ua of R n such that f l v  elIv=ideal generated by { h l v : h e I  } in 
Coo(Ua). We consider in ~ the open cover (Grothendieck) topology that defines 
the Dubuc topos, which we denote O (see [2-4]). This topology is sub-canonical, 
i.e. ~ _ O.  Call R = C°°(IR) e ~ c_ O. R is a ring object of line type called the line. 
Let D denote the subobject of R which consists of those elements of square zero: 

D= Ix ~ R :x2 = 0] = C o o ( - ~ / ( x 2 ) .  

As is well known, a vector field over a 'manifold' M is, from the Synthetic Differen- 
tial Geometry point of view, an arrow 

v : M x D - * M  
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such that o(x, O)= x. To integrate such a vector field means to get an arrow 

u = M × R ~ M  

that makes the following diagram commutative: 

M × R  

(idM× + ) ~  

M × R × D  M 

(u X i d o ) ~  ~ v  

M × D  
and verifying u(x, O)--x. In other words, an arrow u such that 

~u(x, t + d)= v(u(x, t), d), 
1. (u(x, 0)=x. 

We will deal here with this problem in the case that the 'manifold' is M = R  R. 
The question of existence and uniqueness in the case M =  R is easily solved since 

it is equivalent to a problem of ordinary differential equations. As a matter of fact, 
an arrow 

o 
R x D  )R 

corresponds (in a well known way) to a u e C°~(~2)/(y2), that is, ul, v2, ~ C~(~) 
such that u-- ul(x)+ u2(x)[y]. Since u(x, O) =x, ul(x)=x,  thus 

0 = X +  02(X ) " [ y ] .  

On the other hand, u corresponds to a u e C°°(~72). The validity of eqs. 1 is 
equivalent to 

t)=v2(u(x, t)), 
2. (u(x, O)=x 

where u' means differentiation with respect to the time t. In this situation we know 
that a local solution exists: The Cauchy theorem of existence and smoothness with 
respect to both variables implies that there exists an open neighborhood U, 
[R × {0} c_ U_ [R × [R and u defined in U verifying eqs. 2. It follows that there is a 
Penon open U, R x {0} _oR x R  in ~ ,  and a v : U - * R  verifying eqs. 1 (see [6, 1]). 

In order to analyze the case M =  R R we get a correspondence similar to the one 
described above for arrows [R × D ~  R, etc., but this time for arrows of the type 

RR × D ~ R R, RR x R ~ R R, RR x R x D ~ IR ~. 

Since R (and so R R) is of line type, i.e. [k :'o = R x R (see [2-4]), it suffices to study 
arrows of the type 

R~--" R Rp ( p c  N). 
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Let us take a map U : R R - ~ R  Rp, and let F be the global sections functor: 
F(F) = HomO, F). Since F(R R) = C~(R), F(R Rp) = C~([RP), F induces a function 
(in general not a morphism) 

F ( u )  : p) 

such that for h ~ C°°([R), h : 1 ~ R  R, the diagram 

R R . , R Rp 

1 

commutes. Now take a function 

o . 

We want to see that, if G is 'conveniently smooth' it 'comes from the topos', i.e., 
G = F(u) for some u that we will show to be unique. 

3. Definition. (i) A functionc" IR k ~  C=(~ p) is said to be C ~ iff the function 

c(h, ..., tD(Xl, ...,Xp) 

is a (k +p)-variables C~-function. 
(ii) A function G ' C ~ ( ~  n) ~ C~(~ p) is said to be C = iff for each k e IN and for 

every c" ~,k~ C=(~n) C ~ (in the sense of (i)) G o c is C ~ (in the sense of (i)). 

Fr61icher has already worked on C~-functions in the sense of (i). (He calls them 
path-smooth. See [5].) 

Some examples of C~-functions C~([W) - '  C~(~ p) are the following: 
(1) Linear differential operators with C~-coefficients. 
(2) Integral operators with a C~-kernel and of compact support. 
(3) Morphisms of C~-rings induced by C~-mappings 1: IR p ~ ~n by composition. 
(4) Maps of the form h , :C~(~n) - -~C '~( f f~  n) induced by a C~-mapping h : IR~  ~. 
Moreover, any composite of C~-functions is a C~%function, thus any operator 

constructed using (1), (2), (3) and (4) is so. 
Recall now that for any ideal I c_ C=([R ") there exists the local nature closure [ of 

/, i.e., the smallest local nature ideal which contains L In fact, f e  [ iff there exists 
an open covering Ua of [R n such thatf]uo~Ilv~. 

