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Abstract

In this paper we present a probabilistic algorithm which computes, from a finite set of polyno-
mials defining an algebraic variety 7, the decomposition of 7 into equidimensional components.
If V is defined by s polynomials in n variables of degrees bounded by an integer d > n and
V =J,_, V¢ is the equidimensional decomposition of ¥, the algorithm obtains in sequential time
bounded by s°1d%™, for each 0 </ < r, a set of n+ 1 polynomials of degrees bounded by
deg (V) which define V,. (© 2002 Elsevier Science B.V. All rights reserved.

MSC: Primary 14Q20; secondary 68W30

0. Introduction

Different problems appearing nowadays are related to systems of polynomial equa-
tions. Some of these problems can be solved simply by deciding whether the associated
polynomial equation system is consistent or not. However, when the system is consis-
tent, it is sometimes necessary to describe the set of its solutions. The set of solutions
of a polynomial equation system is called an algebraic variety.

A well-known result states that any algebraic variety ¥ over an algebraically closed
field K can be uniquely decomposed into a union of irreducible algebraic varieties
Ci,...,C, definable by polynomials with coefficients in K such that C; & C; for i #j.
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The varieties C; are called the irreducible components of V. Therefore, a possible
way to describe the variety V' is to characterize each of the irreducible components
of V. However, if V is defined by polynomials with coefficients in a subfield & of
the algebraically closed field K, its irreducible components may not be definable by
polynomials with coefficients in k. Then, this description of the variety is not entirely
satisfactory from the algorithmic point of view.

One of the invariants related to an algebraic variety is its dimension. An algebraic
variety may have irreducible components of different dimensions. When all the com-
ponents of an algebraic variety have the same dimension it is called equidimensional.
Any algebraic variety V' can be decomposed into a union of equidimensional vari-
eties. If »=dim V' and, for each 0 </ <r, V, is either empty or the union of all
the irreducible components of J of dimension 7, then V = U;:o V,. This is called the
equidimensional decomposition of V and the varieties V, (0 </ < r) are called its
equidimensional components. The problem we are concerned with is the computation
of the equidimensional decomposition of V' in the following way: given polynomials
Sfls-os fs in k[X1, ..., X,] such that V' ={x€k”: f1(x)=0A---A fy(x)=0} we want
to obtain, for every 0 </ < r, a finite set of polynomials whose set of common zeroes
is V,, where k is a field of characteristic 0 and k is an algebraic closure of k.

Different algorithms describing decompositions of an algebraic variety V' have been
given. Chistov and Grigor’ev [1] exhibit an algorithm for the computation of the irre-
ducible decomposition provided an algorithm that factorizes polynomials in k[X1,...,X,]
is given. Giusti and Heintz [3] present an algorithm for the equidimensional decompo-
sition which is well-parallelizable. In both cases, if V' is given as the set of common
zeroes of s polynomials in n variables with degrees bounded by d, the complexity
bounds of the algorithms are of order sOM 790" Elkadi and Mourrain [2] give a prob-
abilistic algorithm which is based on Bézoutian matrices, but the decomposition they
obtain is not minimal (some embedded components may appear).

After the works of Chistov and Grigor’ev and Giusti and Heintz, the natural next
step was to obtain algorithms which solve the same task within a complexity of order
s9MgOM In this work, we present a probabilistic algorithm that, from a finite set of
n-variate polynomials whose set of common zeroes is an algebraic variety V', computes,
for each equidimensional component V', of V', a set of n + 1 polynomials of degrees
bounded by deg ¥, whose set of common zeroes is V,. The algebraic complexity of
our algorithm is bounded by s%Vd®"), where s is the number of input polynomials,
n the number of variables and d > n an integer which is an upper bound for the
degrees of the input polynomials. The algorithm is based on computing for each of
the equidimensional components of the variety considered, the minimal polynomials of
n+ 1 linear forms.

Lecerf [13] shows a probabilistic algorithm which describes the equidimensional
decomposition of V' by means of geometric resolutions of each equidimensional com-
ponent. Lecerf’s work has been done simultaneously with ours but both works are
independent. One of the main differences among the above cited works is the way the
equidimensional components are given: In [2] and [13] the varieties are described in
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a parametric way and this description is generic; in the work of Giusti and Heintz
and in this paper, the varieties are given as the set of common zeroes of a system
of polynomials. This last description is more accurate. Chistov and Grigor’ev [1] use
descriptions of both types.

The lower complexity of our algorithm is due to a special way of coding output poly-
nomials, called straight line programs, which showed to be effective in the construc-
tion of algorithms to solve many algebraic and geometric problems (see, for example,
[4—6]).

The paper is organized in three sections. In the next section we recall some basic
definitions, we fix the notation and mention some algorithmic tools to be used. In
Section 2 we show that the input data can be changed so that our algorithm works (these
changes will be done randomly and, in this sense, we say our algorithm is probabilistic).
In the last section, we state precisely how we will describe equidimensional varieties
and finally we prove the main result of the paper:

Let f1,..., fy €k[X1,...,X,] be polynomials and let d be an integer such that d > n
and deg f; < d for every 1 <i<s. Let V={xe€k" fi(x)=0A---A fy(x)=0} and
let r=dim V. Then, there exists a probabilistic algorithm of sequential complex-
ity of order s°VDdO™, which computes the equidimensional decomposition of V:
the input of the algorithm are the polynomials f,..., fs given in dense form and
its output is a straight line program of length d°™ which computes polynomials
gy) O0</ <1 <j<n+1) such that, for every 0 </ <r, the equidimensional
component of V of dimension ¢ is

Vy={xek" ¢"(x)=0A---ng\") (x)=0}.
For every 0 < ¢ < r, the degrees ofgﬁ-/) (1 <j < n+l) are bounded by degV, < d"~".

The probability of success of each step of our algorithm will appear in several
remarks throughout the paper. In a final remark, after the proof of the main theorem,
the probability of success of the whole algorithm is stated.

