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Abstract 

In this paper we obtain an effective algorithm for quantifier elimination over algebraically 
closed fields: For every effective infinite integral domain k, closed under the extraction of pth 
roots when the characteristic p of k is positive, and every prenex formula cp with r blocks of 
quantifiers involving s polynomials 4,. . , & E k[Xl, . . . , X,] encoded in dense form, there exists 

a well-parallelizable algorithm without divisions whose output is a quantifier-free formula equiv- 
alent to q. The sequential complexity of this algorithm is bounded by 0( (cp 1) + D(“(“))‘, where 
Iv] is the length of cp and D 2 n is an upper bound for 1 + Es=, degfi, and the polynomials 
in the output are encoded by means of a straight line program. The complexity bound obtained 
is better than the bounds of the known elimination algorithms, which are of the type ]qI. D”cr, 

where c 2 2 is a constant. This becomes notorious when r = 1 (i.e., when there is only one block 

of quantifiers): the complexity bounds known up to now are not less than D”‘, while our bound 
is DO(“). Moreover, in the particular case that there is only one block of existential quantifiers 
and the input polynomials are given by a straight line program we construct an elimination 
algorithm with even better bounds which depend on the length of this straight line program: 
Given a formula of the type 

3X,-m+l,..., 3x,: 4(X1)..., x,) = 0 A . ‘. AF,(x,,. ..,xn) 

=OAGl(xl,..., xn)#OA...AGs,(x,,. ..,xn)#O, 

where FI ,...,KEk[X , . . . ,X,1 are polynomials whose degrees in the m variables Xn--m+i,. . ,X, 
are bounded by an integer d 2 m and Gr, . . , G,I E k[Xi , . . .,X.1 are polynomials whose de- 
grees in the same variables are bounded by an integer 6, this algorithm eliminates quantifiers 
in time L2.(s.s’.6)0(‘).do(m), wh ere L is the length of the straight line program that encodes 
fi ,..., F,,Gi ,..., G,,. 

Finally, we construct a fast algorithm to compute the Chow Form of an irreducible projective 
variety. 
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The construction of all the algorithms mentioned above relies on a preprocessing whose cost 
exceedes the complexity classes considered (they are based on the construction of correct test 
sequences). In this sense, our algorithms are non-uniform but may be considered uniform as 
randomized algorithms (choosing the correct test sequences randomly). @ 1998 Elsevier Science 
B.V. All rights reserved. 

Ah4S Classijication: 68C25 

1. Introduction 

Let k be an arbitrary field and let k be an algebraic closed field such that k G z. 
We will denote by Y(k) the first order language over k with constants in k. It is well 

known that the elementary theory of algebraically closed fields of given characteristic 

admits quantifier elimination, i.e. for every formula cp E 2’(k) there exists a quantifier- 

free formula Ic, E L?(k) which describes the same subset of k’, where Y is the number 

of variables of cp that are not quantified. 

Many interesting geometric and algebraic problems can be formulated as first order 

statements over algebraically closed fields and they can be solved by means of quantifier 

elimination. This is why, in the last decades special efforts have been made to find 

efficient algorithms that eliminate quantifiers. 

Given a formula rp E T(k), let 1~1 be the length of cp, i.e., the number of symbols 

needed to encode cp, n be the number of indeterminates appearing in cp, D = 1 + xi=, 

degF;:, where FI,...&E~[& , . . . ,X,] are the polynomials appearing in cp and, when 

rp is prenex, let r be the number of blocks of quantifiers in cp. 

Heintz and Wtithrich (see [22, 26, 411) exhibited elimination algorithms for alge- 

braically closed fields of given characteristic with sequential time complexity bounded 

by Iql.D”‘y where c 2 2 is a constant. In fact, in the 194Os, Tarski knew the existence 

of elimination algorithms but he did not describe them explicitly (see [39]). Later, 

using the fundamental techniques described in [14, 221, Chistov and Grigor’ev consid- 

ered the problem for prenex formulae and obtained in [15, 211 more precise sequential 

bounds of order I(pI.D”“, where c > 2 is a constant. However, these bounds depend on 

arithmetic properties of the base field k because polynomial factorization algorithms 

are used as subalgorithms. None of the algorithms mentioned before are efficiently 

parallelizable (they contain subalgorithms which are inherently sequential). 

Finally, in [ 161 a well-parallelizable elimination algorithm with the same sequential 

complexity bounds obtained in [ 15, 211 is constructed combining the methods in [22] 

with effective versions of Hilbert Nullstellensatz (see [ 1, 8, 9, 13, 29, 351, which 

improved the results of [3, 7, 11, 121). Moreover, the complexity of this algorithm 

does not depend on particular properties of the base field k. Later, the same result 

was obtained in [27]. An important consequence of the parallelization is that quantifier 

elimination is possible in EXPSPACE (see [5, 6, 321). 
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In the context of quantifier elimination, it is also worth mentioning the work of 

Renegar (see [36]) on elimination in real closed fields since the bounds obtained there 

are very sharp and imply the bounds for elimination over complex numbers. 

In all these algorithms, the polynomials are coded in dense form (i.e. as arrays of 

elements of k) and, in this model, the sequential and parallel bounds obtained in [16] 

are optimal. This shows that it is impossible to get better bounds unless we change 

the way of coding polynomials. 

A way of coding polynomials that showed to be effective to construct efficient algo- 

rithms to solve algebraic and geometric problems is the use of straight line programs: 

arithmetic circuits without branches nor selectors which evaluate the polynomials in 

any point (see, e.g. [17-20, 25, 28, 311). 

In this paper, we construct an effective elimination algorithm using the techniques 

to compute the dimension of an alfine algebraic variety described in [ 181. In order to 

do this, the polynomials will be encoded sometimes in dense form, sometimes by a 

straight line program and sometimes combining dense form and straight line programs. 

The construction of this algorithm will be done in several steps (in any case, the 

way of coding the input and output polynomials will be specified). 

First, we will consider prenex formulae with only one block of existential quantifiers 

and no inequalities. Then we will adapt the previous algorithm to prenex formulae with 

only one block of existential quantifiers which may contain inequalities. Then, we will 

use these algorithms to construct an algorithm without divisions for the general case. 

As an application, we will use the previous algorithms to construct a new one that 

computes the Chow Form of an irreducible projective variety (see [lo]). 

The complexity bounds of our algorithms are better than the known bounds. More- 

over all the algorithms exhibited in this paper are well-parallelizable and non-uniform 

in the sense that, for their construction, they require a preprocessing whose cost ex- 

ceedes the complexity classes considered here. Nevertheless, this preprocessing, which 

consists in choosing some numbers, can be replaced by a random selection with a low 

probability of failure. In this sense, our algorithms are uniform with the same order of 

average complexity if we think of them as randomized algorithms. 

2. Preliminaries 

We first introduce some basic notions and notation and then mention the algorithmic 

tools used. 

2.1. Notations 

Let k be an infinite integral domain. We suppose k to be effective; this means that the 

arithmetic operations (addition, subtraction, multiplication) and basic equality checking 

(comparison) between elements of k are realizable by algorithms. If k has positive 
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characteristic p, we also assume that k is closed under the extraction of pth roots and 

that the extraction of these roots is effective (i.e. done by an algorithm). 

Let k’ be the quotient field of k and k be an algebraic closure of k’. We denote by 

A”(k) the n-dimensional affine space over k, equipped with its Zariski topology and 

with its coordinate ring of polynomial functions. If S C A”(z), 3 will denote, as usual, 

the closure of S with respect to the Zariski topology. 

Let Xi,..., X, be indeterminates over k. We denote the total degree of a poly- 

nomial fEk[Xl,..., X,] by deg(f) and its partial degree in Xi,...,& (1 5 i<n), 

by degx ,,,,,, &->. Given .!“I,. . . , ji E k[Xl, . . . ,X,], gcdXn(fi,. . . , fi) denotes the great- 

est common divisor among fi, . . . , fr with respect to X, (i.e. considering f 1,. . . , fr as 

polynomials in k(Xl,. . . ,Xn_l)[Xn]). 

Let cp be a first order formula. We denote by 1~1 the length of cp, i.e. the number 

of symbols needed to encode cp. 