We adopt now the following 

4. Notation. (i) C~(~ ") will be understood as the ring of all C~'-mappings of the 
variable t=(h  , ..., tn) and C~*(~ n+p) as the ring of C~*-mappings of the variables 
(t, x )  = ( q ,  . . . ,  tn, Xl ,  . . .  ,Xp) .  

(ii) Let Ic_ C=(IR n) be an ideal of local character. We will denote I ( t )=I  and 
/(t, x )=loca l  nature closure of the ideal generated by I in C=(~n+P). 
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(Notice that I c_ Coo(R n +P) since an n-variables Coo-function is an (n +p)-variables 
Coo-function which does not depend on the last p variables.) 

If u(t, s )~ Coo(R n+ 1) and G : Coo(R)--* COO(RP), for any fixed t e R n we may com- 

pute G on u considered as a function of s: 

G(u(t, -)) e C°~(RP). 

Since G is Coo, we actually have 

a(u(t,  -))(x ) ~ Coo(R n + P) 

as a function of (t, x). This kind of abuse of notation will frequently occur, so we 
warn the reader to be aware of the context in order to avoid misunderstandings. Of 
course, Coo(Coo(R), COO(RP)) is the set of all Coo-functions Coo(R)--* COO(RP). 

5. Theorem. f '  induces a bijection 

F:  Hom(R R, R R") ~ Coo(Coo(R), COO(RP)). 

Proof. Let us first show that i f  u E H o m ( R  R, RR"), then F(u) is C °°, i.e., if 
c: I1~ n ~  C°°(R) is Coo, then F(u)(c(t))(x) e COO(Rn+P). Since c(t)(s) ~ Coo(R n+ 1), it 

defines a 6 : R n ~ R  n. We have F(u)o F(u o 6): Rn~  COO(RP). At this point we need 

the following. 

6. Lemma. I f  w : Rn-~ R Rp, then F(w): ff~n_. Coo(R p) equals the exponential adjoint 
to w, say ~ ~ Coo ( R n + p) (regarded as ( n + p)- variables functions ). 

Proof. Straightforward, using naturality of exponential adjunction. [] 

Returning to the proof of Theorem 5, F(u o 6) equals the exponential adjoint of 
(uo~?) and then it is in COO(Rn+P). But also by Lemma 6, F(6)=c;  thus F(u)oc= 
/-'(U) o F ( ~ ) =  F(u o e) E Coo(Rn + P). 

Now we try to define an inverse E for F. Let G e Coo(Coo(R), COO(RP)) and 
Y= COO(Rn)/I~ ~ c_ 9 .  We define 

E(G)r  : Hom(Y,  Rn)--* Hom(Y, RRP). 

Since Horn(Y, RR)=coo(Rn+I)/[( t ,s)  and Hom(Y, RR")=COO(Rn+P)/I(t,x), this 

means to define a function 

E(G)y:  Coo(R n+ l)/[(t, s) -~ COO(Rn+ P)/[(t, X). 

We do this by the formula 

E(G)y([C]) = [G(c(t, -))(x)] 

where the brackets mean equivalence class modulo [(t, s) and [(t, x) respectively. 
Obviously we have to show that: 



Vector f ie lds  on R R 5 

(i) The last definition is independent of the choice of c, 
(ii) E(G) actually is an arrow in the topos (i.e. is a natural transformation). 

