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Abstract 

We prove that for each P-group G, the topological space Spec(G) satisfies a condition ldtu. 
Generalising a previous construction of Delzell and Madden we show that for each nondenumer- 
able cardinal there is a completely normal spectral space that is not homeomorphic to Spec( G) 
for any d-group G. We show also that a stronger form of property ldw, called Id, suffices to en- 
sure that a completely normal spectral space is homeomorphic to Spec(G) for some /-group G. 
@ 1999 Elsevier Science B.V. All rights reserved. 
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0. Introduction 

By a generalized spectral space we understand a topological space X 

following properties: 

(SO) X is To, i.e., for each pair of distinct points of X, at least one 

neighborhood not containing the other. 

fulfilling the 

has an open 

(Sl) The set ED(X) of quasi-compact open subsets of X is a lattice under union and 

intersection, and constitutes a basis for the topology of X. 
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(S2) The space X is sober, i.e., if a nonempty closed subset F is not the closure of a 

singleton {x}, then there are closed sets Fl, F2 such that F = Fl U Fz and Fl #F, 

fi#F. 

Quasi-compact generalized spectral spaces are known in the literature as spectral 

spaces. 

A generalized spectral space is called completely normal if whenever points x and 

y are in the closure of a singleton {z}, then either x is in the closure of {y} or y is 

in the closure of {x}. 

Let G be a lattice-ordered abelian group, or d-group for short. It is well known (see, 

for instance, [2, Ch. lo]), that the set Spec(G) of prime L-ideals of G equipped with 

the topology having as a basis the sets 

i={PESpec(G)/g$!P}, for gEG 

is a completely normal generalized spectral space. This space is quasi-compact if and 

only if G has a strong order unit. 

Moreover one has [2, Proposition 10.1.31 

(IL) The lattice of e-ideals of an /-group G is isomorphic to the lattice of open 

subsets of Spec(G). 

In this paper we prove (Theorem 2.2) that for each e-group G, Spec(G) satisfies a 

topological condition that we call (Idw). Moreover, we show that each nondenumerable 

set admits a structure of a completely normal spectral space not satisfying Property 

(Ido). In other words, we show that from each nondenumerable cardinal we can obtain 

an example of a completely normal spectral space that is not homeomorphic to Spec(G) 

for any e-group G. In this way we simplify a previous construction of Delzell and 

Madden [ 81. 

We also show (Theorem 3.3) that a stronger form of Property (Ido), called (Id), 

suffices to ensure that a completely normal generalized spectral space is homeomorphic 

to Spec(G) for some e-group G. Our proof is based on the properties of the Priestley 

power of a totally ordered group on a completely normal generalized spectral space. 

These Priestley powers were introduced in [9] as a common generalization of Boolean 

[3, Ch. IV, Section 51 and Hahn [5] powers of totally ordered groups. Our proof of 

Theorem 3.3 shows that each completely normal generalized spectral space X satisfy- 

ing the (Id) property is homeomorphic to the spectrum of the Priestley power of any 

nontrivial totally ordered archimedean group over X. On the other hand, in Section 5 

we construct an e-group G such that Spec(G) does not satisfy Property (Id). 

In Section 4 we give a new proof of the well-known characterization of those posets 

that are induced by Spec(G) for some e-group G. 

In the definition of Priestley powers an important role is played by the patch topology 

over a generalized spectral space. For the convenience of the reader, the relations 

between the spectral and the patch topologies needed in this paper are given in some 

detail in Section 1. 
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1. Generalized spectral spaces 

Let X be a generalized spectral space. The sets of the form U\ V, for CJ, V in D(X) 

form a basis for a Hausdorff topology on X, called the patch topology on X (see [ 1 I, 

141). Whenever we refer to topological properties such as open, quasi-compact, etc.. if 

we do not specify which topology on X we mean, then we shall mean the original (so- 

called specttwl) topology, and not the patch topology (unless these topologies happen 

to be the same). 

The next lemma is in the folklore of the theory of spectral spaces. For lack of a 

precise reference. we give a proof of it. 

Lemma 1.1. Let X he u topological space such thut the quasi-compact open subsets 

ure closed under ,finitr intersection and ,form a basis ,fbr the open .sets. Then the 

follo~~~img ore rquicalmt: 

(i) X is sober. 

(ii) Each quasi-compact open subset ofX is compact in the patch topology. 