2.2. Codljication of polynomials 

The polynomials we deal with in our algorithms will be encoded in one of the 

following ways: 

(a) Dense form, that is, as arrays (vectors) of elements of k. 
(b) Straight line programs, which are arithmetic circuits (networks without branches). 

They contain neither selectors nor (propositional) Boolean operations. (For exact defi- 

nitions and elementary properties of the notion of straight line program we refer to [23, 

37, 38, 401.) 

Our straight line programs will not contain any division. This is of particular im- 

portance for equality checking. 

(c) Combining both dense form and straight line programs (i.e. in dense form with 

respect to some distinguished variables and their coefficients, which are polinomials in 

the remaining ones, encoded by a straight line program). 

2.3. Algorithmic tools 

Our algorithms are essentially based on the techniques used in [ 181 to compute the 

dimension of an algebraic set and on the methods of effective linear algebra which rely 

on well-parallelizable algorithms without divisions. A cornerstone of these techniques is 

Berkowitz’ well-parallelizable polynomial algorithm for computing all the coefficients 

of the characteristic polynomial of a square matrix over any domain [4]. These coeffi- 

cients are represented by a straight line program without divisions. For computing the 

rank of an arbitrary linear equation system over any domain we combine Berkowitz’ 

algorithm with a result of Mulmuley [33], which allows us to express the rank of 

an arbitrary matrix over any domain by the multiplicity of zero in the characteristic 

polynomial of some associated square matrix. 

When applying these results, some new indeterminates are introduced. To eliminate 

them from the output, we will use a suitable “correct test sequence” of points with 
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coordinates in k according to [24, Theorem 4.41. Although the choice of such a cor- 

rect sequence could be done algorithmically, the cost of doing so would exceed the 

main complexity class considered in this paper. However, for fixed input parameters, 

this choice is independent of the problem. For this reason, we will suppose that the 

correct test sequence is given by means of a preprocessing whose cost will not be 

considered in the complexity bounds obtained and, therefore, our algorithms will be 

non-uniform as they depend on the choice of the correct test sequences. However, 

the quoted Theorem 4.4 allows us to randomly choose correct test sequences with a 

probability of failure which is always less than l/262144 and becomes arbitrarily small 

as the parameters s,d and m increase. Therefore, our algorithms can be uniformly 

randomized, within the same order of (average) complexity (see, e.g. [2, 18, 191). 

When the characteristic p of k is positive, we will need to extract pth roots in 

extended base rings. These extractions will appear only in subroutines with no effect 

on final results and will have no influence on the global behavior of our algorithms 

(for more details, see [ 19, 1.2.21). 

In case k = 72, each node of an arithmetic network corresponding to a fundamental 

operation in the base ring H may be replaced by a Boolean circuit which processes bits. 

Taking into account the growth of the coefficients of the polynomials which appear 

as intermediate results of our algorithms, our arithmetic networks may be transformed 

in a natural way into Boolean ones of the same order of complexity and our results 

will remain valid mutatis mutandis for the bit complexity model of algorithms repre- 

sented by Boolean networks but this requires a further analysis (for a similar analysis 

see [31]). 

3. The fundamental case 

In this section we will show an algorithm which eliminates quantifiers in prenex 

formulae with only one block of existential quantifiers. This algorithm uses both straight 

line programs and dense form to represent polynomials. Whenever it is necessary to 

change the codification of polynomials from straight line program to dense form, we 

will apply the method described in Section 3.1. In Section 3.2 we will consider formulae 

without inequalities. Then, in Section 3.3 we will exhibit an example which shows 

that the complexity bounds obtained are better than the bounds of any algorithm using 

only dense representation of polynomials. Finally, in Section 3.4 we will adapt the algo- 

rithm described in Section 3.2 to the case of formulae containing equalities and in- 

equalities. 

3.1. Putting straight line programs into dense form 

The following proposition shows how to put some polynomials given by a straight 

line program into dense form with respect to some distinguished variables. Their co- 

efficients will be given by a straight line program over the remaining variables. 
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Proposition 3.1.1. Let m be an integer such that 1 < m 5 n. Let Fl,. . . , F, be poly- 
nomials in k[Xl ,. . .,X,,] given by a straight line program of length 9. If d > m 
is an integer such that degx,_,+ ,,,,,, x,(4,) 5 d for all i, 1 5 i 5 s, then there exists a 
well-parallelizable algorithm without divisions of sequential time complexity 2’.d”@j 
whose output is the same set of polynomials Fl, . . . , F, Ek[X,, . . . ,Xn--m][X,,--m+~, . . . ,A’,,] 

but now given in dense form in the variables Xn_,,,+l,. . . ,X,,. Their coeficients in 

k[Xl,..., X,_,] will be given by a straight line program of length Z.dO(“). 

Proof. The idea is to put the polynomials into dense form in the last variable and to 

iterate this procedure m times. 

Let 80,. . . , &d be d + 1 different elements in k and let A E k(d+l)x(d+l) be the following 

matrix: 

A= 

1 &g E; . . . Et’ 

1 El ET . . . &;i 

1 E2 E; '.. E; 

. . . 

. . . . . . . . . . 

1 Ed &; ... Ei, 

First, we compute A-’ (as &i # Ej if i # j the matrix A is non-singular). This can be 

done in sequential time d’(l). 

For every i, 1 <i<s, 

fi = & UijXi where aij E k[Xl,. . . ,Xn_l]. 
j=O 

Given (51,...,&+1)Ek”-1, we want to compute ao(51,...,&_1) for every i,j, 
1 5 i 5 s, 0 1. j < d. In order to do this, for each i, 1 5 i 5 s, we consider the following 

linear system with coefficients in k: 

’ d 

c t$Zij = Fi( 51 ,...,&-lrEo)r 
j=O 

I 
d 

c E~Zij=F;.(51,...,5n-l,&d). 

j=O 

As A is precisely the matrix associated to this system and the unique solution is 

~~=aij(~1,...,&,_1), then 

=A-‘. 

F;:(tl,...,tn-l,Eo) 

F;:(<l,...,tn-1,Ed) 
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Then, to compute aij( rt , . . . , &_I ) (1 5 i 5 s, 0 <j 5 d), it is necessary to evaluate 

Ft , . . . , F, in d + 1 different points and then to multiply the matrices. The cost of this 

is Z.(d + 1)+2.s.(d + l)*. 

Once we have the straight line program for the polynomials aij (1 5 i < s, 0 5 j < d) 
we repeat the procedure for these polynomials and the next variable X,_ 1. 

After doing this m times, we obtain the desired straight line program of 

length _fZ.dO(“). c3 

3.2. Formulae with only one block of existential quantijers and no inequalities 

Let Xl, . . . ,X, be indeterminates over k and let m be an integer such that 1 5 m 5 n. 
Let FI , . . . , F, be polynomials in k[Xl ,. . .,X,,]. Let d 2 m and d’ be integers such 

that deg&+,,..., X,(fi) 5 d and deg, ,,,,,, X,_,(E;;:) 5 d’ for every i, 1 5 i is. We will 

assume that Fl, . . . , F, E k[Xl,. . . ,Xn_m][Xn-m+l , . . . ,X,1 are given in dense form in 

x--m+l,~. f ,X, and that their coefficients in k[Xl, . . . ,X,_,] are given by a straight 

line program of length L. Let 9 c Anem be the set: 

9 = {(Xl )...) X,_,)EP-m/3(X,_m+* )...) x,)&P : 

FI(xI ,..., x,)=O~..~r\F,(x~ ,..., x,)=0}. 

Under these hypotheses, we have the following: 

Theorem 3.2.1. There exists a well-parallelizable algorithm without divisions with 
sequential time complexity bounded by L + s ‘(‘).d’(“‘) which describes the set 9’ in 
the following way: 

9 = {(Xl ,...,xn-m)~~-ml~(~l,...,xn-m)}, 

where $ is a quantifier-free formula, i.e. a boolean combination of atomic formulae 
of the type: 

Gh ,..., x,_,)=OA..~AG~(X~ ,..., x,,_~) 

= 0 A G.+l(xl ,..., x;_,,,)#0~-~~G~,(x~ ,..., xn_,)#O, 

where G1 , . . . , G, are polynomials in k[Xl, . . , ,X,_,] with degrees bounded by d’.dO(“). 
Moreover, the length of the formula + is bounded by L + s”(l).do@), the quantity of 

polynomials appearing is bounded by s ‘(‘).d”@) and they are given by a straight line 
program of length L + so(l). do@). 