(iii) E is the inverse of F. 
After  we have proved (i), point (ii) reduces to a straightforward verification. As far 
as point (iii) is concerned, Fo  E obviously equals the identity, and E o F =  id is essen- 
tially Lemma 6. (c: Y ~ R  R extends to R" 

R n , R R 

although not in a unique way.) Now, (i) is a property of C~-functions (naturality) 
which is proved in Theorem 8 below. [] 

Before, and in order to fix the notation; we recall the following fact: 

7. Lemma. For every (n +p)-variables C°°-function h : ff~ n+p--~ [R and for every in- 
teger m>_O there exist C~-functions 

fk o f  n variables {k=(kl , . . . ,kp)[ ~ k i<m},  

lk o f  n + p  variables {k=(kl , . . . , kp)  I ~ k i=m+ 1} 

such that the equality 

h ( t , x )= ~ fk(t)Xk+ ~ lk(t,x)x k 
k k 

holds for  every ( t ,x)=(t l ,  . . . . . .  ,tn, xl, , x p ) e ~  n+p where x k=x~ ~,...,xp.kp More- 
o v e r ,  w e  have 

(t, O Ikl 0 Ikl 
1 olklh where I k l :  ~ ki, Ox k= Oxk, ' ,Ox,pp fk(t) = k[ Ox k o) ... " 

8. Theorem (Naturality of C~*-functions). Let Ic_C°~(~ n) be any ideal and 
G ~ C°~(C~(~.), C~(~.P)). Then, for  c, c'C C°*(~ "+ l), we have: 

c= c' modulo ([(t, s)) implies 

O(c(t, -))(x) = O(c' (t, -))(x) modulo (r(t, x)) 

where t, x, s are variables ranging over ~n, ~p and ~ respectively. 

Proof.  Recalling that f(t, x) is the local nature closure of (1) c C=(~" +P), we must 
show that for any (to, x0)e ~"+P, there exists an open neighborhood U~ (to, Xo) and 
a linear combination of elements of I with coefficients in C=(U) equal to the dif- 
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ference G(c'(t, - ) ) ( x ) -  G(c(t, -))(x) for x, t in U. By hypothesis we know the latter 
is true for c'(t, s)-c(t,  s), i.e., if (to, s0)e ~"÷~ is given, there exists an open 
neighborhood W of (to, So), functions fielc_ Coo(~ n) and ZiE C°°(W) (1 <i<r) 
such that in W 

r 

c'(t ,s)-c(t,s)= ~ Ai(t,s)fi(t). (1) 
i=I 

By taking an smaller W we can assume the functions Ai to be defined in all of 
~,~+1, that is Ai(t, s)~ Coo(~n+l). The equation (1) makes sense in all of ~n+l, but 
it holds only in W. Let gEC°°(~ n+r+l) be the function defined by 

( r ) 
(*) g(t, 2, x) = G c(t, -) + i=~l Ai(t, -)2i . 

gsCoo(~ ~÷r÷l) since G is Coo. 

By Lemma 7 with m = 0, we have 
r 

g(t, 2, x)-g(t ,  0, x ) =  ~ 2iHi(t, 2,x) 
i=1 

where H/e  Coo(~n+r+P). If 2i=3~(t), if follows that 

G(c(t, -) + i=1 ~ Ai(t' -)Z(t)) (x)-  G(c(t' -))(x) ~ l(t' x)" 

But at this point we apparently got stuck because 

r 

c(t,s)+ ~ Ai(t,s)fi(t)=c'(t,s) 
i=I 

only in W, so that, for the moment we cannot conclude what we wanted. Do not 
worry. We have: 

G(c' (t, -))(x ) - G(c(t, -))(x ) 

= [G(c '  ( t , - ) ) ( x ) -  G(i~=IAi(t,-)fi(t)+c(t,-))(x)] 

+ [G( ~ Ai(t, -)fi(t) + c(t, -))(x) - G(c(t, -))(x)]. 

The second bracket is in f(t, x) as we have shown above. We will prove two facts: 
(i) Given We__ [R n+l open and relatively compact there exist fie1, ZiE Coo(~ n+l) 

such that (1) holds in W. 
(ii) If (1) holds in a large enough set Wopen and relatively compact,  then the first 

bracket vanishes in an open neighborhood of (to, Xo). Clearly this will finish the 
proof. [] 

Point (i) and a more general version of (ii) will be Lemma 9 and Corollary 15 
respectively. In the proof  of  Corollary 15 we will need either Lemma 14 or Lemma 
12 and Corollary 13. 
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9. Lemma. Let I c C°~(~ n) be a local nature ideal, c ~ [(t, s) c_ C°°(~ ~ + 1), We_ R n + 1 
open and relatively compact. Then, there exist functions f i e  I and A i e C ° ° ( ~  n + 1), 
1 <_ i <_ r such that the equality 

r 

c(t, s)= ~ Ai(t  , s)fi(t) 
i=1  

holds in W. 