(iii) If’%’ is u collection of quasi-compuct open subsets qf X and F is a closed sub- 

set qfX such that the collection ?? u (F) I ICE.S the ,finite intersection proper!,., 

then F n n % # 8. 

Proof. Suppose (i) holds true and let [J be a quasi-compact open subset of X. The 

intersections of U with the quasi-compact open and with the closed subsets of 

X form a subbasis for the closed sets of U as a subspace of X with the patch 

topology. Therefore, the patch-compactness of U will follow if every collection % 

of closed subsets and quasi-compact open subsets of X such that U E 55 and % is 

maximal with respect to having the finite-intersection property, has a nonempty in- 

tersection (cf. [Il. Theorem 11). Let % be such a collection, and let ‘to denote the 

subcollection of % formed by the elements that are closed in X. Note that %(I # G?, 

because X E %o. Let FO = n %?,I. For each quasi-compact open V E %, {U n V P F 1 

FE x0} is a collection of closed subsets of the quasi-compact space U f’ V with 

the finite intersection property. Therefore U n V n Fo # d? for each quasi-compact open 

V E %. In particular, fi, # 0, and the maximality of ‘G implies that Fo cannot be 

the union of two proper closed subsets. Hence, by (i), there is a z EX such that 

F;, = {z}, and it is easy to check that 2 E n ‘6. This shows that (i) implies (ii). 

To prove that (ii) implies (iii), suppose that (ii) holds, and let $5 be a collection 

of quasi-compact open subsets of X and F be a closed subset of X such that the 

collection % u {F} has the finite intersection property. We may assume % f 117. 

Take c/o E %. Then x0 := {UO f’F n U I U E K’} is a collection of patch-closed sub- 

sets of the patch-compact UO, whence 0 # n %,J = F rl n %. Finally, to prove that 

(iii) implies (i) assume that (iii) holds, and let F be a nonempty closed subset 

of X. Suppose that F is not the closure of a singleton {x}. Then for each x E F 

we can find a quasi-compact open U, such that x 4 U, and U., fl F # 0. Since 

~11 nvEF U, = 0, by (iii) there are a finite number of points in F, say x1,. .x,, such 
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that F=(Ffl(X\U,,))U ... U(Ffl(X\Uxn)), and F is a finite union of proper closed 

subsets. 0 

Generalized spectral spaces were introduced by Stone in 1937 [ 151 with the aim 

of extending to distributive lattices his celebrated theorem on the representation of 

Boolean algebras. To be precise, he considered topological spaces satisfying properties 

(SO), (Sl) and (iii) in Lemma 1.1. 

The next proposition establishes the connections between general spectral spaces and 

distributive lattices with smallest element in the way most relevant to the purposes of 

this paper. 

For each topological space X, the set of open subsets of X is a distributive lattice 

under union and intersection, which we denote by Co(X). 

Proposition 1.2. The generalized spectral spaces X and Y are homeomorphic if and 

only if the lattices O(X) and O(Y) are isomorphic. 

Proof. The “only if” part is trivial. To prove the “if” part, observe that the lattice 

O(X) uniquely determines the sublattice D(X) of quasi-compact open sets. Hence, 

if the lattices 0(X) and 0(Y) are isomorphic, then the lattices D(X) and D(Y) are 

isomorphic, and by a classical result of Stone [ 151 (see also [ 1, Ch. IV] or [ 10, Section 

1 l]), we obtain that the spaces X and Y are homeomorphic. 0 

The following result is an immediate consequence of the above proposition and 

Property (IL). 

Corollary 1.3. Let G be an e-group and X be a generalized spectral space. Then 

X is homeomorphic to Spec(G) if and only if Lo(X) is isomorphic to the lattice oj 

e-ideals of G. 

Given a subset A of a partially ordered set (X, I), the initial (final) section of A is 

the set AL:={xEXIX 5 a for some aEA} (AT:={xEXIa < x for some aEA}). 

A subset of X is called decreasing (increasing) provided it coincides with its initial 

(final) section. 

A root system is a partially ordered set such that the final section of each of its 

elements is totally ordered. 

If X is now a generalized spectral space, then X is TO, so that the relation defined 

by x < y if and only if y belongs to the closure of the singleton {x} (x, y EX), is a 

partial order relation, called the specialization (partial) order. 
Note that a generalized spectral space X is completely normal if and only if X, 

endowed with the specialization order, is a root system. 

