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a b s t r a c t

Every small category C has a classifying space BC associated in a natural way. This
construction can be extended to other contexts and set up a fruitful interaction between
categorical structures and homotopy types. In this paper, we study the classifying space
B2C of a 2-category C and prove that, under certain conditions, the loop space ΩcB2C can
be recovered up to homotopy from the endomorphisms of a given object. We also present
several subsidiary results that we develop to prove our main theorem.

© 2011 Elsevier B.V. All rights reserved.

0. Introduction

The construction of classifying spaces for small categories was introduced by Segal [14], following the ideas of
Grothendieck and generalizing Milnor’s construction for principal G-bundles. This theory was developed by Segal, Quillen
and Thomason among others, with remarkable applications in K-theory and abstract homotopy theory [13,15,17]. Recently,
the construction of classifying spaces has been extended to other categorical structures, such as 2-categories and fibered
categories [3,6].

Given C a small 2-category, let us denote by B2C its classifying space, defined in Section 3. The present work is motivated
by Theorem 8.5, which asserts that under certain conditions there is a homotopy equivalence

ΩcB2C ≃ B(C(c, c)).

Here c denotes a fixed object of C , ΩcB2C is the space of loops of B2C with basepoint c , and C(c, c) is the category of
endomorphisms of c in C , which play the role of algebraic loops. This theorem can be thought of as a formulation of the
classical ideas in delooping monoidal categories [15,17,12].

Throughout this paper, we carry out a number of technical developments that may have interest in themselves. In
Section 4, we give a new formulation for the categorical subdivision sd : Cat → Cat, which simplifies the definitions
and proofs when dealing with this functor. Then we use the subdivision to solve the following categorical problem: given
C in Cat, construct C̃ in 2Cat and a lax functor C 99K C̃ universal for this property (Theorem 5.4). Later on, we apply this
theorem to prove a version of Quillen’s Theorem A for lax functors (Theorem 6.4). Finally, we associate to every 2-category
C its category of simplices∆//C and a lax functor∆//C 99K C in a natural way, and show that thismap is a weak equivalence
(Theorem 7.3).

Using these results we set up a categorical analogue of the path fibration of spaces

C(c, c)◦ → E → ∆//C

where E stands for the (opposite category to the) Grothendieck construction over the path functor L : (∆//C)◦ 99K Cat
(Definition 8.1). We prove Theorem 8.5 by applying Quillen’s Theorem B to this fibration.
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Organization
The first three sections contain preliminaries. In Section 1 we recall the basics on classifying spaces of categories, plus

a quick review of fibered categories. Section 2 is a summary of 2-categories and lax functors. We overview the classifying
space of a 2-category in Section 3.

Later on,we concentrate on the involved technical aspects. Section 4dealswith the subdivision of categories and Section 5
with the construction C → C̃ . We prove that both C and C̃ have the same homotopy type, and use the universal property to
develop a lax version of Theorem A in Section 6.

The final sections focus on the categorical path fibration. We introduce ∆//C the category of simplices of a 2-category
C in Section 7, and use the lax Theorem A to show that ∆//C models the same homotopy type as C . In Section 8 we define
the path functor L : ∆//C 99K Cat and state and prove the main theorem. Some examples and a discussion on the necessity
of the hypothesis are included. The last section relates our work with a classical result on delooping spaces that come from
monoidal categories.

1. Classifying spaces for small categories

This section summarizes Segal’s classifying space for categories and its main features. We suggest [13, Section 1] as a
general reference for this section.

The nerve NC of a small category C is the simplicial set whose n-simplices are the chains

c0 → c1 → · · · → cn
of n composable arrows in C . Degeneracies in NC insert an identity, the first and last faces drop an arrow, and the other faces
compose two consecutive ones. The classifying space BC = |NC | is the geometric realization of the nerve. It is a CW-complex
with one 0-cell for each object of C , one 1-cell for each arrow, one 2-cell for each commutative triangle, and so on.

This way we have functors

N : Cat→ SSet B : Cat→ Top

where Cat, SSet and Top are, respectively, the categories of small categories, simplicial sets and topological spaces. These
functors endow Cat with homotopical notions: a map u : C → D in Cat is a weak equivalence if it induces a homotopy
equivalence between the classifying spaces, and a category C is contractible if its classifying space is so.

It turns out that small categories are good models for homotopy types. More precisely, the nerve functor established an
equivalence between the homotopy categories [11, VI.3.3]

ho(Cat)
∼
−→ ho(SSet) ≃ ho(Top).

Hence for every space X there is a small category C such that X and BC have the same weak homotopy type. Considering C
as a presentation of X , one seeks to compute the invariants of X by using the structure of C .

Let us list some basic facts about the functor B:

• A natural transformation u⇒ v : C → D gives rise to a homotopy Bu ≃ Bv : BC → BD.
• If u : C → D admits an adjoint, then it is a weak equivalence.
• If C has initial or final object, then it is contractible.
• There is a homeomorphism BC ∼= BC◦, where C◦ is the opposite of C .

The following fundamental tools originally appeared in [13]. Recall that if u : C → D is a map in Cat and d ∈ ob(D), the
homotopy fiber1 u/d is the category of pairs (c, f ) ∈ ob(C)× ar(D) such that f : u(c)→ d. An arrow (c, f )→ (c ′, f ′) in u/d
is given by an arrow c → c ′ of C inducing a commutative triangle.

Theorem 1.1 (Theorem A). Given u : C → D a map in Cat, if u/d is contractible for all d then u is a weak equivalence.