Proof. Let (XI,. . . ,x,_, > E k”-“’ be a fixed point and let K = k[xl, . . . ,xn-,J. Let K’ be 

the quotient field of K and let r be an algebraic closure of K’. For every i, 1 5 i 5 s 

let A E K[&-, + 1 , . . . ,X,] be the polynomial 

A = F;(Xl ,...,X,-,,Xn--m+1,...,Xn). 
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Then, (xl,. . . , x,_,) E 9 if and only if the closed subset of A”(E) 

~={(Gn+1,..., xn)EKm/fl(X,_m+l )...) x,)=OA~~.A\(x,-,+ ,,..., xn)=O} 

is non-empty. q 

As the condition V# 8 is equivalent to dim(V) 2 0, we intend to apply the algorithm 

given in [18] that computes the dimension of V (note that V is defined by s polynomials 

in m indeterminates whose coefficients are elements of the ring K, these polynomials 

are given in dense form and their degrees are bounded by d). The main problem that 

appears when we try to apply this algorithm is the equality checking: (xl,. . . ,x,-,) 

can be any point in F-m and we cannot decide whether a given polynomial with 

coefficients in k evaluated in this point is zero or not. In order to solve this problem, 

we are going to modify the algorithm properly (we will consider (xi,. . . ,x~-~) as 

parameters and follow all possible branchings of the process). 

Like in [18], we introduce m* + m new indeterrninates Trj, T, (1 5 r,j 5 m) and let 

R=K[Gi,Trl~<r,j<m. As before, let R’ be the quotient field of R and let i? be an 

algebraic closure of R’. If the characteristic p of k is positive, when we apply the al- 

gorithm of [18], we will need to extract pth roots of elements of R. These extractions 

will appear only in subroutines with no effect on final results and, as the number of 

iterations of this process is bounded by an integer known a priori, can be computed by 

replacing the variables involved by adequate powers of new indeterminates. For more 

details, see [19]. 

For every r, 1 5 r 5 m let & E RIXn.++l,. . . ,X,] be the linear form: 

1, = Trl X--m+~ f. . . + TmXn + Tr. 

Remark. Clearly, V= 0 if and only if, for every r (0 <r 5 m) the closed subset 

of A”‘@) 

=()A.. .~Iz,(x,-m+l,...,x,)=O} (1) 

is empty. 

Now, we can find equivalent conditions to V# 8 using WO,. . . , W,: 

Let r={y(l),..., y(“)} 2 k” be a set with c = (s + m)O(l).do(m) = s'(').d'@) many 

elements, like in [ 18, 3.4.71. Then, for every effective integral domain X 2 k (effectivity 

here includes the extraction of pth roots when the characteristic p of k is positive) 

and for every closed subset of A”(%) (where ?? denotes an algebraic closure of the 

quotient field of !R) 

w= {CG-m+l,. . ., xn)E~m/hl(X,-,+l,...,X,) 

GO/j.. . A k+&n--mfl, *. .,&z) = O), 
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where hi,. . . , h,+, E ?R[X,_,+~, . . .,X,,] are polynomials given in dense form whose 

degrees are bounded by d, the well-parallelizable algorithm without divisions in [ 18, 

3.4.71, computes an element 0 # tl E ?J2, an element y = (~1,. . . , ym) E r and polynomials 

ri , . . . , r,,, E R[Z] with degrees in the indeterminate Z bounded by d’(“‘) such that every 

isolated point x E W satisfies 

ax = (Yl(Y(X)), . . . ,r&(x>>>, 

where y = yiX,_,+t + . . . + y,X,. (In fact, this is an effective refined version of the 

theorem of the primitive element,) 

The sequential time complexity of this algorithm is (S + m)“(l).do(m) =sO(l).do(m). 

We can choose r c k” because the coordinates of the elements in r can be chosen in 

any subset of 92 provided that its cardinal is large enough and, therefore, in k. 

Moreover, all the intermediate results of this algorithm are polynomials with coeffi- 

cients in k, degrees bounded by do(“) and given by a straight line program of length 

,~~(~).d~@“), evaluated in the coefficients of hl,. . . , h,+,. 

We intend to apply this algorithm to the closed sets IV,, . . . , W, in (I), i.e. to sets 

of the following type: 

W={~~n--m+l, . . ..x.)~R~/hl(x,-,+l,...,xn) 

=0/j.. .Ah,+,(x,-,+l,...,x,)=O}, (2) 

where hl,...,h,+, are polynomials in k[Xl, . . . J,,, KY, q] 11 i,j 5 ,,, given in dense form 

with degrees bounded by d in the indeterminates Xn+,+i,. . . ,X, and their coefficients 

are polynomials in k[Xi, . . . ,X,_,, Kj, c]t 5 i,j 5 ,,, with degrees bounded by d’ and 

given by a straight line program of length L + m2 + m evaluated in the fixed point 

(Xl ,...,&I-m>. 

First, the algorithm in [ 181 computes, using techniques of effective linear algebra 

(to compute monomial bases, matrices of linear forms in a particular basis, stan- 

dard bases, for instance) a polynomial g in R[Yi, . . . , Y,] and polynomials 91,. . . , gm 

in R[Yi,. . . , Y,, Z] (where Yi , . . . , Y,,Z are new indeterminates over R) that will be used 

later to find the element CI and the polynomials rl, . . . , r,. As the mentioned algorithm 

needs to compare elements of the extended base ring and we cannot decide whether 

an element j3 E R is zero or not, any time we need to decide this we will consider the 

two possibilities: /I = 0, B # 0. For each of them, we will continue with the algorithm 

until we obtain the polynomials g, gi, . . . , gm. This will produce branches (selectors) Bj 

(1 <j 5 b), where b 5 s”(l)do(“) of the following type: 

Bj I A Bij = 0 A A Pij # 0, 
iEM iEN 

where #(M) + #(N) 5 s”(l).do(m) a n d each Pij E R is a polynomial given by a straight 

line program of length socl).do@) with degree bounded by do@), in the coefficients 

of h 1,. . ., h s+m. 

In this way, for every branch, we obtain polynomials g, 91,. . . , g,,,. 
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Finally, the algorithm in [ 181 finds the element CI and the polynomials ri, , . . , r,,, 

in R[Z] using the elements of the set r = {y(l), . . . , y(“)} C km in the following way: 

First, it computes g(y(‘)). If g(y(l)) # 0, it produces the output a=g(y(‘)), Q(Z) = 

g,(Y(l),Z),..., r,(Z) = g&(‘),Z). If g(y(‘)) = 0, it computes g(yc2)). If g(y(2))#0 the 

output will be CI = g(yc2)), ri(Z) = gt(y(2),Z), . . . , rm(Z) = gm(yc2), Z). If g(yc2)) = 0 the 

algorithm will continue in a similar way. 

For each branch obtained before, we continue with the algorithm using the corre- 

sponding polynomials g, 91,. . . , gm. As we cannot decide if g(y@)) is zero or not for 

y(‘) E r, taking for every i, (1 < i 5 c) 

M~(i) = g(y(i) ), r?)(Z) = g&J(i) 9 Z) , . . . . r$)(Z)=g (y(i) Z) m 9 

we consider all the possibilities and for every condition Bj this will produce new 

branches. In this way, we obtain a new algorithm containing branches B:y) (1 5 r 5 c, 

1 <j 5 b) where c = #(r) 2 s~(‘).~O(~) and b 5 .~~(~).d~(~) of the following type: 

r-1 

B!“: ABij=Or\ //bij#OA //ctr)=OAG(:(r)#O, 
J 

iEM iEN i=l 

where #(M) + #(N) 5 s ‘(l).d’@) and each fiij E R and each c$(~) E R is a polynomial 

given by a straight line program of length s O(l).d’@) with degree bounded by do@), 

evaluated in the coefficients of hi,. . . , h,+,. For each branch By’, this new algorithm 

produces the output 

$‘) 
ff = DIj 

$‘) $‘) 
2 t-1 = r1 , . . . , r, = r, . 