It is well known and easy to check that for each /-group G, the specialization order 

of Spec(G) coincides with the set theoretical inclusion of prime /-ideals of G. 

In what follows, we shall consider all generalized spectral spaces as being equipped 

with the specialization order. Then for each subset A of a generalized spectral space 
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X, A J. (A 1‘) will always mean the initial (final) section of A in the specialization order 

of X. Analogously, we shall say that A is decreasing (increasing) if it is decreasing 

(increasing) in the specialization order of X. 

Note that the open subsets of a generalized spectral space are decreasing and the 

closed subsets are increasing. 

Spectral spaces equipped with the patch topology and the specialization order are 

called Priestlcjy spucrs (see [7, 141). 

Lemma 1.4. Let X he u gmrralized spectral space. An open (closed) set in thr putch 

topology of’X is open (closed) in the spectral topology if und onl?] f it is rkreasinq 

(iwreasing ). 

Proof. We already noted that the open sets in the spectral topology are decreasing. 

Suppose that Y C X is open in the patch topology and decreasing. We want to show 

that for each x t Y, there is WE D(X) such that x E WC Y. Since Y is open in the 

patch topology, there are U, V in D(X) such that x E U\ V C: Y. If U 2 Y. we can 

take W = U. Otherwise Z := U n (X\Y) is nonempty and compact in the patch topol- 

ogy. Let t E Z. Since Y is decreasing, t $ x, and then there is W, E D(X) such that 

x E W, and t @ W,. By the patch-compactness of Z we conclude that there is a finite 

number of elements in Y, say tl,. . . , tn such that Z i (X\&, ) U . . U (X\ W,,,). and we 

can take W = U n w:, f? n P&,. To complete the proof note that A is closed in the 

patch topology and increasing if and only if X\A is open in the patch topology and 

decreasing. I! 

The following property can be easily proved (see [13. p. 5091): 

(IFC) Let X be a generalized spectral space. If A C X is compact in the patch topology, 

then the initial and final sections of A are both closed in the patch topology. 

We shall consider generalized spectral spaces X satisfying the following property: 

(Id) For CJ, V in D(X), the set (U\V) 1 is quasi-compact open. 

Property (Id) ~ which stands for “interior-decreasing” ~ has a nice lattice theoretical 

interpretation. 

A genrrali~rd op-Heytiny algebra is a lattice L such that, for each a, h E L, there 

exists the element 

rr*h:= min{cluVc > b} 

By dualizing an argument on p. 174 of [l], one obtains that such a lattice L is neces- 

sarily distributive, and has a smallest element 0 := a * a, for any a E L. 

An op-Hryting algebru is a generalized op-Heyting algebra having a greatest 

element. 

Observe that the order duals of these lattices are, respectively, the relatively pseu- 

docomplemented lattices and the Heyting algebras (see [l, Ch. IX]). 
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A generalized spectral space X satisfies property (Id) if and only if the lattice D(X) 

is a generalized op-Heyting algebra. Indeed, if U, V E D(X), then it is easy to check 

that U * V must be defined as (V\U) 1. 

Since the sets of the form U\V, with U, V in D(X) constitute a basis for the open 

sets in the patch topology, we have the following property: 

(PI) A generalized spectral space X satisfies property (Id) if and only if the initial 

sections of patch-open sets are open. 

We are going to close this section with a class of examples of completely normal 

spectral spaces that will play an important role in the rest of the paper. 

Example 1.5. Let 2 be an infinite set, and CI, p be two distinct elements not belong- 

ing to Z. We shall denote by S(Z) the spectral space obtained by equipping the set 

Z U {cc, fi} with the topology having the following open sets: 

(1) All subsets of Z, 

(2) All sets of the form Y U {a}, where Y is a cofinite subset of Z, and 

(3) All sets of the form Y U {a, /I’}, where Y is a cofinite subset of Z. 

Since for each x E Z u {p}, the singleton {x} is closed, and the closure of {M} is {c(, /?}, 

S(Z) is a completely normal spectral space. The quasi-compact open sets are the finite 

subsets of Z and the sets of the forms (2) and (3). Since ((Z U {a, p})\(Z U {M})) I 

= {r, b}, the space S(Z) does not satisfy Property (Id). 