A summary of the results obtained in this work can be found in [10].

1. Preliminaries
1.1. Definitions and notation

Let & be a field of characteristic 0. We suppose k to be effective: this means that the
arithmetic operations (addition, subtraction, multiplication) and basic equality checking
(comparison) between elements of £ are realizable by algorithms.

For any polynomial f € k[X], rad (/) will denote the monic square-free polynomial
in k[X] whose zeroes are exactly the zeroes of f.

Given polynomials g1,...,gs € k[X], ged (g1, --.,9gs) will denote, as usual, the greatest
common divisor of ¢gi,..., ;.
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If Xi,...,X, are indeterminates over k£ and f € k[X,...,X,] is a polynomial, its total
degree will be denoted by deg f.

Let k be an algebraic closure of k. We denote by A"(k) (or A") the n-dimensional
affine space over £, equipped with its Zariski topology.

For any I C k[X),...,X,], we denote by V(I) the affine variety of A”(k) formed
by the common zeroes of all the polynomials which belong to /. Given polynomi-
als f1,..., fs, the variety V(f1,...,fs) € A" will be called the variety defined by
S5 fse ) )

If V' is an affine variety in A"(k), we denote by /(V') the ideal in k[X,...,X,] of
the polynomials vanishing over V.

The dimension of an algebraic variety V' defined over & will be denoted by dim V.

Let V' C A" be an affine variety. We will call the minimal irreducible decomposition
of V to the representation V = U;:l C;, where, for each 1 <i <t¢, C; is an irreducible
closed set in A", and C; & C; for i # j. The varieties C; will be called the irreducible
components of V. If r=dim V, we will call the equidimensional decomposition of V
to the representation V =|J_, V; where, for each <i <r, V; is either empty or the
union of all the irreducible components of ' of dimension i.

We say that the variables Xj,...,X, are in Noether position with respect to the
variety V defined over k if the canonical morphism k[X,...,X,] — k[X1,..., X, 1/I(V)
is an integral monomorphism, where » =dim V. This condition is equivalent to the fact
that the canonical projection in the first » coordinates 7: 7 — A’ is a finite morphism
of affine varieties. Note that, if the variety V' is equidimensional (i.e., all the irreducible
components of V' have the same dimension) and the variables are in Noether position
with respect to V, then they are in Noether position with respect to each irreducible
component of V.

If ¥ C A" is an irreducible closed set of dimension r, the degree of V is, as usual,

degV:=sup{#H, N---NH.NV; Hy,...,H, affine hyperplanes
in A" such that ;N ---NH, NV is a finite set}.

For an arbitrary algebraic variety V' C A", deg V' is the sum of the degrees of all the
irreducible components of V.

1.2. Probabilistic and algorithmic tools

The algorithms we are going to consider will be described by families of arithmetic
networks over k&, which are represented by acyclic oriented graphs. The sequential com-
plexity of the algorithm is the number of nodes of its associated graph (without taking
into account the nodes representing input data). Therefore, the sequential complexity of
an algorithm is the number of arithmetic operations and comparisons between elements
of k (each operation or comparison is considered to have unitary cost).

The multivariate polynomials we will deal with in our algorithm will be encoded in
one of the following ways:

e Dense form, that is, as arrays (vectors) of elements of k.
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e Straight line programs, which are arithmetic circuits (networks without branches).
They contain neither selectors nor (propositional) Boolean operations. (For an exact
definition and elementary properties of the notion of straight line program we refer
to [8] and [9].)

e Combining both dense form and straight line programs, i.e. in dense form with
respect to some distinguished variables and their coefficients, which are polinomials
in the remaining ones, encoded by a straight line program.

The algorithm for the computation of the equidimensional decomposition of an affine
variety we describe in this paper is based on the well-known methods of effective
linear algebra which rely on well-parallelizable algorithms without divisions and on
the techniques used in [4,11] to describe the isolated points of an algebraic variety.
The main result of these works we use is the following (see [4, Section 3.4.7; 11,
Proposition 27]):

Lemma 1. Let R be a polynomial ring over k and let K be an algebraic closure of

the quotient field of R. Let f1,..., [, €R[X1,...,X,] be polynomials of degree (in

X1,...,X,) bounded by d = n given in dense form with respect to X,,...,X,. Let

V C K" denote the variety defined by these polynomials. Then, there exists an algo-

rithm of complexity bounded by d°™ that computes a linear form u= X, + --- +

InXn €EK[XY, ..., X,], an element p € R and univariate polynomials v; € R[U] (1 <i < n)

of degrees bounded by d°"™ such that:

o The linear form u separates the isolated zeroes of V.

e The coordinates x =(x1,...,x,) of the isolated zeroes of V wverify the equations
pxi =vi(u(x)) (1 <i<n).

Both p and the coefficients of the polynomials v; (1 <i < n) are polynomials in the

coefficients of f1,..., fn of degree bounded by d°™ and they can be evaluated from

them by a straight line program of length d°™.

Whenever we need to compute quotients of polynomials given by straight line pro-
grams we will use Strassen’s procedure of Vermeidung von Divisionen ([16], see also
[11]).

The algorithm we construct in this paper works under certain generic conditions
depending on parameters. The values of these parameters will be chosen randomly
(and, in this sense, we say the algorithm is probabilistic). In order to estimate the
probabilities of success of our computations we will use the following result taken
from [15, Lemma 1]:

Lemma 2. Let E be an integral domain and let M C E be a finite set. Let f be a
non-zero polynomial in E[Xy,...,X,]. Then, for randomly selected ay,...,a, € M the
probability

deg(f)

Prob (f(ay,...,a,)=0) < card (M)
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2. Modifying the input data
2.1. Changing the input polynomials

The first step of our algorithm is to define the affine variety we are considering
by means of n + 1 polynomials. Moreover, we ask these n + 1 polynomials to satisfy
certain additional conditions about dimension. This will be done by choosing random
linear combinations of the input polynomials. The existence of these combinations is
shown in the following lemma adapted from [4].