Proof.  Since ce[( t , s ) ,  there exists an open covering {Ua}uej of ~n+l, f e L  
A~eC~(~n+l) ,  1 <_i<_ra such that the equality 

ra 

c(t, s)= ~ A~(t, s ) fa( t )  
i=1  

holds in U~. We may assume Ua locally finite with a subordinate partition of unity 
~a. We have the equality 

ra 

e .c= 
i = l  

which holds in all of fR "+1. Since W is compact, the set J0 of indices such that 
supp(~oa) f3 W~0 is finite. Thus, in W we have 

r~ 

c= EA oof/°. [] 
OtEJo a ~ J o i =  l 

10. Definition. Recall that a sequence {fk}k~U c_ C~(~ n) is said to converge to 
f e  C~(~ ") in the C=-compact open topology (C~-CO) iff for every compact set K, 
de  N and e>0  there exists k0e N such that k>__k o implies ]Dafk-Dafl <e  in K for 
all a such that lal<_d, where a=(al ,  . . . ,an)~(N U {0}) n and ]a[ = ~ ai. 

11. Definition. We will say that a sequence {fk}k~NC_C°~(E n) converges to 
f e  C°°(~, n) in the Stone topology iff for every compact set K_< ~" there exists/Co e N 
such that k_>/Co implies fk = f  in K. 

As an example, notice that Lemma 9 says exactly that f e  [(t, s) iff there exists a 
sequence of linear combinations of elements of I Stone-converging to f .  On the 
other hand, with the same idea as in Lemma 9 one may easily prove that the local 
nature closure of any ideal equals to its closure in the Stone topology. Then, I is 
o f  local nature i f f  it is closed in the Stone topology, as was noted by J. Penon. 

12. Lemma (Glueing Lemma, see [7, lemma below Theorem 3]). I f  
{fk}keNC_ C~*(ff~) converges to f in the C~-CO topology, then, there exists a 
subsequence fk, and F e  C**(~ n+ l) such that 

F(t, 1/r) =fkr; F(t, s )= f ( t )  i f  s<O. 
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In other words, i f  f k ~ f  in the COO-CO topology, then there exists a subsequence 
fkr and a C°°-curve F: ff~Coo(ff~ ~) that passes along fkr at s= I/r and F = f  for 
s<0 .  

Proof. We may assume that f =  O. Let Kr = [ - r, r] n _c [R be the n-dimensional closed 
cube. By hypothesis, there exists kr such that 

ID~fkrl<e -r in Kr Va s.t. la[<r. 

Now take ~eCoo(IR) such that supp{~o} c_(-1,  1) 
tpr(S)=q)(2r(r + 1)(s- l/r)). 

and ~(0)=1. Let us write 

1 1 1 1 ) 
supp ~Pr--- , + and ~r(1/r) = 1. 

r 2r(r + 1) r 2r(r + 1) 

Let us define 

F(t, s) = f fkr(t)" ~r(S) if s e supp(~Pr), 
Lo otherwise. 

Obviously F(t, s) =3~, at s = 1/r. The reader may easily check that F~  Coo(JR n + 1). [] 

13. Corollary. Any C°°-function G : C~(E n) ~ Coo(~R p) is continuous in the C°°-CO 
topology. 

Proof. Suppose {fk}k~ N -- Ca*(~n) converges to f e  Coo(~ n) in the COO-CO topology 
and that G(fk) does not COO-CO converge to G(f).  This means that there exist a 
compact set K C ~  p, e>0,  ae( tN O {0}) p, a subsequence fkt and £ l e K  such that 

Olal alal 
G(fk,)(xt)- ~xa G(f)(xt) >-e. 

ax ~ 

By compactness, we may assume xt-~Xo for some x 0 eK.  Now, by Lemma 12, there 
exists a subsequence, that we also call fk, and F~ Coo(ll~ n+l) such that F(t, l / l ) =  
fe,(t), F(t, s )=f ( t )  for s<0 .  For any fixed 0~IR we may compute G(F(-, O))(x) 
and since G is Coo, we get a C~-function of both variables 0 and ~. Thus 

01ai 01~1 
ax a G(F(-, 1/l))(xt) t~oo' iJx a G(F(-, 0))(Xo). 