Note that I$) and the coefficients of rf’, . . . ,rz) are polynomials with coefficients 

in k in the indeterminates Xi,. . . , X,,_,, Tij, Ti (1 2 i, j 5 m), with degrees bounded by 

d’.d’(*), evaluated in (xi,. . . ,x,_,). 

Including the branches in the output, we obtain a new algorithm that, applied to 

a set W as in (2), produces an output of the type: 

There exist unique js and r-0 (1 5 js 5 b and 1 5 ro 5 c) such that the fixed point 

(Xl,..., n m x _ ) satisfies B?“) Jo (the existence is proved in [18, 3.4.71, and the uniqueness 
+‘o) 

is obvious from the definition of Bj”) and, as the corresponding LX~,, is different from 

zero, every isolated point x E W satisfies: 

OLjO y’“‘~x = (r: ““(y(x)), . . . , rp)(y(x))). 

As it is impossible to decide which is the jo and which is the ro that correspond to 

the fixed point (xi,. . . , x,_,), we continue with the algorithm for every j and every r 

(1 ljlb and 1 sr<c) in the following way. 
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For every hi (12 i 5 s + m) that appears in the definition of W, let 

When j = ja and r = ro, as every isolated point x E W satisfies 

oly”‘.x=(r,Y”‘(u(x)),...,r~‘(y(x))) 

and O(:.(‘) # 0, the polynomials Pi’,’ satisfy: 

(m) if W has isolated points, gcd(Pk’ , . . . , ey,) # 1 (as polynomials in R’[.Z]); 

(00) if gcd(P,“’ ,..., e$)# 1 in R’[Z], W#0. 

Furthermore, if either W = 0 or every x E W is an isolated point, from conditions 

(0) and (00) we deduce: 

W=0 M gcd(Pi”’ ,...,<$)= 1 in R’[Z]. 

So, when we continue with the algorithm for every j, r (15 j 5 b, 1 < r 5 c), the 

condition W = 0 is equivalent to 

v ($‘A gcd(P:” ,...,Pi;‘,)=l in R’[Z]). 

l<j<b 
l<r<c 

Now, given j and r, gcd(PF’ ’ , . . . ,eyrn) = 1 in R’[Z] if and only if there exist poly- 

nomials Q/” , . . . , Qsj;‘m E R’[Z] with degree in Z bounded by do@“) such that 

l= c 
Pi,‘. Q,!” 

lCi<s+m -- 

(3) 

if and only if the non-homogeneous linear system with coefficients in R given by (3) 

is solvable in R’ if and only if the rank of the matrix associated to the system in 

(3) is equal to the rank of the matrix of its associated homogeneous system. Now 

we are going to obtain a straight line program for the coefficients of these matrices. 

As the polynomials hi (1 5 i 5 s + m) are given in dense form in the indeterminates 

&-m+l,...,&, if 

hi = c a, ,,_., s,wn-m+l>” . * . (x7)sm 

O<s,+...+s,<d 

then 

and we can evaluate the polynomials P,‘,’ (1 5 i 5 s + m) without divisions. Using 

Proposition 3.1.1 we put these polynomials into dense form with respect to the inde- 

terminate 2 (note that their degrees in this variable is bounded by do(“)) and their 

coefficients will be the entries of the former matrices. 
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Hence, the linear system (3) has d”crn) equations and s”( ’ ). do@) indeterminates and 

its coefficients are polynomials in k [Xl,. . . ,X,_,, Tij, Till 2 i,i 5 m with degrees bounded 

by d’.d’(“) given by a straight line program of length L +.~~(~).d~@) evaluated in 

(Xl ,...,Xn-m). 

Let B be the matrix of the non-homogeneous system and B’ be the matrix obtained by 

adding a column of zeros to the matrix associated to the homogeneous system (we do 

this in order to have two matrices of the same size). Using the techniques of [4, 331, 

we introduce two new indeterminates Zt and Z, and we compute the characteristic 

polynomials of the square matrices A and A’ obtained from B and B’ (both polynomials 

have the same degree because B and B’ have the same size): 

TA = Gt’ + G+ + . . . + &‘A” + Affl, 

EA, +f/” +H;‘n + . . . +#“A’ +Af+‘, 

where Gk’, H,j” (O<u<t) are polynomials in k[&,..., Xn--m,~k,~,Z~,Z~]l~i,k~m, 

with degrees bounded by d’.dO@‘), given by a straight line program of length 

L + s”(l).do@), evaluated in (XI,. . . ,xn+) and t 5 do@). 

Therefore, gcd(Pt’ ‘,’ , . . . , Ps+,) = 1 in R’[Z] if and only if the multiplicity of zero is 

the same in both characteristic polynomials and this is equivalent to the condition: 

Di”: (Gd”#Or\H/“#O)V(G~‘=OAH,“‘=OAG:“#OAH:”’#0) 

V . . . v(G,f’=OAHoi”=OA ... nG:‘L1=OAHjL;=OAG/“#Or\H/“#O). 

So, if we have a set W like in (2) and either W = 0 or every x E W is an isolated 

point, then: 

Note that the polynomials appearing in conditions By) and D!” are elements of 

k[xt ,...,X,-,,Tik,~,Zl,Z211<i,k~rn and we want to have equival&t conditions only 

involving elements of k[xl, . . ,x,_,]. As the polynomials that appear in By’ and Dy’ 

are given by a straight line program of length ~=s’(~).d~@) (because the polyno- 

mials PI,... ,F, are given in dense form in the indeterminates X,,-,,,+I,. . . ,X,,) and 

have degrees bounded by D 5 do@‘) in the m2 + m + 2 indeterminates Tik, Ti, Zl,Z2 

(1 < i, k 5 m), we will use [24] to obtain the desired conditions. 

Let A C kmz+m+2 be a set of cardinal 6(u + m2 + m + 2) .(u + m2 + m + 3) 5 s”(l).do(“‘) 

such that 

P=O H P(@=O V’~EA 

for every P E k[xl ,...,x~_,,,] [Tik,Ti,Zl,Z2]1~i,kIm with degree bounded by D and 

given by a straight line program of length bounded by u. 
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In this way, every condition 

ml ,...,X,-,,~k,k,,Zl,Z2)11i,kIrn=O 

is equivalent to 

A P(X1 , . . . ,x,-m, 6) = 0 

&A 

and, in the same way, 

P(Xl,. . . ,Xn-in, ~k,~,Zl,z2)1<i,k<m#O 

is equivalent to 

v P(X1, . . . ,x,_,, S) # 0. 

SEA 

Then, when we apply the algorithm of sequential time complexity L + ~‘(‘).d’(~) 

we have constructed to a set W like in (2), we obtain as an output a quantifier-free 

formula & which is a boolean combination of atomic formulae of the type 

=OAw+l(Xl ,..., X,_,)#OA’..r\gh(X] ,..., X,-,)#o 

such that 

(a) It&j < ~~(l).dO(~); 

(b) every gi is a polynomial in k[Xt,. . . ,X,_,] with degree bounded by d’.d’(“); 

(c) the polynomials gi are given by a straight line program of length L + ~~(‘).d’@). 

Moreover, if either W = 0 or every x E W is an isolated point, 

W=0 if and only if $,+,. 

Applying this algorithm to Wo,. . . , W, (the sets defined in (1) which satisfy V= 

0 * W, = 0 Vr, 0 < r 5 m), we obtain as an output the formulae $0,. . . , t+b,,, (where &. = 

&,, O<rlm). 

Statement: V=0@ /jo<r<mtj~. 

Proof. If V = 0, then W, = 0 Yr, 0 5 r 5 m. Then & bk, 0 5 r < m. 

On the other hand, if AoCrCrn &., then I+$,,. As either W, = 0 or every x E W, is - - 
an isolated point (note that Al,. . . 1, are generic linear forms), then W, = 0. So (using 

genericity again), either Wm_l = 0 or every x E Wm-l is an isolated point and, as $,+1, 

Wm-l = 0. Iterating this, we see that W, = 0 for every r, 0 < r 5 m. Hence V= 0 and 

this concludes the proof of the statement. 

Then 

Vf0 @ v +r=*(Xl,...,X,-,). 