Lemma 3. Let f),..., fs €k[Xi,...,X,] be polynomials and let V = {x € k": f1(x)=0
N+ N fs(x)=0}. Then there exist tyck (1 <i<n+1,1<j<s) such that the
polynomials f,,..., f,,, defined by
f;‘:tilfl +"'+tisfs (1 <l<n+1)
satisfy the following condition:
For every h, 1 < h<n+ 1, the dimension of each irreducible component of

V(fAlwwah):{XEl;n: fl(x):()/\"’/\fh(x):o}

not being an irreducible component of V is n — h.

Proof. We are going to show the existence of the elements #,; (1 <h <n+1,1 <j <)
by induction on A.

Let 7, (1 <j <) be indeterminates over £.

If h=1,1let pc A" — V and let P, € k[Ty,...,Ts] be the polynomial

Pi=Tif1(p)+ -+ T fs(p).

Then, for every choice of #1,...,t such that Pi(¢y,...,t5)#0, fl satisfies the re-
quired condition.

Suppose now that there exist elements #; (1 <i < h,1 < j < s) satisfying the desired
conditions. Consider the variety

V(i ) ={x€k™ fi(x)=0A--- A f,(x)=0}.

Let %) be the set of the irreducible components of V( fl,..., fh) which are not irre-
ducible components of V. If €, =0, any choice of #.11,...,#.1s produces a polyno-
mial f, 41 Wwhich satisfies the required condition.
If €, +#0, for every C € 6, let pc be a point in C — V. Let P,y €k[T},...,T;] be
the polynomial
Py = [ (Tif1(pe) + -+ + Tefs(pe))-
Ce%y
It is easy to check that this polynomial is not the zero polynomial, and every point

(th411s---»thr1s) in k" such that Py i(#h411,...,8+15)F# 0 defines a polynomial fAh+l
that satisfies the desired condition. [
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Remark 4. Note that the condition defining suitable #;; (1 < j < s) is open and that,
for every h (1 <h < n), if we have chosen #; (1 <i<h,1<j<s) such that the
polynomials f 1,...,fh satisfy the conditions of Lemma 3, the condition on the suitable
the1; (1 <j <) is also open.

Moreover, if the total degrees of the polynomials f1,..., f; are bounded by an
integer d, for every & (1 < h < n+1), the degree of the polynomial P; appearing in the
proof of Lemma 3 is bounded by @”~'. Then, if we choose the elements 7; (1 <i<nt
1,1 <j<s) from a subset of £ with N elements randomly, the probability that the
polynomials f], fn 4 satisfy the conditions stated in Lemma 3 is at least H"“(l —
d"=1N) > 1-§j"+1dh L/N.

2.2. Noether position of the variables

Suppose we are given s polynomials f7,..., s €k[X,...,X,] with total degrees
bounded by an integer d > n. We denote by V' the set of their common zeroes
in A". Applying Lemma 3, by means of a random choice of linear combinations
of the input polynomials, we may suppose that we have n + 1 polynomials
fl,...,an € k[X,...,X,] of degrees bounded by d such that:

4 V(fb'“’1;+l)::V .
e For every 0 </ < n, the dimension of each irreducible component of V(f,...,

f;f ;) not being an irreducible component of V is /.

Let ri=dim ¥ and let ¥V =|J,_,V; be the equidimensional decomposition of V,
where, for every 0 <i < r, either V; =0 or dim V; =i. Note that, if / < r, the equidi-
mensional decomposition of V(fAl,...,fAnf/) is

V(fireeirfo )=V, U.. .UV, UV,

where V) =V,UZ, and Z, is either empty or an equidimensional variety of dimension
/ with no common irreducible components with V.
We are now going to choose a random change of variables such that the new
variables X,..., X, satisfy:
e The projection 7, : V, U Z, — A" defined by n,(x)=(X1,...,X,) is finite.
e Forevery / (1 </ <r—1), provided Z,, ﬂ{f;q_/ =0} #£0, the projection 7/: Zy 44
ﬂ{fn_fzo} — A defined by m/(x)=(%),...,%,) is finite.
This means that the new variables X, ..., X, will be in Noether position with respect
to the varieties ¥, UZ, and Z,,1 N{f, ,= 0} for every 1 </ < r— 1, simultaneously.
The existence of this change of variables is given by the following lemma:

Lemma 5. Let W C A" be an equidimensional variety defined over k and let ¢ be the
dimension of W. Let U;; (1 <i<n, 0<j<n) be indeterminates over k[X,...,X,].
Then there exists a polynomial G €k[U;]1<i<s — {0} with deg G <2/ deg’ W

0<j<n
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such that, if G(u;;)#0, the morphism n: W — A’ defined by
T(x) = (u10 + uniX1 + -+ UpXpy -5 Ugo + UNXY + 0 UsnXy)
is finite.

Proof. It is an immediate consequence of Proposition 4.5 and Lemma 2.13 in [12].
|

The previous lemma gives a condition to obtain free variables, which can be extended
to a whole set of variables in Noether position, with respect to an equidimensional
variety. In order to get a whole set of new variables, we are going to consider the
polynomial H:=det(U;;)1<i<n-

I<j<n
Applying Lemma 5 to our situation, there exist

e a polynomial G, with deg G, < 2r(deg(Z, U Vi))? < 2rd?"=") and,
e for each /=r—1,...,1, a polynomial G, with

deg G, <2 (deg(Zerl M {.f’\n7/ = O}))2 < 2/d2(n—/)

such that, if H(u;;). H;Zl G/(u;;) # 0, then the new variables )?i =ujo+unX,+- - -+upX,
(1 <i < n) satisfy the desired conditions.