2. The property (Ido) 

In this section we are going to consider a weaker form of Property (Id), which we 

call Property (Idm). 

We are going to use the following notation. For each element g of an &-group G, 

i := Spec( G)\@ = {P E Spec( G) 1 g E P}. 

Lemma 2.1. Let G be un abelian e-group. For any g, h E G+ there exists u sequence 

(gn)n E (,, C G+ such that 

and 

Proof. For each n E co, define 

gn = (g - nh)+. 

Since for all nEo, Pci and P$in imply 0 5 g IgVnh=g,+nhEP, one has that 

ini; 2 $,, and since each 4, is a decreasing set, it follows that (ini) J C finErr, $j,. 
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To prove the other inclusion, suppose that P C$ (4 f’h) 1. We claim that 9 belongs to 

the P-ideal J generated in G by P and h. Indeed, if y $! J, then there would be a 

prime t-ideal Q such that J C Q and 9 6 Q, and this would imply that P C: Q E .il n i, 

a contradiction, 

Since q t J, there are p E P+ and IZO E o such that 0 < 9 I pfnoh, and this implies 

that qno = (q - nob) V 0 < p V 0 = p E P. Therefore P @ i,,, > n,,,,,, cj,. 0 

Since U E KD(Spec(G)) if and only if U = i for some .q E G, one has the following 

theorem. 

Theorem 2.2. For each e-group G, the completely normal generulized spectral .spucv 

Spec( G) satisfies the following condition: 

(Ido) If U and V are quasi-compact open subsets of X, then there is a sequence 

{ Wl7LlEW of quasi-compact open subsets of X such that 

W” 2 w, 2 2 w, 2 w,,, 2 . . 

and 

(u\V)L = n w,. 
,I E 01 

It is easy to check that the completely normal spectral space S(Z) constructed in 

Example 1.5 satisfies property (Ido) if and only if Z is a denumerable set. Hence 

when Z is nondenumerable, the space S(Z) is an example of a completely normal 

spectral space that is not homeomorphic to Spec(G) for any /‘-group G (cf. the example 

given by Delzell and Madden [S]). 

3. Priestley powers 

Let (AC, <) be a root system and H be a totally ordered abelian group. Given a 

function f: X + H, define its support as 

suPP(f)={xEXI f(x)# 01. 

We shall need to consider also the following subsets involving the maximal elements 

of supp(f): 

ms(.f) := {x E supp(f) 1 for each .Y E X, if y >x, then f(y) = 0}, 

ms+(f) := {x E ms(f) ( f(x)>O}, m-(f) := {x E Wf) I .f‘(x) CO}, 

SUPP+(~):= (ms+(f) .L)n ~~PPUY and SUPP-W:= (r=-(f) .L)n SUPPU'). 

Recall that the Hahn power of H oUer X, denoted by V(X, H), is the k-group of all 

functions f :X + H such that supp(f) satisfies the ascending chain condition, with 
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addition defined pointwise and with the lexicogruphic order, i.e., j.>O if and only 

if ms+(f) = ms(f) (see [5; 2, p. 27; 6, Theorem 51.31). Recall also that for each 

f E V(X, H) one has: 

(1) supp(f+) = supp+( j’) and f+(x) = f(x) for each x E supp(f+) 

(2) supp(f-) = supp_(f) and f-(x) = - f(x) for each x E supp(f-). 

Let X be a completely normal generalized spectral space, and let H be a totally 

ordered abelian group. The set of all continuous functions with quasi-compact support 

from X, endowed with the patch topology, to H, endowed with the discrete topology, 

is a group under pointwise addition, which we denote by Cont&H). The set X 

equipped with the specialization order is a root system, and it follows from Lemma 3 

(i) of [9] that for each f E Conto(X, H), supp(f) C ms(f)J. Then one can define the 

lexicographic order on Conto(X,H), to obtain an ordered group. This ordered group is 

called the Priestley power of H over X (see [9] for details). 

Proposition 4 in [9] asserts that Property (Id) implies that Conto(X,H), ordered 

lexicographically, is an e-group. More precisely, the proof there shows that if Property 

(Id) holds in X, then for each f E Conto(X,H), supp+(f) is compact open in the 

patch topology of X. This implies, using Lemma 1 (ii) (the “patchwork property”) of 

[9], that the function J“:X 4 H defined by the stipulation 

if x E supp+(f), and 0 

otherwise, 

is the supremum of f and 0 in the lexicographic order of Conto(X,H). From this one 

concludes that Conto(X, H) is an e-group that satisfies conditions (1) and (2). 