O<r<l?l 
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From the construction of the algorithm, it is clear that the polynomials appearing in $ 

do not depend on the fixed point (XI,. . . ,x~_~). So, $(X1,. . . ,X,_,) is a quantifier-free 

formula satisfying: 

{(Xl ). . . ,xn_m) E E-/3(x+,+1,. . . ,x,) E km: 

Fl(Xl,... ,xn)=O A~~~AF,(Xl,..., xJ=O> 

= {(Xl ,...) Xn-m)Ek”-“/$(xl ,... ,&-ml}. 0 

Remark 3.2.2. In case the polynomials Ft, . . . ,F, are given by a straight line program 

of length 9’ in the indeterminates Xt , . . . ,X,, putting them into dense form in the 

indeterminates Xn_-m+t, . . . ,X,, with coefficients in k[Xt ,...,X,_,] given by a straight 

line program (see Proposition 3.1.1) we can apply the algorithm in Theorem 3.2.1 for 

L = 5?.d”@). Moreover, if the polynomials F 1,. . . , F, are given in dense form in the 

indeterminates X 1,. . . ,X,, they can obviously be encoded in dense form with respect 

to the indeterminates X _ n ,,,+I,. . . ,X,, with their coefficients in k[Xt, . . .,X,_,] given by 

a straight line program of length L = ~.d’~(“-~).d~(~) and, again, we can apply the 

algorithm in Theorem 3.2.1. 

3.3. Example 

Example 3.3.1. Let d and r be positive integers such that d > Y and let cp be the 

formula: 

3X13&... 3x,_* :xp.Yl - 1 =OAX,d.Y2 -x, =o A 

Ax&Y3 -&=o/b.A&. K-1 -&__2 =OA y:’ -xr-l =o. 

Applying the algorithm described in Theorem 3.2.1 we obtain, in time do@), an 

equivalent quantifier-free formula. Following the ideas in [16], we will show now that 

the sequential complexity bound of any algorithm that eliminates quantifiers using only 

dense representation of polynomials must be, in this case, at least d”. 

Let P be the polynomial P = Yy . Y:Ii’. y:‘l,’ . . . Y;‘. Yl - 1. Obviously, cp is equiva- 

lent to the quantifier-free formula P = 0. Let y5 be a quantifier-free formula equivalent 

to cp. Then V= ((~1,. . . , yr) ~k’/t,b(yl,. . ., yr)} is the set of all the zeros of P. Note 

that, as P is irreducible, V is an irreducible closed set of dimension r - 1. 

Let Gt,..., Gt be the polynomials involved in $. Then Y can be described in the 

following way: 
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As V is closed, 

v=U{(yl,...,y,)Eil’/Gi,(yl,...,~~,)=OAGg(yl,...,y,)=OA... A 

AGik(yl,..., Yr)=OAGi~+,(yl,...,y,)#OA...AGi,(yl,...,y,)#:O}. 

V is irreducible, so it is one of the closed sets 

{(Yl,.**, Yr)Ek’/Gi,(yl,...,y,)=OAGi,(yl,...,y,)=OA...A 

AG,(yl,..., yr)=O~Gi~+,(yl,...,yr)#0~~~~~G~,(yl,...,yr)#O} 

and, as dim V = r - 1, this closed set cannot be 

{CYl, . . ..yr)Ek'lGl(~l....,~r)#OA...AG,(~l,...,~r)#0). 

Then, there exists i, (1 5 i 5 t) such that 

VC {(Yl,..., Yr)Ek’lGi(Yl,...,Yr)=O}. 

Then P divides Gi and, therefore, deg Gi 4 d’. Hence, if we encode Gi in dense 

form, the algorithm will have a sequential complexity not less than d” (note that, 

a polynomial of degree d in r variables has (“F’) = do(‘) coefficients). 

From this example, one may think that this bound could be improved by means of 

sparse encoding (i.e. not counting zero coefficients). Nevertheless, a simple change of 

variables, for example, may enlarge the sparse codification of polynomials. To show 

this, we can change every variable Xi by Xi + 1 and every yi by yi + 1 in the example 

above. The new bounds would be the same but none of the polynomials appearing will 

have a short sparse form of encoding. 

3.4. Formulae with only one block of existential quant@ers containing inequalities 

Let X 1,. . . ,X,, be indeterminates over k and let m be an integer such that 1 < m 5 n. 

Let F1, . . . , Fs be polynomials in k[Xl , . . . ,X,,]. Let d > m and d’ be integers such that 

degX”_-m+,,..., ,(fi)Id and deg X ,,,.., ,_,(F;:) 5 d’ for every i (1 5 i Is). 
Let Gt,..., G,I be polynomials in k[& , . . . J,]. Let 6 and S’ be integers such that 

deg&+,,..., ,(Gi) 5 6 and deg X ,,..,, X,_,(Gi) 26’ for every i (1 Ii Is’). 
We will assume that Fl,. . . , F,, Gl,. . . , G,t are given by a straight line program of 

length L. Let 9’ GA”+(k) be the set: 

9 = {(Xl ) . . . ,xn+$) E k”-“/3(xn_,+~, . . . ,xn) E k”: 

Fl(xl ,..., x,)=OA...AF,(xl,..., xn)=OA 

G (xl ,..., x,)#OA..-AG,,(xl,..., xJ#O} 
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Let Y be a new indeterminate and let G = 1 - Y. n, <i <S, Gi. Using the ideas of 

Rabinowitz, 9 can be described in the following way: 

9 = {(Xl ) . . . ,Xn+) E k”-“/3(x,_,+,, . . . ,x,, y) E km+‘: 

FIG, ,...,x,)=OA...AFF,(xl ,...,x,)=O/\G(xl, . . .,x,, y) = 0). 

Hence, we have s + 1 polynomials given by a straight line program of length 

L + s’ + 1 with degrees in the indeterminates Xn_m+t,. . . ,X,,, Y bounded by D = max{d, 

s’. 6 + 1) and degrees in the indeterminates Xi , . . . ,X,_, bounded by D’= max{d’, s’. 6’). 

If we apply Theorem 3.2.1 (taking into account Remark 3.2.2), we obtain an 

algorithm with sequential time complexity (L + s’). Do@) + s’(l). D”cm) that describes 

9 by means of a quantifier-free formula $ of length (L + s’).D”cm) + s”(l).Do@). The 

polynomials appearing in the formula $ are given by a straight line program of length 
(L + ,‘)go(m) + ,o(i).Do(m) and their degrees are bounded by D’.D’(“‘). 

In this case, the bounds obtained depend on s”@) and do(m). We will show that this 

dependence is not intrinsic of the problem. 

Keeping the above notations and hypotheses, we have the following: 

Theorem 3.41. There exists a well-parallelizable algorithm without divisions with 

sequential time complexity bounded by L2.(s.s’. 6) o(l).do@“), which describes the set 
9’ in the following way: 

9 = {(Xl 3.. . Pn-m) E k”-Y $xX1,. . . Jn-m)), 

where $ is a quantijier-free formula, i.e. a boolean combination of atomic formulae 

of the type: 

HI (XI ,..., x,-,)=OA...AH~(xi ,..., x,_,) 

=OAHi+i(xi ,..., x,_,)#OA...AH,(xi ,..., x,-,)#O, 

where HI,. . . , HP E k[Xl,. . . , X,_,] have degrees bounded by d ‘. 6’. (s’ . d)“(l).do(m). 
Moreover, all the polynomials in the formula $ are given by a straight line program 
of length L2.(s.s’.6)0(1).d0(“) and the length of I,+ is bounded by L2.(s.s’.6)0(1).do(m). 

Proof. The idea is to modify the algorithm of Theorem 3.2.1. First we put the poly- 

nomials F1, . . . , F, into dense form in the indeterminates Xn_,,,+t , . . . ,X,, with their co- 

efficients in k[Xi , . . . ,A’,_,] given by a straight line program (see Proposition 3.1.1). 

Again, let (xi,. . . , x,_,) E itnvm be a fixed point and let K = k[xi,. . . ,xn_,J. As in 

Theorem 3.2.1, let K’ be the quotient field of K and let x be an algebraic closure 

of K’. 
For every i( 1 5 i < s) let J;: E K[X,_,+i,. . . ,X,] be the polynomial 
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and for every j(1 Ij is’) let gj E K[X,_,+i,. . . ,X,] be the polynomial 

gj = Gj(x,, . . . ,xn-t&n--m+l,. . . A). 