Remark 6. Note that the condition defining suitable changes of variables is open. As
d > n, the degree of the polynomial H.[],_, G, €k[U;]1<i<n is bounded by d>.
jlisi

<jsn
Then, if we choose the elements u;; (1 <i<n, 0<;<n) from a subset of £ with

N elements randomly, the probability that the change of variables they define satisfy
the desired conditions is at least 1 — d?"/N.

3. Equidimensional decomposition
3.1. Describing equidimensional varieties

Our algorithm is essentially based on the description of any equidimensional variety
in A” as the set of common zeroes of n + 1 polynomials with bounded degrees. In
this section we are going to explain how this can be done.

Let W C A"(k) be an equidimensional variety of dimension / < n definable by
polynomials in k[X),...,X,]. Suppose that the variables Xj,...,X, are in Noether
position with respect to W (that is to say, the projection m:W — A’ defined by
n(x)=(xy,...,x,) is finite).

Given a linear form u=A4,1 Xy + - -+ + 4, X, with A,44,..., 4, €k, consider the
morphism 7, : A” — A’*! defined by m,(x)=(xi,...,x/,u(x)). The image of W under
m, is a hypersurface in A’*! and, therefore, is defined by a uniquely determined
square-free polynomial m, € k[X,...,X;, U]. Moreover, m, is monic in the variable U
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and its total degree is bounded by deg W (see [7, Lemmas 2 and 3] or [14, Propo-
sition 1]). We will call m, the minimal polynomial of u with respect to W.

Now we are going to show that W can be defined by means of the minimal poly-
nomials of n 4 1 suitable linear forms.

Lemma 7. Let W C A" be an equidimensional variety of dimension { < n. Suppose
the variables X,...,X, are in Noether position with respect to W. Then there exist
n+ 1 linear forms

wi =28 X+ 470X, (1<i<n+1)

with A( Dek (I<ig<n+1,/41<j<n) such that W is the set of common zeroes
of the mmzmal polynomlals of the linear forms u; (1 <i <n+ 1) with respect to W
evaluated in each u;, that is

W={xeck" My, (X1, X u1(x))=0,. .. ,my, (X1,...,%z, upp1(x)) =0},

Proof. We are going to show the existence of such linear forms inductively: Let
u :)LEL)IX/H + -+ Anl )X be any linear form different from zero and let m,, be
its minimal polynomlal with respect to W. Then V(m,, ):=V(m,, (X1,....X;,u1)) C A"
is an equidimensional variety of dimension n — 1 such that W C V(my, ).

Suppose that, after j steps we have j linear forms uy,...,u; such that W is a subset
of

Vimy,,...,my):=V(my, (X1,....X,u1), . omy (X, ..., X, u5)

and that each irreducible component of V(m,,,...,m,;) which is not an irreducible
component of W has dimension n — j.
Let € be the set of irreducible components of V(m,,,...,m,;) not being irreducible

components of W. If €; =0, let u;,, _)/Hl)X/H +- +A(H1)X be any linear form.
If ;# 0, for each component C € %, take a point xc € C — W.

Let m: A" — A’ be the canonical projection in the first /-coordinates. For each
C €%, consider the finite set Mc == 1(n(xc)) nw.

Take any linear form u; 7/L; " )X/H + - )(J le)X such that

uir1(x) Zujpi(xc) ¥YxeMce VCeE,.

Note that this condition implies that, for any x¢ (C € %;), the minimal polynomial
my,,, of uj,1 with respect to W, evaluated in u;,, does not vanish in xc.
Therefore, any irreducible component of

V(mul,...,muj+I )= V(mul(Xl,...,X/,ul),...,muM(Xl,...,X/, ujr1))

which is not an irreducible component of W has dimension n —j — 1. O
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Remark 8. Let us analyze the conditions to choose the linear forms stated in the

previous lemma:

e 1 can be any non-zero linear form.

e Suppose we have j linear forms uy,...,u; such that each irreducible component
of V(my,,...,m,;) not being an irreducible component of W has dimension n — j.
Following the notations of the lemma, the condition we ask the linear form u; is
[lcew, Iliene ti+1(x —xc) #0. This is a polynomial expression in WD,

with degree bounded by (deg W) *!.

3.2. Changing the base field

In this section, we are going to show how irreducible decomposition behaves when
extending the base field, providing the variables satisfy the conditions stated before. As
this situation will be considered in many different instances, we are going to explain
it in a general case.

Notation. Let S=k[Xi,...,X,]—{0}. Given a variety W C A"(k), we denote by W C
A"’(k(Xi,...,X,)) the variety defined by the ideal S~'(/(W)). Note that, if the variety
W C A"(k) is defined by an ideal J C k[X,...,X,], then W C A"/ (k(X1,...,X,)) is
defined by S~!(J).

Let 7 be an ideal in k[Xj,...,X,] and let V() be the variety defined by 7 in A"(k).
Let / be an integer such that, for every irreducible component C of V(I), dimC = /.
Suppose the variables Xi,...,X, are free with respect to each irreducible component
of V(I).

Let V({ ):U;1 C; be the minimal irreducible decomposition of V(1) in A”(k).
Then, considering the associated ideals, we have that rad(l) = ﬂﬁzl I(C) ink[X1, ..., X,].

As the variables X,..., X, are free for each irreducible component of V' (7), for every
i, 1 <i<t, SNI(C;)=0 holds. Then, localizing at S, we obtain

t
S (rad(1) =[S~ U(C))
i=1
which is a minimal prime decomposition of S~Y(rad(I)) in IE(Xl, s X[ Xra1s e Xl
Then the minimal irreducible decomposition of V(1) in the k(X,...,X,)-Zariski
topology of A"~/ (k(Xy,...,X;)) is

t
v(H=|]JC.
i=1
Note that, for every 1 <i <t, dim(C;)=dim(C;) — /.
Consider now the k(Xj,...,X;)-Zariski topology of A"~(k(X,,...,X;)). For each
i (1 <i<t),all the irreducible components of C; are of the same dimension (which is
dim(C;)). Moreover, it is easy to see that, if i # j, no irreducible component of C; is
included in C ;. In other words, given the irreducible decomposition of V()= Uf: 1 G,
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we can obtain the irredundant irreducible decomposition of V(1) over k(Xj,...,X;) as
the union of all the irreducible components of C; (1 <i < 1).