Note that since /f 1 = f+ + f -, it follows from (1) and (2) that 

(3) for each f E Conto(X, H), supp( Ifl> = supp( f ). 

Suppose that the compact open sets in the patch topology of X satisfy the ascending 

chain condition. If Property (Id) hold in X, then for each f E V(X,H)n ContO(X,H) 

we have that f VV 0 and f VC 0 are both given by (l), where VV and VC de- 

note, respectively, the join operation in V(X,H) and in Conto(X,H). Hence we have 

that when the compact open sets in the patch topology of X satisfy the ascending 

chain condition, Property (Id) guarantees that the lattice structures of the Priestley 

power Conto(X,H) and of the Hahn power V(X, H) are compatible in the following 

sense: 

(C) If f, g are in V(X, H) n Conto(X, H), then f VV g = f VC g. 

Remark. As a matter of fact, if H # (0), then Property (Id) is equivalent to the property 

that for each f E Conto(X, H), supp+( f) is compact open in the patch topology of X. 

Indeed, suppose that this property holds, and let U = V\ W, where V, W are quasi- 

compact open subsets in the spectral topology of X. Define f: X --) H by the following 
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stipulations, where a denotes a positive element of H: 

.f(x)= “_ 1 
if xE u, 

a ifxrV\U, 

0 if x6 V. 

It is plain that ,f’ E Conta(1, H), and since every maximal element of U is a maximal 

element of V, we have that ms+(,f) is exactly the set of maximal elements of U. 

Therefore, supp+(f) = (ms+(f) J) n supp(f) = U J, fl V = ZJ 1. Then the hypothesis 

implies that C’J is compact open in the patch topology of X. Since U j, is decreasing, 

it is also open in the spectral topology, proving Property (Id). 

The next example shows that in the absence of Property (Id), the lexicographic order 

can define a lattice structure on Conta(Z, H) that is not compatible with V(I, H). 

Example 3.1. Let X = S(w) (see Example 1.5). It is obvious that all subsets of X 

satisfy the ascending chain condition with respect to the specialization order. If ,f’, .I/ 

are in Conta(X. Z), then f(x) > y(x) for all x E X if and only if S(n) > g(n) for all 

n e o and f(p) > q(,B). Therefore, the lexicographic order coincides with the pointwise 

order of functions, and Conta(X, Z) is an t-subgroup of the power e-group Zx. Let 

,f‘:X 4 Z be defined by the prescription 

.f(x>= ’ i 
if x = b, 

-1 if xEwU{cc}. 

One has that ,I’ E Conto(X, Z) f’V(X, Z), but supp(f’ Vc 0) = {B} and supp(f Vv 0) = 

{% B). 

Given a generalized spectral space X, we denote by F(X) the lattice formed by the 

closed subsets of X, ordered by inclusion. 

Lemma 3.2. Let X be a completely normal generalized spectral space satisfying con- 

dition (Id), and H be a nontriviul archimedean totally> ordered group. Ij G denotes 

the Priestley po\,ver Cont&Y,H), then the map 

T uJ( T) = {g E G / g(x) = 0 for each x E T} 

dcjines an anti-isomorphism of the lattice .9(X) onto the lattice .9(G) qf’ /-ideals 

qf G. The inverse anti-isomorphism is given by 

I~Z(I)={xEXIf(x)=O Jbr ruch .f El}. 

Proof. Throughout this proof, we consider X endowed with the patch topology. There- 

fore open will mean open in the patch topology, and similarly for closed and compact. 

Then by Lemma 1.4 the elements of F(X) are the closed increasing subsets of X. 
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Since the topology of H is discrete, it follows that supp( f) is open for each f E G. 

Then by properties (IFC) and (PI) one has that 

(4) supp(f)J is closed and open for each f E G. 

Choose a strictly positive element a E H. For each compact open set V, fv will 

denote the function taking the value a >O on V and 0 on X\ V. 

Let S, T E Y(X). It is plain that J(S) is a subgroup of G. Suppose that 0 < f E J(S), 

and that 0 5 g $! J(S). Then there is x E ms(g) n S, and since S is increasing, x $ y 

for each y E supp( f ). Hence x E ms(f - g), and f(x) -g(x) = -g(x) < 0, i.e., g $ f. 