But this is a contradiction. [] 

14. Lemma (Reordering Lemma). Let {fk}~=lC_Coo([Rn). Then {fk} Stone- 
converges to f i l l  for  every subsequence fk, and for  any decreasing sequence ~t-~O, 
~te ~,, there exists an FeCoo(ff~ n+l) such that F(t, ~t)=f~t(t) and F(t, s )=f ( t )  for 
s~_O. 

Proof. We may assume f =  0. Suppose 3~ Stone-converges to 0. Take a subsequence 
fk and a decreasing sequence ~ t~0  in [R. Consider functions tple Coo(IR) such that 
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¢&(~1) = 1, with supp(~0t)I"1 supp(~pj)= 0 for l c j ,  and 

supp(~0t) c_ (1 / l  1 1/ l+ 1 
21(l + 1)' 21(l + 1) ,]" 

Let 

F( t ' s )=  IO '(s)" fk'(t) otherwise.iftesupp(~Pl)' 

Since fk Stone-converges to 0, it is trivial to see that F(t, s ) e  C°°(~. ~+ l). 
Conversely, suppose that fx does not Stone-converge to 0, i.e., there exists a 

compact set K and a subsequence fk~ such that fk, does not vanish identically in K. 
Let ~t=maxt~x [fk~(t)l. Since by hypothesis {fk}~=l may be glued with an F, we 
may assume ~t converges decreasingly to 0 (taking another subsequence if 
necessary). Let us take tl a point of K such that [fk,(tl) [ =~1¢0. By compactness 
we may assume t t~ to  for some to e K  (again, taking another subsequence if need- 
ed). By hypothesis, there exists F e  C~([R "+l) such that F(t, ~t) =fk,(t), F(t, s ) = 0  
for s_<0. Then 

F(tt, ~t) - F(tt, O) (t - 0 
=+_ - - - + _ 1  

and by Lagrange's mean value theorem, there exists a real number 01, 0<01<~l  
such that 

F(tl, ~ l ) -  F(tl, O) _ a F (t,, 
~t Os o,) 

Then (OF/Os)[(t, ' 0,)= -+ 1. Now, since (tt, Ot)~(to, 0) and since F e  C°°(R "+ 1), we 
get (OF/Os) [ (to, 0) = + 1. But since F =  0 for s < 0, we actually have (OF/Os) (to, o) = 0 
which is a contradiction. [] 

15. Corollary. Any C~-function G : C~(II~n) ~ C~(~ p) is continuous in the Stone- 
topology. 

Proof .  Suppose {fk}k= l Stone-converges to f ,  but G(fk) does not Stone-converge 
to G(f) .  Let us apply Lemma 14 to G(J~): there exists a decreasing sequence ~t ~ 0, 
a subsequence fkt of fk such that no FeC°~(IP n+l) verifies F(x, ~t)=G(fk)(x) ,  
F(x, s) = G( f ) (x )  for s_<0. But again by Lemma 14, since fk Stone converges to f ,  
there exists H e  C°~(IP n+l) such that H(t, ~t)=fkt(t), H ( t , s ) = f ( t )  for s_<0. Let 
F(x, s)= G(H(-,  s))(x), we have: F(x, ~t)= G(j~)(x), F(x, s)= G(f) (x)  for s < 0  and 
F(x, s) e C°*(IRP+I), which is a contradiction. [] 

Let us present an alternative proof  o f  Corollary 15. 

(i) About  the differential o f  a C~-function. Let us define the differential 

dG : C°~(~ n ) × C~(~, n) ---, CC°(~ p)  
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by 

dGh(k)(R)= lim G(h + 2k)(X)-G(h)(X) 
2-*0 

Since G is C ~, we know that this limit exists, and, setting H(2,  x) = G(h + 2k)(x) it 
follows from Lemma 7 that dGh(k ) E C~(RP). Similarly, it may be seen that dG is 
a C~-function of both variables h and k (i.e. preceded by a pair of C~-curves as 
in Definition 3(i) it yields a C=-curve) and then, with the same proof as the one 
given for Corollary 13, it follows that dG is a C=-CO continuous mapping from 
C~(R n) x C~(R n) to C~(RP). Moreover dGh: C°°(Rn)--'~C°°(R p) is R-linear. To see 

this take k, k ' e  C~(R"), consider the function 

K(2,/A x) = G(h, Xk+/zk')  

and use Lemma 7 with m = 0. 
The interested reader can see [5] where the definition of dG as well as some of 

the result developed here in point (i) can be found. However the context is much 
more general and the proofs to be found there less elementary. 