Theorem 1.2 (Theorem B). Given u : C → D, if every arrow d→ d′ in D induces a weak equivalence u/d→ u/d′, then B(u/d)
has the homotopy type of the homotopy fiber of BC → BD. In particular, there is a long exact sequence of homotopy groups
relating those of B(u/d), BC and BD

Theorems A and B are especially useful when dealing with fibered categories. Recall that a map p : E → B in Cat is said to
be a prefibration2 if the inclusion p−1(b)→ p/b admits a left adjoint for all b. Hence in a prefibration the actual fiber and the
homotopy fiber have the same homotopy type. A cleavage for p is a choice of such adjoint maps. In a prefibration endowed
with a cleavage every arrow b→ b′ induces a base-change functor

p−1(b)→ p/b→ p/b′ → p−1(b′).

The reader can find in [6] a definition of fibered categories in terms of cartesian arrows and a general discussion on the
subject, as well as a formulation of Theorems A and B within this framework.

1 Also known as left fiber or comma category.
2 Usually called pre-op-fibration or precofibration.
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2. 2-categories and their morphisms

We recall here some basic facts concerning 2-categories and lax functors, and fix some notations we shall use hereafter.
We refer to [2] for further details.

A 2-category C is a category enriched over Cat. It consists of the following data: a class of objects C0; for each pair c, c ′ ∈ C0
a (small) category of arrows C(c, c ′); for each c ∈ C0 an identity arrow idc which is an object of C(c, c); for each triple
c, c ′, c ′′ ∈ C0 a composition functor ◦ : C(c ′, c ′′) × C(c, c ′) → C(c, c ′′). These data must satisfy the usual neutral and
associative axioms. In a 2-category there are three levels of structure: objects; arrows between them; and 2-cells, which are
the arrows between the arrows. The usual picture is

c

f
%%

g
99

�� ��
�� α c ′

As usual, we denote by β ◦ α the horizontal composition, and by β • α the vertical composition, say that of the categories
C(c, c ′).

c
%%
99

�� ��
�� c ′

%%
99

�� ��
�� c ′′

◦
❀ c

&&
88

�� ��
�� c ′′ c

��
�� ��

��
EE�� ��

��

// c ′
•
❀ c

%%
99

�� ��
�� c ′

Example 2.1. The paradigmatic example of a 2-category is that of small categories, functors and natural transformations.
Another basic example is that of spaces, continuous maps and (homotopy classes of) homotopies.

A 2-category is said to be small if its objects form a set. Of course, the examples above are not small. Next we shall work
with small 2-categories, associate topological spaces to them and study their homotopy types.

Example 2.2. Every (small) category C can be regarded as a 2-category whose only 2-cells are identities.

Example 2.3. Every (small strict) monoidal category (M,⊗) can be regarded as a 2-category with a single object, one arrow
for each object ofM , one 2-cell for each arrow ofM , and horizontal composition given by⊗.

A 2-functor u : C → D between 2-categories consists of a map u : C0 → D0 together with functors u : C(c, c ′) →
C(u(c), u(c ′)) such that all the structure is preserved. The 2-categories and 2-functors form a category, which we shall
denote by 2Cat.

Example 2.4. Let C be a 2-category, C◦ its opposite category (described below) and c an object. The 2-functor represented
by c is denoted by hc

: C◦ → Cat and defined as follows:
(i) hc(c ′) = C(c ′, c) for every object c ′ of C;
(ii) given c ′, c ′′ objects of C , the corresponding functor is

hc
: C◦(c ′, c ′′) = C(c ′′, c ′)→ Cat(C(c ′, c), C(c ′′, c)) hc(α)(β) = β ◦ α.

A 2-functor must preserve the structure on the nose. This implies identities between functors and is too restrictive. We
can relax this condition by requiring the existence of natural transformations subject to coherence axioms. Experience has
shown that these lax maps emerge naturally and are often useful.

A (normal) lax functor between 2-categories u : C 99K D consists of a map u : C0 → D0; for each pair c, c ′ ∈ C0 a functor
u : C(c, c ′)→ D(u(c), u(c ′)); and for each pair f : c → c ′, g : c ′ → c ′′ in C a structural 2-cell ug,f : u(gf )⇒ u(g)u(f ) ∈ D2.
The following axioms hold
(i) u(idc) = idu(c) and uid,f = id = uf ,id (normality);

(ii) (u(b) ◦ u(a)) • ug,f = ug ′,f ′ • u(b ◦ a) for all c

f
%%

f ′
99

�� ��
�� a c ′ and c ′

g
%%

g ′
99

�� ��
�� b c ′′ ;

(iii) (uh,g ◦ u(f )) • uhg,f = (u(h) ◦ ug,f ) • uh,gf for every chain c
f
−→ c ′

g
−→ c ′′

h
−→ c ′′′.

We shall denote the category of 2-categories and lax functors by 2Cat.
Example 2.5. Given p : E → B a prefibration in Cat endowedwith a cleavage, we can define a lax functor B 99K Cat by giving
to each object b its fiber p−1(b) and to each arrow b→ b′ the corresponding base-change functor. The structural 2-cells are
induced by the universal property of the adjoint.

Conversely, given a lax functor F : B 99K Cat, its Grothendieck construction is the category F o B of pairs (x, b) such that
x ∈ ob(F(b)). An arrow (x, b)→ (x′, b′) is a pair (f , α) such that α : b→ b′ and f : F(α)x→ x′. Composition is given by
the rule (f ′, α′) ◦ (f , α) = (f ′F(α′)(f )F x

α′,α
, α′α). The projection F o B→ B is a prefibration.
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These constructions yield a 2-equivalence between lax functors and prefibrations with a cleavage [2, Vol 2, Section 8].

A classifying space does not care about the orientation of arrows and 2-cells. Keeping this in mind, it will be useful to
recall the following constructions.

Given C a 2-category, let C◦ be the one obtained by reversing the arrows, and let C ′ be the one obtained by reversing the
2-cells.