Let V be the closed subset of A”(K) 

v = {c%m+l, . ..) Xn)EKrn/fl(X,_,+ ,,..., xn)=O 

A . . . A L&n--m+1,. . . ,%I) = 0) 

and let U be the open subset of A”‘(K) 

U={(X,-,+l,...,X,)~~mlgl(X,-,+l,...,X,)#O 
A ... A\Ss’(xn-m+l,...,Xn)#O}. 

As we did before, we introduce m2 + m new indeterminates T,, T, (1 2 r, j 5 m). 

Let R=K[Cj,Trll<r,j<m, let R’ be the quotient field of R and let i? be an algebraic 

closure of R’. 

For every Y (1 I Y < m), let I, E R[X,_,+1,. . . ,X,] be the linear form: 

A, = Tr, Xt-tt,+l + . . . + Trm X,, + Tr 

and let W, be the closed subset of Am(R) 

wr = {&z-m+1 > . ..) x~)E~~jfi(x,_,+,,...,x,)=O A... A 

Afs(&-m+l,...Jn)=O 

A ~1ch7I+1 ,...,xn)=O A.. . A &(x,-,+1,. . . ,xn) = 0) 

(4) 

and let U’ be the open subset of A”(R) 

u’ = {GLm+l,. . ., ~~)E~mlgl(Xn--m+l,...,Xn)#O 

A ..* Ags’(xn-m+l,...,xn)#O} 

Remark. VnU=0 ifand only if W,nu’=@ kjr, O<r<m. 

Proof. If V fl U = 0, introducing a new indeterminate Y over K and using the idea of 

Rabinowitz, we have that 

-‘?I+ K .,x,,)=OA..,A 

A&% -m+l,.. .,x,)=0 A 1 -y. n 
l<i< -- 

Si(Xn- 
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is empty. Then, there exist polynomials PI,. . . ,&+I E K’[Xn_-m+L,. . . ,X,, Y] such that 

1 = 2S.h +p,+,. 

( -A 

1 - Y. n gi 
i=l l<i<s’ 

(Hilbert Nullstellensatz). Then, for every r, 0 5 Y 5 m, 

l= -&.A+ ~o.lj+p,,,. ( _A 1 - Y. n gi 
i=l j=l l<i<s’ 

in R’[X,_,+l,..., X,, Y]. Therefore, W, f? U’ = 0. 
On the other hand, if W,. f’? U’ = 0 for every r (0 5 r 5 m), as V n U c W. n U’, 

V n U = 0 and this concludes the proof of the remark. 0 

Let r and c be like in Theorem 3.2.1 and let W be a closed set of the following 

type: 

w = {(&-m+l, . ..) &)EP/hl(X,_,+~ )..., z&)=0 

A . . . Ah,+,(x,-,+l,...,x,)=O), (5) 

where hl,...,h,+, are polynomials in @Xl,. . . ,X,, Ty, Till 5 i,j 5 m given in dense form 

with degrees bounded by d in the indeterminates X+,,,+l, . . . ,X, and their coefficients 

are polynomials in &Cl,. . . ,A&,, TV, Till 5i.j I,,, with degrees bounded by d’ and 

given by a straight line program of length L + m2 + m evaluated in the fixed point 

(XI,...,&-in). 
We apply the first part of the algorithm described in Theorem 3.2.1 to a set W like 

in (5) to get an output of the type: 

$‘) 
,..., m l<j<b 

l<r<C 

For every j, r we compute, like before, the polynomials 6,’ E R[Z]( 1 5 i < s + m) 

satisfying (0) and (00) when j=jo and r =ro (see Proof of Theorem 3.2.1). 

Let t 5 do@) be a bound for deg,(@‘)(l <i<s+m; 1 <j<b; 1 <r<c). 

For every j, r, let GA’ E R[Z] be the polynomial 

Gi,‘= ( J-J (a$.y; (5 )...) $ *. 
1 <i<s’ -- J J N 

Statement: When j = jo and Y = r-0, if either W n U’ = 0 or every x E W rl U’ is an 

isolated point of W, then Gj,’ satisfies: 

w n u’=0 M gcd&‘,..., I$,) 1 @,‘. 
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.i,r Proof. If gcd z(P, , . . . , P!.$,) ,j’Gjs’, then there exists z E R such that Gj,‘(z) # 0 and 

gcdz(P:“‘, . . . , Pi$)(z) = 0. (Note that the multiplicity of every root of GjJ is at least 

t and deg,(gcdz(P/“‘, . . . , Ps’;‘,)) 5 t). 
Then, @“(z)=O Vi(1 <i<s+m) and Gjp’(z)#O. Therefore, 

( rf ) (z) r:‘)(z) 
$7) 9 . . . 9 E w n uf. 

04i 
$4 

OLj ) 
On the other hand, if W n U’ # 0, let x E W n U’. Then, as x is an isolated point 

of W, it satisfies 

(see Theorem 3.2.1). Then @‘(y(x))=0 ‘di (1 <i<s+m) and GjJ(y(x))#O. 

Hence, y(x) ER is a zero of gcdz(P/“, . . . ,I$) but it is not a zero of Ghr and so 

gcdz(P/“;..&,) [G Ar This concludes the proof of the statement. . 0 

As we cannot decide which is js and which is r-0, we will continue with the algorithm 

for every j and every r. 
Now, gcd z(Pi”’ ,.. . ,p,‘;‘,) 1 GA’ if and only if 3 Q/“,. . .,Q$, E R’[Z] such that 

and degz(Qkr) 2 d 0(m) + deg,(Gj,‘) 5 &s’.d ‘@) That is to say, the non-homogeneous . 

linear system with coefficients in R given by (6) is solvable in R’. With the same 

methods we used before, this can be written as a polynomial condition Dy’, The linear 

system has 6.s’.d”(“) equations and CjT,=‘l + degz(Qiir)) 5 6.s.s’.d”@“) indetetmi- 

nates. 

As the coefficients of the matrices involved are the coefficients of P/‘, . . . , Ps’;‘,, GA’, 
we put Pt’, . . . , ps’r’, into dense form with respect to Z as we did in Theorem 3.2.1. 

In order to do the same with Gjp’, first we will find a straight line program avoiding 

divisions by CX~(“. Let Y be a new indeterminate and, for every i, 1 5 i 5 s’, let 

gi=gi 
( 

Y.rr) ,..., Y.ri”) E k[-v ,...,x,-,,T,,,T,,Z,Yll~u,v~m. 

We put gi (1 5 i 5 s’) into dense form with respect to Y and, if aik is the coefficient 

of Yk in gi, then 

In this way we obtain a straight line program for GA’ of length L.s’.(s.6)0(1).do(m). 

Now, we put Gj>’ into dense o f rm with respect to Z (see Proposition 3.1.1). Then, the 
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coefficients of the matrices involved are polynomials in k[xt , . . . ,x,_,, T,,, T,]l< U,D 5 m 

with total degrees bounded by 6. 6’.s’.d’.d”(“) given by a straight line program of 

length L. (s’.s. S) o(l).do(m) evaluated in (xi,. . . ,xn+). 

Hence, there are at most 6.s’.d”(“) polynomials in Dy’ with degrees bounded by 

8’.d’.(6.s’)“(1).do(“, g iven by a straight line program of length L.(s’.s.G)“(l).do(m). 

Then, if W is like in (5) and either W n U’ is empty or every x E W rl U’ is an 

isolated point of W, 

WflU'=0@ v (By ADjr'). 
llj<b 
1 <i-SC 

Note that the polynomials appearing in conditions By’ and D!” are elements of 
J 

01 , . , * ,&-??I, T,,,Tu,~1,~211~.,,~,, with degrees in the m2 + m + 2 indeterminates 

T,,,T,,Zl,Z2 (1 Iu,v<m) bounded by s’.&d’(“) and given by a straight line pro- 

gram of length L.(s’.s.G) O(l).dO(“). To have equivalent conditions only involving ele- 

ments of k[xl,. . . , xn-,,J we use [24] as we did in Theorem 3.2.1. 