(ii) Alternative proof of Corollary 15. Take f ,  h EC~(R n) and let H(2, .~)= 
G(f+ Ah)(~). By Lagrange's mean value theorem, we have 

G(f  + h)(x ) - G(f)(x ) = H(1, x) - H(O, x) 

-- aHI = dGf+~h(h)(x) for some 0 < ~ <  1, ~=  ~(x). 
a2 I(~, x) 

For I~ C°°(~k), K c  R k compact, r e  N U {0} denote 

lilll .= sup 
la]_<r 
x ~ K  

Since dG is C~-CO continuous, we have that, given e > 0  and a compact set 
K '  c_ R p there exist 6 > 0, a compact set K =  K(e, K') (that may be assumed to be an 

n-cube) and r e N U { 0 }  such that Ilhll <a and Ill-fll -<a imply Ildal(h)ll°,<c. 
Now, if  h vanishes in the cube K=K(e, K'), then Ilhl[~.=0<~ and Ilf+~h-fllr~= 
0 < 6 for all ~. Thus, i f  h vanishes in K, we have 

XlldGf+eh(h)ll°,=lldGf+eh(Ah)[[°,<  for all ~, 2. 

It follows that [IdGf+ah(h)[[°,=O for all ~, so G(f+h)(x)-G(f)(x)=dGy+¢h(h)(x) 
vanishes for x ~ K' .  

In short: given a compact set K '  c_ R p and f e  C~(R n) there exists a compact set 

K c  R" such that h ]K = 0 implies G(f+ h)[K, = G(f)lx,. 
This exactly means that G is Stone-continuous. [] 

Remark. Theorem 5 says that an arrow R R--, R Rp in the topos is actually the same 
thing as a C°%function C~(R) ~ C°~(RP). 
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At this point we are able to deal with the main problem presented at the start. 
Setting M =  R R, and given an arrow 

O : R  R × D - * R  R 

such that o(h, 0 ) = h ,  we must find u :R R × R ~ R  g which makes the following 
diagram commutative: 

R R × R  

(idR ×+)~ 
R R × R × D  R R 

(u ×ido)~ ~/'~' 
R 8 x D  

(,) 

and verifying u(h, O)= h. In other words, an arrow such that 

I u(h, t + d )=  o(u(h, t), d), 
u(h, O) = h. 

(1) 

Let us explore what the commutativity of diagram (,) means. Notice that since 
R D = R × R ,  (RR)D=RRxR R, we have that the exponential adjoint to o, say 
6 : R R -* (RR) D = R R X R R is a pair (Ol, 02) of  arrows R R -* R R. Call 12" R R -* R R x R the 

exponential adjoint of  u. 

16. Lemma.  (i) I f  h" 1--~R R, then the exponential adjoint o f  the composite map 

(h 
R x D = I  x R x D  xidRxD)RR (u × idD) RR o RR 

× R × D  ~ ×D 

(getting R down) is the map R × R  × D - ~ R  that corresponds to 

F(Ol)(F(u-)(h)(-, y))(x) + F(o2)(F(u-)(h)(-, y))(x) . [z] e C ~ ( ~ ) / ( Z 2 ) .  

(ii) I f  h • 1 --*R R, then the exponential adjoint o f  the composite map 

R × D =  1 × R  ×D(hXidR×~)R R × R  ×D u R R (idR x +)  RR × R - , (2) 

(getting R down) is the map R ×R × D ~  R that corresponds to 

F(u')(h)(x, y) + 
OF(u-)(h) 

oy 
(x, y). [zl e C°° ( [~3) / ( z2 )  • 

(iii) The condition o(h, O)=h is equivalent to ol =idRR, or, by Theorem 5, to 

F(ol) = idc~(~). 
(iv) The condition u(h, O)= h is equivalent to F(u-)(h)(x, O)= h(x). 
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Proof. As an illustration we prove (ii). The other statements follow in a similar way. 
The arrow (2) equals the composite 

+ (h × idR) u RR" 
R × D  ,R ,R R ×R , (3) 

Now the exponential adjoint of the composite 

(h × idR) u 
R ) R R × R  ' R  R 

is 

h RR ~ RRxR 

or, in other words, F(t2)(h). Then, getting R x R  down, we obtain 
F(~)(h)(x, y )~  C~°(IR2). So, the exponential adjoint of (3) corresponds to 

F(a)(h)(x, y + [z ]) ~ C~(~3)/(Z2). 