C0 = C◦0 = C ′0 C◦(c, c ′) = C(c ′, c) C ′(c, c ′) = C(c, c ′)◦

The construction C → C◦ is functorial with respect to lax functors, whereas the construction C → C ′ is functorial only
with respect to 2-functors. Actually, a lax functor u : C 99K D induces an oplax functor u′ : C ′ → D′.

3. Spaces associated to 2-categories

We recall here twoways in which 2-categories give rise to topological spaces. They both are extensions of the classifying
space of a small category, and yield the same homotopy type. The reference for this section is [3].

Given C a 2-category, the nerve NC is the simplicial category defined by

NCn =


c0,...,cn

C(c0, c1)× · · · × C(cn−1, cn).

By applying the nerve functor Cat→ SSet in each degree we get a bisimplicial set, which we call the 2-nerve and denote by
N2C .

For instance, a simplex s in (N2C)2,3 is just a diagram as follows:

c0 //

⇓α1,1

c1 //

⇓α1,2

c2 //

⇓α1,3

c3

c0 //

⇓α2,1

c1 //

⇓α2,2

c2 //

⇓α2,3

c3

c0 // c1 // c2 // c3

The 2-classifying space B2C of C is the geometric realization of the 2-nerve |diag(N2C)|. This space can also be obtained
by first realizing in one direction and then in the other.

Example 3.1. If C is a category regarded as a 2-category in the usual way, then B2C is homeomorphic to BC .

Example 3.2. If M is a monoidal category then B2M is the classifying space of the topological monoid BM .

Let u : C → D be a 2-functor. We shall say that u is aweak equivalence if it induces a homotopy equivalence B2C → B2D.
We shall say that u is a local weak equivalence if u∗ : C(c, c ′)→ D(u(c), u(c ′)) is a weak equivalence in Cat for all c, c ′ ∈ C0.
A 2-category C is said to be contractible if B2C is so.

Proposition 3.3. If a 2-functor u : C → D is a local weak equivalence and induces a bijection between the objects then u is a
weak equivalence.

Proof. It is well known that a map of bisimplicial sets that is a weak equivalence at each level yields a weak equivalence
[8, IV-1.9]. The result follows by observing that (N2C)∗,n → (N2D)∗,n is a weak equivalence for each n. �

There is another naturalway to associate a topological space to a 2-category C . It is constructed bymeans of the geometric
nerve, following the terminology of [3]. The geometric nerve NgC is the simplicial set given by

(NgC)n = 2Cat([n], C)

where [n] = {0 → 1 → · · · → n} is viewed as a 2-category with trivial 2-cells. Its 0-simplices are the objects of C , its
1-simplices are the arrows of C , its 2-simplices are diagrams of the form

x0

  AA
AA

AA
A

//

⇓

x2

x1

>>}}}}}}}

and its simplices of higher dimension are completely determined by these, namely NgC is 2-coskeletal (cf. [16]). We denote
by BgC the geometric realization of the geometric nerve. The geometric nerve is easier to define, and it manages to describe
completely the geometry of C . Despite that, it is hard to make it explicit even in very simple examples.

Theorem 3.4 ([3]). There is a natural homotopy equivalence B2C ≃ BgC.
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By means of the previous equivalence, a lax functor u : C 99K D gives a map B2C → B2Dwell defined up to homotopy, so
it does make sense to say that such a map is a weak equivalence.

Remark 3.5. There are canonical natural homeomorphisms

B2C ∼= B2C◦ B2C ∼= B2C ′.

Given a 2-functor u, it follows that whenever u, u◦ or u′ is a weak equivalence, then so are the others.

4. Subdivision revisited

The subdivision of categories is similar to the barycentric subdivision of polyhedra. It is a functor sd : Cat → Cat that
assigns to every category C another sd(C)with the same homotopy type and in some sense locally simpler. This construction
appears in earlyworks [1,5]. Herewepresent a new characterization of sd(C) that brings some clarification andmakes proofs
easier.

Let C be a small category and let ∆/C be the category of simplices of C . The objects of ∆/C are the simplices of NC , say
functors x : [n] → C , and the arrows a∗ : x→ x′ are given by ordinal maps a : [n] → [n′] such that x′ · a = x. By mapping
a chain x to its last object x(n) one gets a functor sup : ∆/C → C . It is well known that this is a weak equivalence (cf.
[11]-VI.3.3).

Definition 4.1. We define a relation∼ on the arrows of ∆/C by the rule

a∗ ∼ b∗ : x→ x′ ⇐⇒ x′(m(i)→ M(i)) = id ∀i

wherem(i) = min{a(i), b(i)} and M(i) = max{a(i), b(i)}.

It is routine to verify that∼ is an equivalence relation compatiblewith the composition.We denote by [∆/C] the quotient
category, whose objects are those of ∆/C and whose arrows are the classes under ∼. The subdivision sd(C) is the full
subcategory of [∆/C] formed by the non-degenerate simplices.

The functor sup : ∆/C → C clearly induces another one [∆/C] → C . Call ϵ : sd(C) → C its restriction. Analogously,
ϵ′ : sd(C)→ C◦ is defined by using inf instead of sup. The main features concerning subdivision are

• The construction sd actually defines a functor Cat→ Cat.
• The map ϵ : sd(C)→ C is a weak equivalence for all C .
• sd2(C) is a poset for all C .