Since by (3) f EJ(S) if and only if IfI EJ(S), we have shown that J(S) is absolutely 

convex. It is obvious that S C T implies that J(T) C: J(S). Hence we have proved that J 

is an order-reversing mapping of p(X) into 4(G). 

Let Z, J E Y(G). It is plain that Z(Z) is closed in X. Then to prove that Z(Z) E 9(X) 

it is sufficient to show that Z(Z) is increasing. Let s E Z(Z) and suppose that there is 

t EX such that t >s and t 4 Z(Z). Then there is g E I such that g 5 0 and t E supp(g). 

By hypothesis, s 4 supp(y) and, since supp(g) is quasi-compact and the quasi-compact 

open sets form a basis of the patch topology of X, we can find a quasi-compact open 

set U such that s E U and U rl supp(g) = 0. Since the patch topology is Hausdorff, 

all compact sets are closed. Hence by (4) V := U n (supp(g)l) is a closed and open 

subset of the compact set U. Therefore V is a compact open set containing s. It is easy 

to check that 0 5 fv < g. But this contradicts the hypothesis that s E Z(Z). Therefore, 

we have that Z(Z) is an increasing subset of X. It is obvious that Z 2 J implies that 

Z(J) c Z(Z). Hence we have proved that Z is an order-reversing mapping of X(G) 

into p(X). 

To complete the proof we are going to show that ZJ = id~c~) and JZ = idz(~). 

Let S E 9(X). It is plain that S C Z(J(S)). To prove the other inclusion, suppose that 

z $ S. Then there is a compact open set V C X such that z E V and V n S = 8. Hence 

fv E J(S), and since fv(z) # 0, we have that z e Z(J(S)). Therefore Z(J(S)) = S. 

Let Z E 9(G). Since it is obvious that Z C J(Z(Z)), we need only to prove the 

other inclusion. Let 0 < g E J(Z(Z)). Since supp(g) nZ(Z) = 8, for each x E ms(g) 

there is a function f; E Z such that x E supp(f,). By (4), the sets U, = supp(f,) l 

are open. Since they are obviously decreasing, supp(g) C UxEms.sj U,. Since supp(y) 

is compact, there is a finite number of elements xi,. . . ,x, in ms(g) such that 

ms(g) C: U,, U . . U U,,,. Let h = 1 fx, 1 V . . V If, / E 1. Since the functions g and h can 

take only a finite number of values, and the totally ordered group H is archimedean, 

there is a natural number IZ such that for any x E ms(g), there is y > x and 

A(y) > g(x). It follows that nh > g, and since nh E I, we have that g E I. Finally, since 

each function in G is the difference of two positive functions, we conclude that 

J(Z(Z)) c I. 0 

Theorem 3.3. Given a completely normal generalized spectral space X satisfying 

Property (Id), there is a lattice-ordered abeliun group G such that Spec(G) is homeo- 

morphic to X. 
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Proof. Suppose G is the Priestley power of a nontrivial totally ordered archimedean 

group over X. Then by the above lemma, the correspondence A H J(X\A) defines an 

isomorphism of c’(X) onto the lattice of P-ideals of G, and then by Corollary 1.3, 

Spec(G) is homeomorphic to X. 0 

4. Spectral root systems 

A spectral root system is a root system (X, 5) fulfilling the following two conditions: 

RSl Each totally ordered subset of X has supremum and infimum in X. 

RS2 If x, y are elements of X such that x<y, then there are s, t in X such that 

x < s < t < v, and there is no element of X between s and t. -. 

It is well known that the set of prime e-ideals of an L-group, ordered by inclusion, 

is a spectral root system. 

Given a spectral root system (X, <), the set of elements of X having a successor 

will be denoted by X-. Note that each x EX~ has exactly one successor. We call X* 

the set X- u max X, where max X denotes the set of maximal elements of (X, 5). 

It is not hard to see that X, endowed with the topology generated by the sets {J’} 1, 

for y E X*, is a generalized spectral space that satisfies the property (Id). Moreover, the 

specialization order induced by this topology coincides with the original order of X 

(and this topology is the finest one that one can define on X inducing this order). 

Then X is completely normal. 