When we apply the algorithm of sequential time complexity L2.(s’.s.6)0(1).do(m) we 

have constructed to a set W like in (5) we obtain as an output a quantifier-free formula 

I,$+, which is a boolean combination of atomic formulae of the type 

hh,..., x+,)=0 A...A hp(x,,...,x,_,)=O 

A&+1(x1 ,..., cc,,-,)#o A...A hk(xl,..., x,_,)#o 

such that 

(a) II,& I L2.(s.s’.6)0(1).do(m); 

(b) every hi in k[A’l,..., X,_,] has degree bounded by 8.d’.(s’.6)“(1).do(m); 

(c) the polynomials hi are given by a straight line program of length L2.(s.s’.6)‘(‘). 
do(m) 

Moreover, if either W fl U’ = 0 or every x E W n U’ is an isolated point of W, then 

W n U’= 0 if and only if I,&,. 

Applying this algorithm to WO,. . . , W, (the sets defined in (4)), we obtain as an 

output the formulae I++,, . . . , h, (where vh=&,, O<r<m). 

Statement: vn u=O~~o~,~,*r:. 

Proof. If VnU=0, then W,nU’=0 Vr(O<r<m). Then I+$. Vr(O<rsm). 

On the other hand, if A0 S I I m &., then $,,,. As either W, = 0 or every x E W,,, 

is an isolated point, then either W,,, rl U’ = 0 or every x E W,,, n U’ is an isolated 

point of W,,, and, therefore, &,, implies W,,, n U’ = 0. As 1, is a generic linear form, 

W,,,-1 n {A., = 0} = W,,, and U’ is an open set, using the dimension theorem we have 

that either W,,_I n U’ = 0 or every x E W,,,_, n U’ is an isolated point of W,,,-1 . Then 

&-i implies Wm-l n U’ = 0. 
Iterating this, we see that W, rl U’ = 0 for every r (0 5 r 5 m). Hence V rl U = 8 and 

this ends the proof of the statement. 
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Then 

Like in Theorem 3.2.1, the polynomials appearing in $ do not depend on the fixed 

point (xi 3. * * Jn-m). so, cm , . . . ,X,_,) is a quantifier-free formula satisfying: 

{(Xl )...) x~-,)EP~/3(Xn_-m+i )...) X,)EP : 

Fl(xl )...) x,)=0 A. . . A F,(Xl)...) x,)=0 

A Gl(xl ,..., xn)#O A...A G,,(xl,..., xn)#O} 

= {(Xl,. . . ,x+,) E P-” / $(x1,. . . ,xn_&}. 0 

Example 3.4.2. Let d and r be positive integers such that d > r > 3 and let cp be the 

formula: 

3X13X*... 3x,-l :x&Y1 - l=oA@.Y2 -Xl=oAX,d.Y3 --X,=0 

A ... AXrd_, .Y,-~-~~-~=O/\Y~-~,_,=0AY2.Y,-X1#0. 

It is clear that cp is equivalent to the quantifier-free formula: 

Yt.Y;:;Z.Yd’-3 r_-2 . ..Y.d.&-l=oAYl.Y~.Y,!-l#O. 

Let f, g E k[Yi, . . . , Y,] be the polynomials f = Yd’ YdL-’ YdL-’ r . r 1. r 2 . ..Y.‘.Yl - 1 and 

g= Yi.Y$Y,” - 1. 

As 

{(Yl,..., Yr) E k'lf(Yl,...,Yr)=O) 

= {(Yl,... 9 Yr> E Wf (Y l,...,yr)=OAg(yl,...,yr)=O) 

U{(Yl,..., rr) E~/f(yl,...,yr)=OAg(~l,...,yr)#0} 

then 

{(Yl, . . ..Yr) l k'/f(Yl,...,Yr)=O} 

={(Yl,..., Yr) E k'lf (Yl ,...,yr)=OAg(yl,...,yr)=O} 

U{(Yl,... > Yr) E Wf (Y l,...,yr)=OAg(yl,...,yr)#O}. 

Being {(Y~,...,Y~). E ~lf(.n,...,yr)=O} irreducible (f is irreducible) and not 

equal to {<VI,. . . , ur) E F/f (yl , . . . , yr) = 0 A g( yl, . . . , yr) = 0) (f does not divide g), 

it must be 

{(Yl,..., Yr> E k’lf (Y 1,...,yr)=O} 

= {<Yl, . . ..vr)Ek’/f(y~....,y,)=O~g(yl,...,y~)#O~. 
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Following the ideas used in Section 3.3, it can easily be seen that the sequential 

complexity bound of any algorithm that eliminates quantifiers using only dense repre- 

sentation of polynomials must be, in this case, at least d”. 
However, applying the algorithm described in Theorem 3.4.1 we obtain a quantifier- 

free formula equivalent to cp in time d O@). This shows that, in the case that the formula 

contains inequalities, the algorithm given in Theorem 3.4.1 is better than any possible 

algorithm which only uses dense representation of polynomials. 

Remark 3.4.3. Let Xi,. . . , X, be indeterminates over k, let Fi,. . . , F, E k[Xl,. . .,X,1 
be polynomials with total degrees bounded by an integer d such that d 2 n and let 

Gt,..., G,I l k[Xl,..., X,] be polynomials with total degrees bounded by an integer 6. 

We assume that Fl,. . . ,F,, Gl,. . . , G,, are given by a straight line program of length L. 

Let 9’s A”(k) be the set 

P={x~jt”/F~(x)=O A...A Fs(x)=OAGl(x)#O A...A G,/(x)#O}. 

Note that the condition “9 is non-empty” can be described by means of the formula: 

3X 1 . ..3x.,:F,(xl ,..., xn) = 0 A...A F,(x ,,..., xn)=O 

AG~(x~ ,..., x,)#O A...A G,,(xI ,..., x,)#O. 

Then, using the algorithm given in Theorem 3.4.1, we can decide whether the set 

B is empty in sequential time L2.(s.s’.6)‘(‘).d0(“) 

4. The general case 

In this section we will construct an algorithm that eliminates quantifiers in any 

formula cp E Z(k). As every arbitrary formula cp can be transformed, using logic tools 

like concatenating words, interchanging or inserting symbols, into an equivalent prenex 

formula by means of a well-parallelizable algorithm of sequential complexity 0( 1 cppl ) 
and this process does not modify 1~1 or the degrees of the polynomials involved or 

the number of indeterminates (see [16, 301) we will assume without loss of generality 

that cp is prenex. 

Let cp be a first order prenex formula of length ]cp] containing r blocks of quantifiers 

and let FI,. . . , F, E k[Xl,. . . , X,] be all the polynomials involved in cp. Following the 

ideas shown in [16] and replacing the effective Nullstellensatz used there by the algo- 

rithm described in Theorem 3.4.1 to decide whether a closed set is empty or not (see 

Remark 3.4.3), we can find a disjunctive form for the formula cp. Then we can apply 

the algorithm described in Theorem 3.4.1 to eliminate the first block of quantifiers. 

Iterating this procedure, we obtain the following: 

Theorem 4.1. Let cp be a jirst order prenex formula of length 1~1 containing r blocks 
of quantifiers and let FI,. . . ,F, E k[Xl,. . . , X,,] be all the polynomials involved in cp 
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encoded in dense form. Let D = max{ 1 + Cz=, degFi,n,s}. Then there exists a well- 
parallelizable algorithm without divisions with sequential time complexity bounded by 

O(/qI) +D(“(“))r which finds a quant$er-free formula $ equivalent to cp. The length 
of II/ and the number of polynomials involved in it is bounded by D(‘(“))‘. Moreover, 
the output polynomials are given by a straight line program of length D(“(“))r and 
their total degrees are bounded by D(‘(“)y. 

The complexity of the algorithm of Theorem 4.1 is better than the complexities of 

the elimination algorithms known up to now (note that the best of these complexities 
is D”c.r where c > 2 is a constant and our complexity is bounded by DcC,“)r where c 

is a constant) and this shows the advantage of encoding the output in form of straight 

line programs. 

A possibility to obtain an elimination algorithm with better bounds is to apply the 

results obtained in [20] which involve complexity bounds depending more intrinsecally 

on the geometry of the problem. 