Here sd(C) plays the role of a functorial resolution or cofibrant replacement of C , and ϵ that of the augmentationmap. Proofs
and further details concerning subdivision can be consulted in [1,5]. The equivalence between the constructions given there
and that of Definition 4.1 easily follows from

Proposition 4.2. ∼ is generated by the following elementary relation:

a∗ ≈ b∗ ⇐⇒ ∃i0 such that

a(i) = b(i) i ≠ i0
x′(a(i0)→ b(i0)) = id

Proof. Clearly∼ is an equivalence relation containing≈. Let us prove that it is the smallest with this property.
Suppose first that a∗ ∼ b∗ : x→ x′, with a, b : [n] → [n′] such that a(i) ⩽ b(i) for all i. Then, if ck : [n] → [n′] is given

by

ck(i) =

a(i) i < k
b(i) i ⩾ k

we have that (ck)∗ : x→ x′ is an arrow in ∆/C for all k, (cn+1)∗ = a∗, (c0)∗ = b∗ and (ck)∗ ≈ (ck−1)∗.
Now let a∗ ∼ b∗ : x → x′ be any two equivalent maps. We construct m,M : [n] → [n′] by m(i) = min(a(i), b(i)) and

M(i) = max(a(i), b(i)). Clearly

m∗ ∼ a∗ ∼ b∗ ∼ M∗
and because of the first case we analyzedm∗ and a∗ are related by a chain of elementary steps, as well asm∗ and b∗. �

5. The construction C → C̃

Given C a small category, we construct here a 2-category C̃ and a lax functor η : C 99K C̃ with the following universal
property:

C
η //___

∀v
��=

=
=

= C̃

∃!u

��
D

for every lax functor v : C 99K D
there exists a unique 2-functor
u : C̃ → D such that uη = v.
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C̃ has the same objects as C , its arrows are chains of composable arrows and its 2-cells are ways to obtain one chain from
another. In order to give a precise definition we shall make use of the categorical subdivision.

In [4,9] the same problem is considered, without demanding normality. We carry out the construction in detail for we
understand that the references are rather vague and contain some mistakes. The result is often attributed to Jean Benabou.

From here on C will denote a small category. Given c, c ′ objects of C , let C̃(c, c ′) be the fiber of the functor ϵ′ × ϵ :

sd(C) → C◦ × C over the object (c, c ′). In other words, C̃(c, c ′) is the non-full subcategory of sd(C) formed by the chains
x : [n] → C that start at c and end at c ′, and the maps [a∗]which preserve the first and the last element.

Assume c ≠ c ′. If [a∗] : x→ x′ is an arrow in C̃(c, c ′) then x′(0→ a(0)) = idc and x′(a(n)→ n′) = idc′ . It follows that
a∗ ∼ a′

∗
where

a′ : [n] → [n′] a′(i) =


0 i = 0
a(i) 0 < i < n
n′ i = n.

We conclude that every arrow [a∗] : x → x′ in C̃(c, c ′) can be represented by an injective order map a that preserves the
first and the last element. Thus we have

Proposition 5.1. If n = 1, then there is at most one arrow x→ x′ in C̃(c, c ′).

It easily follows that each component of C̃(c, c ′) has an initial element, which is given by a 1-simplex.
When c = c ′ the structure of C̃(c, c) is quite similar, except that there is a special component with initial element given

by the 0-simplex c .
Given a : [p] → [p′] and b : [q] → [q′], we define a ▹ b : [p+ q] → [p′ + q′] as the map

(a ▹ b)(i) =

a(i) i ⩽ p
b(i− p)+ p′ i > p.

We emphasize the asymmetry of this definition: the last value of a is kept and the first of b is dropped. This is arbitrary and
other variants also work.

Proposition 5.2. The following hold:

(a) id[p] ▹ id[q] = id[p+q];
(b) (a′ ▹ b′) ◦ (a ▹ b) = (a′ ◦ a) ▹ (b′ ◦ b) if b(i) > 0 whenever i > 0;
(c) (a ▹ b) ▹ c = a ▹ (b ▹ c);
(d) a ▹ id[0] = a; id[0] ▹ a = a if a(0) = 0.

Given c, c ′, c ′′ objects in C , we define the juxtaposition functor

⊙ : C̃(c, c ′)× C̃(c ′, c ′′)→ C̃(c, c ′′)

as follows. If x and x′ are objects of C̃(c, c ′) and C̃(c ′, c ′′) respectively, then x⊙ x′ : [n+ n′] → C is the chain of arrows given
by juxtaposition, say

(x⊙ x′)(i− 1→ i) =

x(i− 1→ i) i ⩽ n
x′(i− 1− n→ i− n) i > n.

In arrows, [a∗]⊙[b∗] is defined as [(a▹b)∗]. This definition does not depend on the representative, for if a∗ ∼ a′
∗
and b∗ ∼ b′

∗

then (a▹ b)∗ ∼ (a′ ▹ b′)∗. This is immediate from our description of the arrows of the subdivision (cf. Definition 4.1). Clearly
⊙ preserves identity elements. For composition, the identity

([a′
∗
] ⊙ [b′

∗
]) ◦ ([a∗] ⊙ [b∗]) = ([a′

∗
] ◦ [a∗])⊙ ([b′

∗
] ◦ [b∗])

holds because of the way arrows in sd(C) are composed, Proposition 5.2 and the fact that every arrow in sd(C) can be
represented by an injective order map.

Definition 5.3. Given C ∈ Cat, we define C̃ as the 2-category such that:

(i) its objects are those of C , i.e. C̃0 = C0;
(ii) for each pair c, c ′ ∈ C̃0 the category C̃(c, c ′) is defined as above;
(iii) the identity idc ∈ C̃(c, c) is the 0-simplex of NC induced by c;
(iv) the composition C̃(c, c ′)× C̃(c ′, c ′′)→ C̃(c, c ′′) is the juxtaposition⊙.

One checks the associative and unit axioms for⊙ by using Proposition 5.2.
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Let η : C 99K C̃ be the lax functor which is the identity on objects, maps a nontrivial arrow f ∈ C(c, c ′) to the 1-simplex
of NC induced by f , and carries identities into identities. There is only one way to define the structural 2-cells (cf. 5.1), and
this makes all the axioms trivially hold.

Given D a 2-category and u : C̃ → D a 2-functor, the composition uη is a lax functor uη : C 99K D. This way we have a
map

2Cat(C̃,D)→ 2Cat(C,D).