Consequently, the following well known result (see [4; 12, Theorem 3.41) is a 

particular case of Theorem 3.3. 

Corollary 4.1. A partially ordered set is isomorphic to the set of prime /-ideuls of 

un /-group, ordered by inclusion, if and only if it is LZ spectral root system. 

Remark. Let X = S(w) be the spectral space considered in Example 3.1. The Priest- 

ley power Conto(X,Z) can be identified with the /-subgroup of Z”’ of all sequences 

that are constant on a final segment of Q. Therefore Conto(X, Z) is a hyperarchimedean 

P-group [2, Cor. 14.1.41 and consequently all its prime /-ideals are maximal 

[2, Theorem 14.1.21. Therefore Spec(Conto(X, Z)) is not homeomorphic to X. 

5. A spectrum without the (Id) property 

We are going to finish the paper with an example of an P-group G such that Spec( G) 

does not satisfy (Id). 

Let S = S(o) as in Example 3.1. We shall write the elements of the Hahn power 

V(Kz) in the form ((x,)~~~~,x~,xL~). 
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Let G be the subgroup of V(S,Z) generated by the functions 

g=((n),Ew,O,l), b=((l,l,...,l,...),l,O) 

and the so-called “finite” functions, by which we mean those whose support is a finite 

subset of o. 

The elements of G are of the form g = f + pa + qb, where f is finite and p and q 

are integers. We are going to see now that for each g E G, g+ E G. By (l), we have 

that supp(g+) = supp+(g) and g+(x) = g(x) for each x E supp(g+). We consider the 

following four possible cases: 

Case 1: The coefficients p and q are both nonnegative. In this case, ms+(g) and 

ms(g) differ by a finite subset of o. Hence, supp+(g) differs from supp(g) by this 

same subset. Therefore, g and g+ can differ at most by a finite function, and then 

g+ E G. 

Case 2: p>O and q-co. In this case ms+(g)={nEwjn>-q/p}U{/?} (modulo the 

support of a finite element), and then gf = f' + pa + qb for some finite f ‘. Therefore 

g+ E G. 

Case 3: p < 0. In this case np + q > 0 if and only if n < - q/p, whence g+ is finite. 

Case 4: p = 0 and q =c 0. In this case g+ is finite. 

Since in all possible cases g+ E G, we conclude that G is a e-subgroup of V(S,Z). 

Consider now the prime d-ideals of G. 

For each xEwU{B}, I,={gEG)g(x)=O} IS a prime /-ideal of G (in fact, a 

maximal /-ideal). It is plain that the set A of all finite functions is an L-ideal of G. 

To see that it is prime, consider two orthogonal elements g and h. Since a non-finite 

element has a cofinal support (in o), we conclude that at least one of those two 

elements belongs to A. Therefore A is a prime e-ideal of G. 

We are going to show now that there are no other prime e-ideals in G. Indeed, 

suppose (for the sake of a contradiction) that 1 is a prime e-ideal of G, such that 

1 #lx for all x E c~ U {/I} and I #A. We have two possible cases: 

Case 1: All the elements of I are finite, i.e., I CA. In this case we obtain the 

contradiction I =A. For, suppose there exists a finite g such that g 4 I. Let no be the 

greatest integer in supp(g) C: co, and let h = ((x,), E w, l,O), where x, = 0 if n < IZO and 

x,, = 1 if n > no. Then h is an element of G that does not belong to I and is orthogonal 

to g. Since neither g nor h belong to I we conclude that I is not prime. Therefore 

I=A. 

Case 2: I contains an element g := f + pa + qb (for some f E A and p,q E Z) 

of infinite support - i.e., either p or q (or both) are nonzero. In fact, I contains 

such a g with p # 0, since I # IB implies I $ Ib. We may assume p > 0. Then the set 

N := {n E o 1 g(n) 5 0) is finite. For each 12 EN, pick fn E Z,, such that fn(n) > 0 (using 

the fact that I # I, implies I $ I,); and then pick m, E Z such that m,f (n) > Ig(n)l. 
Then O<a<gVVnEN m, fn E I. Since a is a strong order unit of G, this implies that I 

is not proper, i.e., Z = G, a contradiction. 

Hence, the correspondence x H I,, for each x E o U {p}, and CI H A is a one-to-one 

function from S onto Spec(G), and it is easy to check that it is a homeomorphism. 
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