3.3. Main result
The main result of this paper is the following theorem:

Theorem 9. Let f1,..., fs €k[X1,...,X,] be polynomials and let d be an integer such
that d >n and deg f; < d for every 1 <i<s. Let V={xck" fi(x)=0A --- A
fs(x)=0} and let r =dim V. Then, there exists a probabilistic algorithm of sequential
complexity of order s°Vd°™ which computes the equidimensional decomposition of
V. the input of the algorithm are the polynomials f1,..., fs given in dense form
and its output is a straight line program of length d°"™ which computes polynomials
g;/) 0/ <1 <j<n+1) such that, for every 0 </ <r, the equidimensional
component of V of dimension ( is

Vi =fx ek ¢ (x)=0A--- A g (x)=0}.

For every 0 < / < r, the degrees ofgj/) (1 <j < n+1) are bounded by degV, < d"~’.

Proof. First, we compute 7, the dimension of V. This can be done in sequential time
sOMgOM applying the algorithm described in [4]. (This step can be avoided, as we
explain in Remark 11, but we include it here to make the algorithm easier to under-
stand.)

Now, we change the input data in the sense of Section 2. By means of a random
choice of n+1 linear combinations of the input polynomials, we may assume the variety
V is defined by n+1 polynomials of degrees bounded by ¢ which satisfy the conditions
stated in Lemma 3. Again, by a random change of variables, we may assume the new
variables satisfy the conditions stated in Section 2.2. In order to simplify notation,
we denote the new variables by Xj,...,X, and the linear combinations of the input
polynomials in these new variables by fi,..., fut1.

Summarizing, if we are given a set of N elements of £ and we can choose elements
of it randomly, we have, with probability at least 1 — (d*"/N) — S0 1(d" ' /N) = 1 —
(d* 4+ 2d™)/N (see Remarks 4 and 6), n + 1 polynomials fi,..., fus1 in the vari-
ables X,...,X, satisfying these conditions (in the following, we will call them rormal
conditions):

o V=V(f1,-es [u+1)

e For every 0 </ < n, the dimension of each irreducible component of V' (f1,...,
fu—s) which is not an irreducible component of V is /.

e The projection =,: V(f1,..., fu—r) — A" (where r=dim V') defined by =,(x)=

(x1,...,x,) is finite.

e For every j, 0<,j<r, let Z; be the union of the irreducible components of

V(f1,..., fn—;) not being irreducible components of V. Then, for every 1 </ <r—1,
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provided Z;. 1 N{f,_, =0} #0, the projection n; : Z, 1 N{fn_s =0} — A’ defined

by m/(x)=(x1,...,x/) is finite.

Let ¥ =J,_, Vs be the equidimensional decomposition of ¥ and suppose the poly-
nomials f,..., f,41 in the variables Xi,...,X, randomly obtained satisfy the “normal
conditions” stated above.

The general idea of our algorithm is the following:

In a first step, it computes polynomials defining V7, and polynomials defining Z,.
Then, in intermediate steps, it computes, for /=r — 1,...,0, polynomials defining Z,
and polynomials defining a variety V, U Y,, with Y, C U;:/ 41 Vr and dimY, < 7.
Finally, from all these polynomials, the algorithm obtains polynomials defining each
equidimensional component of V.

First step. In this step we are going to compute polynomials defining V, and Z,.
In fact, we are going to define V, and Z, by means of the minimal polynomials of
n + 1 suitable chosen linear forms with respect to V, and Z, (see Lemma 7). In or-
der to do this, we are going to consider zero-dimensional varieties in the sense of
Section 3.2:

Consider f1,..., f,—, as polynomials in k(Xi,...,X,)[Xi1,...,X]. Let k(X3,...,X,)
be an algebraic closure of k(X,...,X,) and let I7(f1,...,f,,_r) be the set of common
zeroes of f1,..., fu_y in k(X1,...,X,)""". Note that dim V(f1,..., fu—)=0 and, as
V(f1seos for) =V, UZ, then V(f1,..., fnr)=V,UZ,, where V, and Z, do not
have common irreducible components.

We are going to compute the minimal polynomials of a proper linear form with
respect to ¥, and Z,, respectively, by adapting the algorithm shown in [11, Proposition
27 and Theorem 22] (see also [4, Sections 3.4.7 and 3.4.8]). The minimal polynomials
we will obtain coincide with the minimal polynomials of the linear form with respect
to V, and Z,.

The algorithm in [11] computes a polynomial F, € k[Xi,..., X 1[Tr+1,...,T,] with
degree in the variables 7,,1,..., T, bounded by d"=) (where c is a positive constant)
such that, if F.(2,11,...,4,) #0, the linear form u= 4,1 X1+ - -+ 1,X, is a primitive
element for V(f1,..., fn_r) (that is to say, it separates the points of V' (f1,..., fn_r)).

Let u= A1 X1+ -+ 4,X, be a linear form such that F,.(4,.1,...,4,)#0. We are
going to compute its minimal polynomials with respect to V, and Z,.

First, we apply the algorithm described in [11, Proposition 27] (see Lemma 1) to
compute an element p€k[X),...,X,] and polynomials v, (U),...,0,(U)€E
k[Xi,..., X ][U], with deg,v; < d°"~"), such that the coordinates (x,1,...,x,) of the
points in V(f1,..., fn_,) verify the equations

oxi=vi(u(x)) i=r+1,...,n (D)

The sequential complexity of this step is %" and p and the coefficients of v, (U),...,
v,(U) are polynomials of degrees bounded by d°"~") given by a straight line program
of length 4%,

Note that, as ¥, C {f,—,+1 =0} but no irreducible component of Z, is contained in
{fu—rs1=0}, the points in V, are exactly the points in V'(f1,..., fn_,) wWhere f,_ i
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vanishes. Then, ¥V, is the set of common zeroes in k(X,... ,X,)n_r of the polynomials
f1s--es fu—rs fn—r+1 and these common zeroes satisfy (1).
Consider the polynomials

vr1(U) vn(U)
p T p

Fi(’)(U)::pdf[ <x1,,,,,x,,, ) i=1,....n—r+1.