Now, by Lemma 7, since [Z] 2 =0, this equals to 

precisely 

O(F(a)(h)) 
F(a)(h)(x, y) + (x, y) . [z]. [] ay 

17. Theorem. (i) Let  o " R R × D ~ R  R be such that o(h, 0)=h and u " R R × R ~ R  R. 

Then we have 

(1) l u(h, t + d)= o(u(h, t), d), 
u(h, O) = h. 

t " OF(t2)(h) (x, y) = F(o2)(F(12)(h)(-, y))(x), 
ay 

f (a ) (h) (x ,  0) = h(x). 

(ii) Conversely, let U: C~(~) --* C°~(~ 2) be a C°°-function which satisfies the dif- 
ferential  problem 

(2) { r aU(h____A(x, y ) =  r(og(U(h)(- ,  y))(x), 
ay 

U(h)(x, 0) =h(x) .  

Let  t 2=E(U)eHom(RR,  R RxR) (see Theorem 5) and u ' R R x R - * R  R be its ex- 

ponential  adjoint. Then u verifies (1). 

Remark. Theorems 17 and 5 say that to integrate a vector field in R R is actually the 
same as to solve the differential problem (2). 
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Proof of Theorem 17. (i) Let A and B be the composite maps 

and 

(idRR × + ~ RR , R R  R R × R × D  ×R u 

(u × idD) v 
R R × R  × D  , R R x D  ,R  R 

respectively. With this notation, (1) means A =B. Now, this happens iff the ex- 
ponential adjoints of A and B (getting R × D up), say A and B, coincide. 

But, since (Rn) R × D___ (RD)R × n _~ R R × R × R R × R, ~ and/~ are pairs of arrows f r o m  

R R to R R×R. So, by Theorem 5, they coincide iff preceded by all possible global 
sections they are equal. So take a global section h : l  ~ R  R and consider Ao  h, 
/~o h. They are the same iff their exponential adjoints (getting R ×D down again) 
are the same. 

But the exponential adjoints of ~ o h  and /~oh are Ao(h×idR×o)  and 
B o (h × idR × D)- Now use Lemma 16. 

(ii) Use Theorem 5 and (i). [] 

Easy examples and discussion 

By Lemma 16 (iii), an arrow o :RRxD---,R R suchthat  o(h, 0)=h  is defined by an 
arrow v2 : R R ~  R 8, and, by Theorem 5 this v2 can be identified with a C°°-function 

G : Coo(~)--, Coo(R), 

G = F ( o 2 )  , O 2 = E(G). 

(1) Take for G:Coo(~,)~Coo(~) the Coo-function G ( h ) = h .  The solution of the 

problem 

" Og(h-----A(x, y )= G(g(h)(-,  y))(x), 
Oy 

,_U(h)(x, 0) = h(x) 

is U(h)(x, y )=  eYh(x), which is C °°. In this case, the corresponding arrow o is given 
by: o(h, d) = h + hd. So the problem: 

 u(h, t +d)=o(u(h, t); d),  
(1) (u(h, 0)=h 

has the (unique) solution 

u = exponential adjoint to E(U). 

(2) Suppose now that G(h)(x)= h'(x). G is Coo. In this case, the solution of the 
corresponding problem (1) is given by u=exponential adjoint of E(U), where 
U(h)(x, y) = h(x + y). 
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We do not know yet a theorem of  existence for our problem. It should be a local 
existence, for some topological notion that must be found. For example, consider- 
ing the C~-compact open topology, this theorem seems to be false in general. For 
the moment, we content ourselves by saying that, as we did in (1) and (2), and in 
cases even less simple than these, one can find some examples where global existence 
and uniqueness hold. 
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