5. Computation of the Chow Form 

Now, we will apply the algorithms given in Theorems 3.2.1 and 3.4.1 to obtain an 

algorithm which computes the Chow Form of an irreducible projective variety (see, 

e.g. [lo]). 

Let k be a field, let k be an algebraic closure of k and let k[Xo,. . .,X,] be the ring 

of polynomials in the indeterminates X0,. . . , X,, with coefficients in k. We assume that 

k is effective (when the characteristic p of k is positive we also assume that k is 

closed under the extraction of pth roots and that the extraction of these roots is done 

by an algorithm). 

We will denote by P” the n-dimensional projective space over k. 

Theorem 5.1. Let 4,. . . ,& E k[Xo , . . . ,X,] be polynomials with total degrees bounded 
by an integer d satisfying d > n. Let V = {x E P”/fi(x) = 0 A . . . A F,(n) = 0) be an 
irreducible projective variety and let r be its projective dimension. Then, there exists a 
well-parallelizable algorithm with sequential complexity bounded by ~~(‘).d~(~~) whose 
input is the set of polynomials {FI,. . . ,F,} given in dense form and whose output is 
the Chow Form of V, given by a straight line program of length sO(‘).dO(“). 

Proof. For every i, 0 5 i 5 r, let 

L(‘) = Y(Xo + . . . + y;x,, 

where q (0 5 i 5 r, 0 5 j I n) are new indeterminates over k[Xo, . . . ,X,,]. 

Let .,(P”)l+l x P” be the set 

r={WE(P”)‘+lxP”/fi(w)=O A~~~Aiqw)=OAL(O+v) 

=0 A... A ,+)(w)=o}. 
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Let rc:(P”)‘+‘xP”-+(P”)‘+r be the projection map. The set rc(r) is closed, ir- 

reducible and its codimension is 1 (see [34, Lemma 41). Therefore, there exists an 

irreducible polynomial F E k[ y]o < i < ?, 0 5 j 5 n such that 

7c(r)={yE(P”)‘+‘/F(y)=O}. 

The polynomial F is the Chow Form of the irreducible projective variety V. 

Let W={wEk -(n + 1 )(r + 1 ,,/F(,,,) = 0) c A(” + 1 )(r + l,(k). Then 

w = {Cd )...) y;)EP+‘)(‘+‘)/cp(y; )...) y,‘)}, 

where cp is the formula: 

3x,. . .3x,:fi(x0 )...) xn)=O A...A F&O ).,.) xn)=O 

A L(O)(XO 
0 

,...,&z,Yg,..., y,o)=O /VAL(‘)(xa )...) xn,yo’ )...) y,‘)=O. 

Note that cp has only one block of existential quantifiers. Applying the algorithm 

described in Theorem 3.2.1 we obtain a quantifier-free formula $ equivalent to 40. 

Then, 

W={(y,o )...) y;)Ek(“+t)(‘+t)/+(y; )...) y,‘)}. 

Let HI, _ . . , Hk be the polynomials involved in $. 

Let I={l,..., k}. For every A4 &I, 

AHi=OA A 4#0 
iEM jEI-M 

will denote the algebraic set 

{~E~~r~‘~~“~l~/H~(~)~OV’iEM A f$(w)#OVjEE-MM). 

In the same way, if Gr , . . . , G~E~[I~~Io~~~~,o~~~~, for every i, llilh, 

{G1=O A.. .A Gi=OAGi+t#O A...A GhfO} 

will denote the algebraic set 

(w~~((‘+l)(~+~)/G~(w)=O A . . .A Gi(w)=OA Gi+t(w)#O A***A Gh(w)#O}. 

Let C={M&I/M defines a HI,..., Hk-cell} (see [ 161) and let S be the subset of C 

such that 

W= U /\Hi=OA /\ l+#O. 

MES I iEM jEI-M 1 

As W = {F = 0) is a closed set, then 

l\Hi=OA A Hj#O 
iEM jEI-M 
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and, as F is irreducible, then there exists MO E S, Ma # 0 such that 

W= AHi=OA /1 I$#0 

{ i~Mo jEI-MO 

If u E MO, then 

W= AHi=OA A aE$#O C{Hu=O} 

{ iEM jEI-MO 1 

and therefore {H, # 0) n W = 8. 

On the other hand, let u E I be such that (H, # 0) n W = 0. If u $ MO, then 

{ 

AHi=OA A l$#O ~Wn{H~#O}=@ 

iEMo jEI---MO 1 

and this is impossible because MO is a HI,. . . , Hk-cell. 

Therefore, A40 = {i E I / {Hi # 0) n W = 8). 

Let P = gcd(Hi, i E MO), let G = r&(P) be the polynomial obtained by multiplying 

the irreducible polynomials which divide P (see [34]) and let H = l&r_Mo Hj. 

Statement: F = G/ gcd( G, H) 

Proof. Given i E I, F 1 Hi if and only if W n {Hi # 0) = {F = 0) n {Hi # 0) = 8 if and 

only if i E MO. Then F 1 G and, as F is irreducible, F does not divide H. Therefore, F 

divides G = [G/gcd(G,H)].gcd(G, H) and F does not divide gcd(G, H). Then F is an 

irreducible polynomial which divides G/ gcd( G, H). 

On the other hand, if f E k[ y]c < i < r,~ sj 5 ,, - - is an irreducible polynomial which 

divides G/ gcd( G, H), as G is square-free, then f divides G and f does not divide H. 

Therefore f divides Hi for every i E MO and f does not divide H. 

As 

{f =O)=(f =OAH#O}u{f =OnH=O} 

then 

{~=O}={~=OAH#O}~{~ =Or\H=O}. 

Then, as {f = 0) is irreducible and {f = 0) # {f = 0 AH = 0) (because f does not 

divide H), it must be {f = 0) = {f = 0 A H # 0). 

Therefore 

(f=O}={f=OAH#O}~ /\ HiEOA A I!$#0 

1 

=W={F=O} 
iEM jEI--MO 

and this implies that f [ F. Then it must be f = F. 
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This proves that F is the only irreducible polynomial which divides G/ gcd( G,H). 

As G/ gcd(G, H) is square-free (because G is square-free) then G/ gcd( G, H) = F. This 

concludes the proof of the statement. 0 

As the polynomials HI , . . . ,Hk were obtained applying the algorithm of sequential 

complexity s ‘(‘).d’@) described in Theorem 3.2.1 to the formula 

3xo...3x,:F,(x,, ,..., x,)=0 A...A Fs(xo ,..., x,)=OA 

A L(O)(xo 0 )...) xn,yo )...) y,o)=O A...A L(‘)(xo ,..., Xn,Yo’,..., y,‘)=O 

then k < s”(‘).do(“) and H 

bounded by do(“), 

1, . . . , Hk are polynomials in k[ ?]o < i < r,~ li 5 n, with degrees 

given by a straight line program of length sO(‘).dO(“). 

In order to find the set MO = {i E I/{Hi # 0) fl W = 8}, for every i, 1 5 i 5 k, we 

decide whether {Hi # 0) n W = 0 applying the algorithm described in Theorem 3.4.1 

to the formula 

3x0 . . . 3xn3y;. . .3y; : Fl(xo ,...,a)=0 /I... A Fs(xg,...,xn)=O A 

A L(O)(xo 0 
,...,Xnc,,Y,,..., y,“)=o A...A 

A L(‘)(xo r 
,...,Xn,Yo,..., v,‘>=OAHi(y~,...,y,‘)#O. 

The sequential complexity of this step is s O(l) do@‘). (Note that, if we had used . 

the algorithm described in Theorem 3.2.1 and Rabinowitz’ trick, the complexity bound 

would have been s”(l).do(nzr).) 

Once we have found the set MO, we compute F = G/ gcd(G, H) using the techniques 

in [28] (i.e. making generic transformations to obtain polynomials which are manic in 

one of the variables and then applying an algorithm that uses linear algebra to compute 

the greatest common divisor for polynomials in only one variable). These techniques 

do not modify the order of complexity. So, the sequential complexity of the algorithm 

we have constructed is s”(‘).do(nr). 0 

Note that the bound obtained to compute the Chow Form of I’ is, in some sense, 

intrinsic as it depends on the projective dimension r of V. This dimension can be 

computed using the algorithm in [ 181 in sequential time s~(~).~O(“). 
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