We compute the dense representation of these polynomials with respect to the variable
U and obtain a straight line program of length 4% which computes their coefficients,
which are polynomials in k[Xj,...,X,].

Applying the algorithms in [11, Lemmas 11, 12] following [17], we obtain a straight
line program of length d°"™ which computes the coefficients of a polynomial p(U)
which is a multiple by a polynomial in k[X),...,X,] of

p(U) =rad(ged(F{"(U),....F,”, , (U)) € kIXi,.... XU,

n r+1

the minimal polynomial of u with respect to V,.

Using Vermeidung von Divisionen (see [16]) to divide the polynomial p(U) by its
leading coefficient, we obtain a straight line program of length d°" which computes
the coeflicients of p(U) with respect to the variable U. Note that deg p(U) < deg V..

In order to compute the minimal polynomial of u with respect to Z,, we observe
that the points in 7, are exactly those in V(fl,...,fn_,) in which f,_,;; does not
vanish.

Therefore, the minimal polynomial of u with respect to Z,. is

rad(ged(F\"(U),...,F" (U))

° n—r

rad(ged(F{(U),...,F (U),FO L (U)))

° n—r

As before, we compute a multiple g(U) of this polynomial by a factor in k[X,...,X;]
and then, we divide this polynomial by its leading coefficient. In this way, we obtain
a straight line program of length d°" which computes the coefficients of g(U)¢€
k[Xxi,...,XJ[UL
We apply the algorithm described above to n + 1 randomly chosen linear forms. If
the coefficients of these linear forms are randomly chosen from a set of N elements
of k, we have, with probability at least 1 — (1/N)((n + 1)d“"=") 4 2d"="+D)y (see
Remark 8), n+ 1 linear forms u(') ..,unrjl satisfying the conditions (in the sequel, we
will refer to them as proper linear forms conditions in step r):
e The polynomial F,, which states a condition to be a primitive element, does not
vanish in the coefficients of u”,...,u")

RS

e 7, is the set of common zeroes of the minimal polynomials of u(r) .,ufqﬁzl with
respect to Z, (evaluated in u(’) 51 le, respectively).

e V. is the set of common zeroes of the minimal polynomials of u(r) ...,qul with
respect to V. (evaluated in u( ) .,u; ll, respectively).

Then, supposing that the change of variables and the linear combinations of the input
polynomials satisfy the “normal conditions” and that the linear forms satisfy the “proper
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linear forms condition in step 7 stated above, we obtain polynomials p(lr), cees PEQ , and
(r) (r) h th
qy 5--->9, such that

V,={x ek p(,r)(xl,...,x,, u(,r)(x)):O Ao A pflﬁzl(xl,...,xr, uf;)l(x))ZO}

Z, = {xElE”: q(lr)(xl,...,x,.,u(lr)(x))zo Ao A q,(f_zl(xl,...,x,.,u,(qﬁgl(x))ZO}

(see Lemma 7).

Intermediate steps. In these steps, we are going to compute for each /=r—1,...,0
polynomials which define certain components of V(f1,..., f,—s) which will be used
later to obtain the equidimensional decomposition of V.

Recall that, for each 0 < /7 < r— 1, the equidimensional decomposition of V' ( f1,...,

fnff) is
V(fl;""fl‘l—/):VrU"'UV/+1 UV/I

where V) =V,UZ, with dimV;=j or V;=0 (/ < j <r) and Z, is either empty or an
equidimensional variety of dimension / with no common irreducible components with
Vy.For £/ =r—1,...,0, we are going to compute, from the polynomials f,..., f—s+1,
a set of n+ 1 polynomials defining Z,. Simultaneously, we are going to compute, from
the polynomials defining Z,.; and the polynomials f1,..., f,—s41, a set of n+ 1 poly-
nomials defining a variety V,UY, with ¥, C U;:/ 41 Vi and dim ¥, < /. Moreover, the
polynomials we are going to compute are minimal polynomials of suitable chosen linear
forms with respect to certain equidimensional varieties evaluated in the corresponding
linear forms.

Let / be fixed, 0 </ <r—1.

Consider the variety defined in 4" by the polynomials f1,..., f,_,. We have

V(fisois faee)=V:U--- UV, UV, UZy,

where Z, is either empty or an equidimensional variety of dimension /.

Let I7(f1,...,fn,/) C A" /(k(X,,...,X7)) be the affine variety defined by f7,...,
fn—s considered as polynomials in k(X1,..., X )[Xst1,--., Xl

Then,

V(f1reoosfnot)=V, U UV, UV, UZy,

where, for every / < j<r, V;=0 (if V;=0) or dimV,=dim¥V; — /, and Z, =0 or
dimZ, =0 (see Section 3.2).

We are going to consider the isolated points of  F(fi,...,
fn_rs) to get information about V, and Z,. We will adapt the algorithm given for the
computation of the minimal polynomials in the first step (that is, the zero-dimensional
case) to this more general situation. Again, our algorithm will be based on the tech-
niques described in [11].

The algorithm in [11, Proposition 27] deals with a linear form which is a primitive
element for the isolated zeroes of f1,..., f,—,. In order to obtain such a linear form, it
computes a polynomial F, € k[X1,...,X/[T/+1,---, ] such that, if Fy(As41,...,4,)F#0
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then the linear form u= A, 1 X, +- - -+ 1,X, separates the isolated points of I7(f Lyeeos
fn_r). The degree of F, is bounded by d“**) where c is a positive constant.