Theorem 5.4. The map above is a bijection.

In other words, the universal property of C̃ stated at the beginning of the section holds.

Proof. In order to prove that the map is injective, we need to show that we can recover u from v = uη. This is clear on
objects, for η : C0 → C̃0 is the identity. Besides, every arrow in C̃ is a chain x : [n] → C and can be written as the
composition (juxtaposition) of elementary arrows [1] → C . Since these arrows belong to the image of η, we conclude that
the behavior of u on arrows is settled by v. Now consider an elementary 2-cell

[a∗] : x⇒ x′ : c → c ′ n ⩽ 1, n′ = 2.

The structural 2-cells of v are obtained from those of η, say vg,f = u(ηg,f ). It follows that u([a∗]) = u(ηx′(1→2),x′(0→1)) =

vx′(1→2),x′(0→1). Since every 2-cell of C̃ can be obtained from the elementary ones by using ◦ and •, the injectivity follows.
For the surjective part, we must show that every lax functor v : C 99K D equals uη for some u. Given v, we construct u as

follows:

• let u(c) = v(c) for every object c;
• given x ∈ C̃(c, c ′)0 let u(x) = v(x(n− 1→ n)) . . . v(x(0→ 1));
• given [a∗] : x⇒ x′ : c → c ′, with a : [n] → [n′], let u([a∗]) = αn ◦ · · · ◦ α1 where

αi : vx(i− 1→ i)⇒ vx′(a(i)− 1→ a(i)) . . . vx′(a(i− 1)→ a(i− 1)+ 1)

is the 2-cell induced by u.

It is straightforward to check that u is a 2-functor and that uη = v. �

The lax functor η has a left inverse, say π : C̃ → C , which is a 2-functor. Of course, π is the identity in the objects. Given
c, c ′ ∈ C0, the functor π : C̃(c, c ′)→ C(c, c ′) maps a chain x to its total composition x(0→ n). This 2-functor π is related
to idC via the universal property of C̃ .

Proposition 5.5. The map η : C 99K C̃ is a weak equivalence.

Proof. It suffices to show that its left inverse π : C̃ → C is so. If f : c → c ′ is an arrow in C and x ∈ C̃(c, c ′), then there is at
most one arrow η(f )→ x in C̃(c, c ′) (see 5.1), and it exists iff π(x) = f . Thus we have an adjunction η ⊣ π between C̃(c, c ′)
and the discrete category C(c, c ′), that is, every component of C̃(c, c ′) has an initial element. The functor C̃(c, c ′)→ C(c, c ′)
is a weak equivalence because it admits an adjoint. Thus π is a local weak equivalence and a bijection on the objects. The
proof ends by applying Proposition 3.3. �

6. Theorem A for 2-functors and lax functors

Quillen’s Theorem A asserts that a map in Cat is a weak equivalence if its homotopy fibers are contractible. This theorem
has recently been extended to 2-categories and 2-functors [3]. Here we introduce the homotopy fiber of a lax functor, and
use the results from the previous sections to establish a version of Theorem A for lax functors.

Given C a 2-category we denote by C0, C1 and C2 its sets of objects, arrows and 2-cells respectively.

Definition 6.1. (cf. [10]) Given u : C → D a 2-functor, and given d an object of D, the homotopy fiber of u over d is the
2-category u//d defined as follows. Its objects are pairs (c, φ) ∈ C0 × D1 such that φ : u(c)→ d.

(c, φ) u(c)
φ // d

Its arrows (c, φ)→ (c ′, φ′) are pairs (f , α) ∈ C1 × D2 such that f : c → c ′ and α : φ′u(f )⇒ φ

(c, φ)

(f ,α)

��

u(c)

u(f )

��

φ

**UUUUUUUUUUUU

d

(c ′, φ′) u(c ′)
φ′

44jjjjjjjjjjjj

⇑α
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Its 2-cells β : (f , α)⇒ (f ′, α′) are given by 2-cells β : f ⇒ f ′ of C such that α′ • (φ′ ◦ u(β)) = α;

(c, φ)

(f ,α)

��

(f ′,α′)

��

u(c)

u(f )

��

u(f ′)

��

φ

))SSSSSSSSSSSS

⇒
β

⇒
u(β) d

(c ′, φ′) u(c ′)
φ′

55kkkkkkkkkkkk

⇑α′

The composition ◦ is given by (g, β) ◦ (f , α) = (gf , α • (β ◦ u(f ))). The composition • is that of C .

Note that this extends the construction of homotopy fibers for functors that was recalled in Section 1. The following
result is due to Bullejos and Cegarra [3].

Theorem 6.2 (Theorem A for 2-Functors). Let u : C → D be a 2-functor. If the category u//d is contractible for all d ∈ D0 then
u is a weak equivalence.

In view of Remark 3.5, this theorem admits many alternative formulations: if the homotopy fibers of u, u′ or u◦ are
contractible, then u is a weak equivalence. The version stated here is related with the original in [3] by the isomorphism of
2-categories (d//u)◦′ ∼= (u◦′)//d, where d//u is the right fiber as presented in [3].

We extend the construction of homotopy fibers from 2-functors to lax functors in the following quite reasonable way.

Definition 6.3. Given u : C 99K D and d ∈ D0, we define the homotopy fiber u//d of u over d as the 2-category with objects,
arrows and 2-cells as in Definition 6.1, but with horizontal composition given by:

(g, β) ◦ (f , α) = (gf , α • (β ◦ u(f )) • (φ′′ ◦ ug,f ))

(c, φ)

(f ,α)

��

u(c)

u(gf )

��

u(f )
@@@

��@@@

φ

��
(c ′, φ′)

(g,β)

��

u(c ′) φ′ //

u(g)
~~~

��~~~

⇒
ug,f

⇑α

⇑β

d

(c ′′, φ′′) u(c ′′)
φ′′

FF

Note that when C is a category, i.e. it has only trivial 2-cells, the homotopy fiber u//d is also a category.

Theorem 6.4 (Theorem A for Lax Functors). Let C be a category, D a 2-category and consider a lax functor v : C 99K D. If v//d is
contractible for all d ∈ D0 then v is a weak equivalence.

Proof. We use the universal property of C̃ to factor v as uη.

C
η //___

v
��=

=
=

= C̃

u

��
D

We have seen that η is a weak equivalence (Proposition 5.5), so it remains to prove that the 2-functor u : C̃ → D is so. Using
Theorem A for 2-functors (Theorem 6.2), we only have to check that u//d is contractible for every d ∈ D0. By hypothesis
we know that v//d is contractible. The maps η : C 99K C̃ and π : C̃ → C (Proposition 5.5) induce morphisms between the
homotopy fibers, say η//d : v//d→ u//d and π//d : u//d→ v//d. The same argument used in Proposition 5.5 shows that
they establish a weak homotopy equivalence and the theorem follows. �

Bullejos and Cegarra extend Quillen’s Theorem A to strict 2-functors between 2-categories. Our Theorem 6.4 extends it
to lax functors, but we require C to be a category (trivial 2-cells). Though this formulation is enough for our purpose, we
believe that a stronger formulation holds, namely a Theorem A for lax functors between any 2-categories. A proof of this
might follow the same lines as above by constructing C̃ for any 2-category.

7. The category of simplices of a 2-category C

In this section we introduce the category of simplices ∆//C of a 2-category C , extending the more familiar notion of ∆/C
for categories. We shall use ∆//C to prove Theorem 8.5 in the next section. A variation of ∆//C was used in [7] to prove that
the homotopy categories of Cat and 2Cat coincide.



36 M.L. del Hoyo / Journal of Pure and Applied Algebra 216 (2012) 28–40

If C is a small category, then its category of simplices ∆/C can be presented in many conceptual and equivalent ways:

• ∆/C is the category of simplices of the simplicial set NC;
• ∆/C is the homotopy fiber over C of the inclusion ∆→ Cat;
• ∆/C is the opposite category to the Grothendieck construction over the (discrete) map NC : ∆◦ → Cat.

When moving to 2-categories, these three constructions lead to different definitions. We shall adopt the last one.

Definition 7.1. Given C a small 2-category, we define its category of simplices ∆//C as (NC o ∆◦)◦, namely the opposite
category to the Grothendieck construction over the nerve functor NC : ∆◦ → Cat (cf. Example 2.5).

The objects of ∆//C are pairs (n, x) such that x : [n] → C is a functor. In other words, they are the simplices of the nerve
of the underlying category. We visualize them as chains of composable arrows

x0 → x1 → · · · → xn.

An arrow (n, x) → (n′, x′) in ∆//C is a pair (a, α) with a : [n] → [n′] and α = (α1, . . . , αn) such that αi : x′(a(i − 1) →
a(i))⇒ x(i− 1→ i) is a 2-cell of C . We visualize an arrow as a 2-diagram in C of the form:

x0 // x1 // x2 // . . .

...

// xn

x′0 // . . . // x′a(0) // . . .

⇑

// x′a(1) // . . .

⇑

// x′a(2) // . . . // x′a(n) // . . . // x′n′

Note that necessarily x′(a(i)) = x(i). If C is a category viewed as a 2-category in the usual way, then ∆//C equals the usual
category of simplices, so our definition is an extension indeed.

Definition 7.2. We define sup : ∆//C 99K C as the following lax functor:

(i) on objects, sup(n, x) = xn;
(ii) if (a, α) : (n, x)→ (n′, x′) is an arrow in ∆//C , then

sup(a, α) = x′(a(n)→ n′);

(iii) given (a, α) : (n, x)→ (n′, x′) and (b, β) : (n′, x′)→ (n′′, x′′), we have

sup((b, β) ◦ (a, α)) = x′′(ba(n)→ n′′),
sup(b, β) ◦ sup(a, α) = x′′(b(n′)→ n′′) ◦ x′(a(n)→ n′)

and the structural 2-cell sup(b,β),(a,α) is defined by

sup(b,β),(a,α) = x′′(b(n′)→ n′′) ◦ βn′ ◦ βn′−1 ◦ · · · ◦ βa(n)+1.

It is routine to check that sup is actually a lax functor, namely that it satisfies axioms (i), (ii) and (iii) for lax functors
(Section 2).

Theorem 7.3. The map sup : ∆//C 99K C is a weak equivalence. Thus C and ∆//C model the same homotopy type.

Proof. In view of our version 6.4 of Quillen’s Theorem A, we need to verify that the homotopy fibers sup //c as defined in
6.3 are contractible.

Fix c an object of C , and let i : (∆//C)c → sup //c be the inclusion of the fiber into the homotopy fiber – this is a map
in Cat. We define a map r : sup //c → (∆//C)c and natural transformations η : idsup //c ⇒ ir and ϵ : c ⇒ ir , where
c(x, f ) = (c, idc) is the constant functor. Because a natural transformation gives rise to a homotopy when taking classifying
spaces, it follows that the identity of sup //c is homotopic to a constant and hence it is contractible.

Given (x, f ) an object of sup //c , we define r(x, f ) as the simplex of NC obtained by extending xwith f , that is

r(x, f ) = (x0 → x1 → · · · → xn
f
−→ c).

An arrow (x, f )→ (x′, f ′) in sup //c is a triple ((a, α), β)

x0 // x1 // x2 // . . . // xn
f // c

x′0 // . . . // x′a(0) // . . .

⇑α1

// x′a(1) // . . .

⇑α2

// x′a(2) // . . .

...

// x′a(n) // . . .

⇑β

// x′n′ f ′