Let u=A; 1 X;41+- - -+4,X, be a linear form such that F,(A/41,...,4,)#0. Then, us-
ing the algorithm in [11, Proposition 27] (see Lemma 1 above), we are able to compute
an element pe€k[Xi,...,X,] and polynomials v, ((U),...,0,(U)€k[Xi,...,X/][U],
with degy (v;) < d°"=7), such that the coordinates of all the isolated zeroes of
V(f1,.... fu_s) verify the equations

oxi=vi(u(x)) i=/{+1,...,n. 2)

The sequential complexity of this step is @°” and p and the coefficients of v, (U),...,
v,(U) are polynomials of degrees bounded by d°"=) given by a straight line program
of length g%,

The computation of the minimal polynomial of u with respect to Z, follows as in
the first step:

Let us consider the polynomials

: U (U
fﬁ“(U);qﬂj;(xb.”,xﬁl”+“ ) w®)

> i=1,...n—(+1. 3)

p 7 p
Taking into account that 7, is the set of points in I7(f1, wevs fu_¢) where f,_,.1 does
not vanish, and all the points in 7, are isolated zeroes of f1seees fu—s, we conclude

that
~ rad(ged(R ), FO,(U))
rad(ged(F{(U),....,F" (U),F,, (U)))

(U) € k(X,,..., X)U]
is the minimal polynomial of u with respect to Z,.

The “normal conditions” imply the variables are in Noether position with respect to
Z; and, therefore, the minimal polynomial ¢(U) of u with respect to Z, must be in
kXy,.... X/ U]

In order to obtain g(U), we compute first a multiple of it by a factor in k[X7,...,X/],
and then we obtain ¢(U) as the quotient of the (exact) division of this polynomial by
its leading coefficient. The polynomial ¢g(U) is given in dense form with respect to U
and its coefficients, which are polynomials in k[Xi,...,X/], are given by means of a
straight line program of length 4.

We would like to get polynomials defining 7, as we did in the first step, but the
same procedure may lead to the appearance of extraneous components. In order to
control somehow the sets where the polynomials we compute vanish, we will take into
account that the irreducible components of V' in V, are included in Z, ;.

Let q'l(./“)(X],...,Xn):qj””()(],...,X/+1,u§+1) (1<j<n+1) be the computed
polynomials defining Z,, . Consider them as polynomials in k(Xy,...,X/)[Xsi1,...,X]
and let Z~/+1 be the variety they define in k(Xl,...,X/)n_". As V; C Zs4, the points
in V, are also points of ZNHI. On the other hand, the points in V, are the isolated
points of V(f1,..., fu_s) Where f,_,.1 vanishes.

Therefore, the isolated points we are looking for are some of the common zeroes of

Stooos fuets foeri1 in Zyyy.
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The points in v, being isolated zeroes of f,..., f,—/, satisfy Eq. (2). Consider the
polynomials

, y U (U
Q;/+l)(U)_pdegq;/+')qj(/’+1)(xl,.”,x/’vf—o-l( ),...,U( )) R

p p
(4)

and let

p(U) =rad(ged(F(U),...,F\”, (U), 0 W),....0" "))

n+1

The monic polynomial p(U)€k(Xy,...,X,)[U] satisfies that p(u(x))=0 for
every x € V,. Moreover, if I'ek(Xy,...,X,) is a root of p, then I'=u(x) for some
xin Z, NV, U---UF)).

Let W, be the union of the irreducible components of dimension Z of Z,.; N (V, U
- UVy). As

V(fiseoos fa—e—1)=V, U--- UV UZry

V(f1seois foet—ts fuee)=V:U--- UV, UV, UZ

holds, all the irreducible components in W, are also irreducible components of Z,,; N
{fn—s=0}. Therefore, the variables are in Noether position with respect to W,.

Let W, be the corresponding variety in A”~/(k(X,,...,X,)). The monic separable
polynomial p(U) € k(Xi,...,X,)[U] satisfies that, if I' € k(X1,...,X;) is a root of p,
then I' =u(x) for some x in W ,. It follows that p(U) is the minimal polynomial of u
with respect to a variety included in W, (see Section 3.2). Let m, € k[Xi,...,X/][U]
be the minimal polynomial of u with respect to W,. Then p(U) is a polynomial in
k[Xi,...,X/][U] which is a factor of m,,.

As p(U) evaluated in u vanishes in the isolated points of ¥,, the minimal polynomial
of u with respect to ¥, divides p(U) and therefore

p(Xla"':Xfa M(X/+la"'7)(n))

vanishes over V.

As before, we compute first a multiple of p(U) by an element in k[X],...,X,] and
then, the division of this polynomial by its leading coefficient. We obtain the dense
representation of p in the variable U and its coefficients given by a straight line
program of length d°™,

Summarizing, given a linear form u= 1,1 X, 11+~ - -+ 4,X, such that F/(As1,...,4)
#0, we are able to compute the minimal polynomial of u with respect to Z, and a
polynomial p(U) which evaluated in u vanishes on V, and is a factor of the minimal
polynomial of u with respect to W,. This can be done in sequential time 4%,

We apply the procedure described above to n + 1 randomly chosen linear forms. If
we choose their coefficients from a set of N elements of £ randomly, we have that
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they satisfy the proper linear form conditions in step ¢, that is to say:
e F, does not vanish on their coefficients,
e 7, is the set of common zeroes in A" of the minimal polynomials of the n 4 1
linear forms with respect to Z, (evaluated in the corresponding linear forms),
e I/, is the set of common zeroes in A" of the minimal polynomials of the n + 1
linear forms with respect to V, (evaluated in the corresponding linear forms), and
e W, is the set of common zeroes in A” of the minimal polynomials of the n + 1
linear forms with respect to W, (evaluated in the corresponding linear forms)
with probability at least 1 — (1/N)((n + 1)d“?=") 4 4d"=")"+Dy (see Remark 8).
The first condition implies we can apply the algorithm in [11] to the chosen linear
forms. The second one states that the » + 1 minimal polynomials computed for Z,
evaluated in the respective linear forms define it. Finally, the third and fourth conditions
will allow us to construct, from the polynomials computed in the different steps, a set
of n+ 1 polynomials defining V.
Let u(lf),. EQI be the linear forms chosen and let p(/) . prl and q(l) ,ql(qi)l
be the polynomlals computed by the algorithm.
Then, if the “normal conditions” are satisfied, and the linear forms satisfy the con-
ditions stated above, we have