// c

We define r((a, α), β) : r(x, f )→ r(x′, f ′) as the map (a′, α′) with

a′ : [n+ 1] → [n′ + 1] a′(j) =

a(j) j ⩽ n
n′ + 1 j = n+ 1
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and

α′j =


αj j ⩽ n
β j = n+ 1.

Finally, the natural map η is given by [n] → [n+ 1], i → i, and the natural map ϵ is given by [0] → [n+ 1], 0 → n+ 1. �

The lax functor inf : (∆//C) 99K C◦ is defined analogously, and it happens to be aweak equivalence, too. Moreover, under
the obvious isomorphism ∆//C ∼= ∆//(C◦), the functor infC can be identified with supC◦ .

∆//C ∼= ∆//(C◦)

infC ��<
<

<

supC◦���
�
�

C◦

8. The loop space of a 2-category

Given X a topological space with basepoint p, let PpX ⊂ X I be the space of paths in X that end at p. Themap π : PpX → X
that sends a path γ to its source γ (0) is the well-known path fibration. Its fiber is the loop space ΩpX .

ΩpX → PpX
π
−→ X

Since PpX is contractible, it follows from the sequence of homotopy groups induced by π that ΩpX is a homotopy-theoretic
shift of X .

We shall construct a categorical analogue to the path fibration and prove our main theorem, which provides an algebraic
description of ΩpB2C . Finally we give some simple examples and discuss the necessity of our hypothesis.

Throughout this section C is a connected small 2-category and c an object of C . By connected we mean that any two
objects are linked by a chain of arrows.

Definition 8.1. We define the path functor L : (∆//C)◦ 99K Cat as the lax functor which is the composition of sup ◦ with the
representable 2-functor induced by c.

C◦

hc

  BB
BB

BB
BB

(∆//C)◦

sup ◦
;;w

w
w

w
w

L
//_______ Cat

We concentrate on E = (L o (∆//C)◦)◦, namely the opposite category to the Grothendieck construction over L (cf.
Example 2.5). Note that an object of E can be regarded as a chain x0 → · · · → xn → c , and more generally, we can identify
E with a subcategory of ∆//C . Let us denote this inclusion by i : E → ∆//C . Besides, E is isomorphic to the homotopy fiber
of sup : ∆//C 99K C over the object c and therefore it is contractible (cf. proof of Theorem 7.3).

Definition 8.2. We define the categorical path fibration as the following diagram in Cat:

C(c, c)◦ → E
p
−→ ∆//C

where p : E → ∆//C is the canonical projection of the Grothendieck construction and C(c, c)◦ is identified with the fiber
over c (chain of length 0).

Note that the fibers of p are p−1(x) = L(x)◦ = C(xn, c)◦. As in any prefibration, the inclusion p−1(x)→ p/x of the actual
fiber into the homotopy fiber admits a left adjoint and hence is a weak equivalence.

Next we shall relate the categorical path fibration with the topological one. The projection p : E → ∆//C and the
inclusion i : E → ∆//C are linked by a natural transformation H : p⇒ i, which on an object x0 → · · · → xn → c is given
by the inclusion of ordinals [n] → [n + 1] and the trivial 2-cells. Regarding H as a functor E × I → ∆//C and composing
with sup we get a lax functor

sup ◦H : E × I 99K C which yields BE × I → B2C .

Here we are writing I for both the interval in Cat and in Top, applying Bg to the lax functor and using the natural homotopy
equivalence BgC ≃ B2C . The exponential law induces a map BE → B2C I , whose image lies in the space of paths that end at
c , for sup ◦i is the constant functor c.

Definition 8.3. We denote by φ : BE → PcB2C the map defined above, and refer to it as the transition map relating both the
categorical and topological path fibrations.
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The transition map φ : BE → PcB2C fits into the following diagram

B(C(c, c)) //

��

BE

φ

��

Bp // B(∆//C)

B sup

��
ΩcB2C // PcB2C π

// B2C

where we are identifying B(C(c, c)) ∼= B(C(c, c)◦) via the canonical homeomorphism, and the left arrow is the restriction
of φ to the fibers.

If X is a topological space and Pq
pX denotes the space of paths in X that start at p and end at q, then every path γ from p

to p′ induces a homotopy equivalence Pq
p′X

≃
−→ Pq

pX , α → γ ∗ α, where ∗ stands for the composition of paths. On the other
hand, if C is a connected 2-category then the homotopy type of the hom-categories C(c, c ′) might vary. This motivates the
following requirement.

Definition 8.4. We shall say that the pair (C, c) satisfies the condition Q if for every arrow f : c ′ → c ′′ the functor
f ∗ : C(c ′′, c)→ C(c ′, c) is a weak equivalence in Cat.

Now we can state our main theorem.

Theorem 8.5. Let (C, c) be a 2-category satisfying condition Q . Then the category of endomorphisms C(c, c) has the homotopy
type of the loop space of B2C with basepoint c, say

B(C(c, c)) ≃ ΩcB2C .

Proof. By condition Q , the path functor Lmaps every arrow of ∆//C to a weak equivalence. It follows that the base-change
functors of the prefibration E → ∆//C are weak equivalences and therefore the hypothesis of Theorem B is fulfilled
(cf. Theorem 1.2). Thus, in the long exact sequence of homotopy groups arising from Bp : BE → B(∆//C) we can identify
those of the homotopy fiber with those of B(C(c, c)).

The transition map φ and the naturality allow us to compare the long exact sequences of homotopy groups coming from
both the categorical and the topological path fibrations. Since B(sup) and φ are weak equivalences, it follows from the five
lemma that B(C(c, c))

≃
−→ ΩcB2C is aweak equivalence aswell. Since these spaces have the homotopy type of a CW-complex

(Milnor’s classical theorem on spaces of maps), it is a homotopy equivalence. �

Example 8.6. If C is a groupoid (all arrows invertible, only trivial 2-cells), then it clearly satisfies conditionQ . The classifying
space of C is an Eilenberg–MacLane space K(G, 1), where G is the group of automorphisms of a given object. In this case the
loop space ΩcBC has the homotopy type of the discrete set G, for each of its components is contractible.

Example 8.7. More generally, if C is a 2-groupoid (all arrows and 2-cells invertible), then condition Q is fulfilled. By
Theorem 8.5 ΩcB2C is the classifying space of a groupoid, hence a K(G, 1). It follows that B2C is a homotopy 2-type.

Example 8.8. We present a minimalistic example that shows that condition Q is a sufficient but not a necessary condition.
Let C be the 1-category with three objects and two nontrivial arrows

C =

c ← c ′

f
−→ c ′′


.

It is clear that B2C ∼= BC ≃ ∗ and hence ΩcB2C ≃ ∗ ∼= C(c, c). Despite that, condition Q does not hold, for the map
f ∗ : C(c ′′, c) = ∅ → C(c ′, c) = ∗ is not a weak equivalence.

Given c ′ an object of C , there is a canonical map B(C(c ′, c)) → Pc
c′B2C relating the algebraic and geometric paths. It is

obtained by identifying B(C(c ′, c)) with the fiber of Bp over c ′ and then applying the transition map φ. This map is natural
in the following sense.

Lemma 8.9. If f : c ′ → c ′′ is an arrow in C then the diagram of spaces

B(C(c ′′, c))

B(f ∗)

��

// Pc
c′′B2C

f ∗−

��
B(C(c ′, c)) // Pc

c′B2C

commutes up to homotopy, where the horizontal arrows are the canonical maps and f ∗ − assigns to a path γ the composition
f ∗ γ with the path given by f .

Proof. For each point p ∈ B(C(c ′′, c))we have two paths in B2C from c ′ to c. We can deform these paths linearly one into the
other. Actually, if p belongs to the cell indexed by the n-simplex g0 ⇒ · · · ⇒ gn of N(C(c ′′, c)), then the two corresponding
paths lie in the cell indexed by the (n, 2)-bisimplex (f ⇒ · · · ⇒ f , g0 ⇒ · · · ⇒ gn), whose first coordinate is constant. This
deformation is well defined because the simplices are glued with linear maps, and is clearly continuous. �
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Corollary 8.10. Under the hypothesis of Theorem 8.5, the map B(C(c ′, c))→ Pc
c′B2C is a weak equivalence for all c ′.

Proof. Take c ′′ = c in the previous lemma. Note that if C is connected then for all c ′ there must exist one arrow f : c ′ → c
because of Q . In the square of the lemma the upper map is a weak equivalence by 8.5. The left one is so by hypothesis and
the right one is always a weak equivalence. Then the bottom one is so by a two-out-of-three argument: if in a commutative
triangle two maps are weak equivalences, then so does the third. �

Now we can state a partial converse for our main result.

Corollary 8.11 (Partial Converse for Theorem 8.5). Let C be a 2-category and c an object of C. If for every c ′ the canonical map
B(C(c ′, c))→ Pc

c′B2C is a weak equivalence, then the pair (C, c) satisfies condition Q .

Proof. It follows from the lemma and the two-out-of-three argument. �

9. Delooping

A 2-categoryM with a single object is the same as a strict monoidal category. In this section we recover a classical result
on delooping classifying spaces of monoidal categories from our Theorem 8.5.

A (small strict) monoidal category is a monoid object in Cat. It consists of a small categoryM together with an associative
product⊗ : M ×M → M , (x, y) → x⊗ y, and a unit object 1. GivenM a monoidal category, we denote byM its associated
2-category (cf. Example 2.3). Note that the bar resolution ofM equals the nerve N(M).

Since the nerve functor preserves products, the classifying space BM inherits a monoid structure in a natural way. Next
we shall give a necessary and sufficient condition to ensure that BM is a loop space.

Proposition 9.1. Let (M,⊗) be a monoidal category. The following are equivalent:

(a) the topological monoid BM admits an inverse up to homotopy;
(b) the functors rx : M → M, y → y⊗ x are weak equivalences;
(c) the functors lx : M → M, y → x⊗ y are weak equivalences;
(d) π0(BM) is a group with the product induced by⊗.

If these hold, then the space BM has the homotopy type of a loop space (is deloopable).

Proof. Clearly (a)⇒ (b), (a)⇒ (c) and (a)⇒ (d). The proof of (d)⇒ (a) can be found in [15]. We shall prove that (b)⇒ (a),
which is analogous to (c)⇒ (a).

Consider (⊗, pr2) : M ×M → M ×M as a map overM .

M ×M
(⊗,pr2) //

pr2 ��==
==

==
= M ×M

pr2����
��

��
�

M

If x is an object in the base, then the map between the fibers can be identified with rx, which is a weak equivalence by
hypothesis. Since projections are prefibrations, the map between the homotopy fibers is also a weak equivalence and we
conclude that (⊗, pr2) is a weak equivalence by a relative version of Theorem A (see for example [6]). The rest is routine: if
(v1, v2) : BM × BM → BM × BM is an inverse for B(⊗, pr2), then v2 ≃ pr2 and the inverse up to homotopy for the monoid
BM is the composition

BM
c1×id
−−−→ BM × BM

v1
−→ BM.

Let us nowprove the last assertion. Note that if BM is the space of loops of another space, then it has an inverse indeed. On
the other hand, if BM admits an inverse up to homotopy, then the functors rx : M → M , y → y⊗ x are weak equivalences,
the 2-categoryM satisfies condition Q and hence we can apply Theorem 8.5 which gives

BM ≃ ΩB2M. �
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