:{xel;n: q(lf)(xb . x/sull)(x)) 0 . 7qn+1(x17 sy XY thl(x)) O}

We are now going to characterize the set of common zeroes of the polynomials

POX XD Xty X)), DO K Xt (X1, X)),

Let m(/) 5121 be the minimal polynomials of u(” .,qul

we explalned before, for each 1 <j<n+1,

with respect to W,. As

Vv, C {xelE": p}/)(xl,...,x/,u;-/)(x))zo} C {er”: m;/)(xl,...,x/, uj-”(x))zO}.
Therefore
V,C{xek™ O(x () =0A - ) (x xnul) (x)) =0}
(= - P Iy 23431 n+1 Is- AL |
C{xek™ m(f)(xl, CXp, Uy )(x)) ONA---A m( ) (1, x/,ufli)l(x)):O} =Wy,.
As V, and W, are both equidimensional varieties of dimension #, and W, C UZ:/ v
we conclude that the set of common zeroes of the polynomials
p(ll)(Xl,...,X{,u(l/)(X/+1,...,X,,)), . ,pglér)l(Xl,...,X/,ML?I(X/JH,...,X"))

is a variety ¥, UY,, where Y, C | J,_,., V4 and dim Y, </.

Final steps. In these steps, we are going to obtain, for /=r — 1,...,0, polynomials
defining each equidimensional component V; of V. These polynomials will be computed
using the polynomials obtained in the previous steps.

Fix / <r. Let u=u{) (1 <j<n+1) and let p(U)=p\(U)€kXi,...,X/|[U]
be the polynomial previously computed for u, which is the minimal polynomial of the
linear form u with respect to a variety formed by the points in 7, and some
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other points belonging to 17/+1U- .UV, Let p €klXi,...,X/] and let v, 1(U),...,v,(U)
€ k[X1,...,X/][U] such that (2) holds.

To obtain the minimal polynomial of u with respect to 7, we are going to compute
the factor of p(U) corresponding to the points in V. U---U V.

For every /+1 <i <r, let pl’)(Xl,...,X,,):pﬁ")(Xl, X,,u(')) (1<j<n+1)be
the previously computed polynomials such that

ek )=0n--A P (x)=0}=V,UY,

with ¥; C U _in Y
We cons1der the polynomials

. (i 7 (. U nU
p;')(U):pdegpﬁ)ﬁﬁ”(Xl,...,X/,””‘( ) )) j=ln+l

) T,
and the polynomials defined in (3) and (4), and, applying the same techniques used
before, we compute a polynomial /;(U ) which is a multiple, by a factor in k[X,...,X/],
of

rad(ged(F\(U),... F;”/H(U),QY“)(U),...,Q“*”(U),Pﬁ”(U), PO ().

n+1
From the polynomials 4; (/ + 1 < i < r) we obtain a multiple of
h(U):rad< II h,-(U)) .
i=/+1

This polynomial i(U) is the factor of p(U) corresponding to the points in ¥, U
U [7’

Finally, we compute a multiple of the polynomial p(U)/A(U) and the polynomial
G(U) which is the quotient in the division of this polynomial by its leading coefficient.
The polynomial G(U) is exactly the minimal polynomial of u with respect to V,, and
therefore, its total degree is bounded by deg V.

All this procedure can be done in sequential time d°(.

Applying this procedure to the n + 1 linear forms u(i) qul

polynomials G(l )(U )y .- G(/)I(U ) associated to them. Then, if the “normal conditions”

we obtain the n + 1

hold, and ”(1/)’---’”51?1 verify the “proper linear forms conditions in step /”, the poly-
nomials

({) G(/)(X 9X/:u§'/)(X/+la"'aXn)) ]:199n+ 1
satisfy
Vi={xek" ¢’(x)=0A---Ag") (x)=0}.

n+1

Note that the whole sequential complexity of this algorithm is bounded by s%)gO,
(|

Remark 10. Suppose we are given a random process to select elements from a fixed
subset of N elements of k. Then, using this process to obtain the linear combinations of
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the input polynomials, the change of variables and the linear forms used in each step,
the probability of success of our algorithm will be at least 1 — (cld”2+” +de D) N
where ¢; and ¢, are constants.

Remark 11. The computation of the dimension of the variety V' is not necessary:
supposing the variety V' # A", we can start our algorithm at the instance n — 1 instead
of the instance r=dim V. The sequential complexity in this case will be of order
(n+ 1)(2s — 1)d" + d°m,

If the input polynomials are given by a straight line program of length L, then
the sequential complexity of our algorithm is of order (L 4 (n 4 1)(2s — 1))°(Dgo.
Moreover, if we only want to compute polynomials defining V,, the equidimensional
component of V' of dimension /, the sequential complexity is of order (L + (n — £ +
1)(2s — 1))0Mgon=7),

Irreducible decomposition. Let k be a field and let k be an algebraic closure of k. We
can consider A"(k) with the Zariski topology induced by polynomials with coefficients
in £ (i.e. the closed sets are the sets of zeroes of polynomials in k[.X,...,X,]). There
is a well-known notion of irreducible variety associated to this topology and, therefore,
a notion of unique irreducible decomposition of varieties over k.

Provided we are given an efficient algorithm to factorize polynomials in k[X1,...,X,]
given by straight line programs, our algorithm can be adapted to obtain from polynomi-
als f1,..., f; €k[X1,...,X,] defining a variety V, the k-irreducible decomposition of V.
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