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Theory of Unidimensional Molecular Collisions. Broken Path Model

by L. Blum

Facultad de Ciencias Exodos y Naturales, Buenos Aires, Argentina (Received December 17, 1965)

A harmonic oscillator model for reactive chemical collisions is proposed. The model is
solved rigorously for the reaction H2 +   = H + H2. The results show the appearance
of quite narrow resonance peaks for the reaction cross sections.

I. Introduction
The theoretical study of chemical reactions from the

standpoint of the general collision theory1 requires the
knowledge of the cross sections involved in the reac-
tion. Recently, a number of experiments have been
conducted on this subject.2 From the theoretical point
of view, the problem of the reaction cross sections is a

very difficult one, and not as much has been done.
However, classical approaches have been explored re-

cently.3 Also, a quantum mechanical solution for a

reasonable potential surface has been attempted.4
Even in the simplest case, the solution of the problem

is very difficult. For this reason, it seems worthwhile
to study a model with an interaction potential which
only roughly approximates the real one, but which is
exactly solvable. The model will be described in sec-
tion II. It is similar to the model discussed by Eyr-
ing.6

Section III is devoted to the discussion of some fea-
tures of the cross section of the reaction

H2 +   =   + H2 (1-1)

in the case of a head on collision.

II. The Broken Path Model
Let us take the simple case of reaction 1-1 in one

dimension. Using Born-Oppenheimer’s approxima-
tion,3,4 we write the Schroedinger equation of the system
as (see Figure 1)

ñ*   52 d2

2Mn _dn22 dr232

d2

dn2dr23
  +    = e*

(II-l)
The solutions for r23 > qa (reactants or entrance chan-

nel) are of the form

   = [Aa'eikar° + Ba'e-ikar°]Va (II-2)

and for n2 > q0 (products or exit channel)

 ß = A$’ék^e (II-3)

where ra = r23 + Vs n2 and re = r12 + Va ns- Ba is
the amplitude of the ingoing wave. Aa and As are the
amplitudes of the outgoing waves for channels a and ß.

 ß is zero because there are no ingoing waves in chan-
nel ß. qa and q0 are the smallest distances of no in-
teraction.

In the region where all three atoms interact, the
function V (eq II-l) has a complicated form.6 The
solution of eq II-l in this region is extremely difficult;
in principle, one could either search for approximate
solutions of the exact equation, using variation or per-
turbation methods, or look for an approximate potential
which is exactly solvable. In this paper we choose the
latter approach.

The exact potential V is thus replaced by two (or
eventually more) “cut parabolic saddles” (Figures 2
and 3). The approximation also replaces the usually
curved reaction path by a broken line.

Analytically, in region I, we have

Vi = -fc'x2 + hy% + Vo (II-4)
with x and y defined in eq II-5.

(1) M. A. Eliason and J. Hirschfelder, J, Chem. Phys., 30, 1426
(1959).
(2) See, for example, D. Beck, E. F. Greene, and J. Ross, ibid., 37,
2895 (1962); S. Datz, D. R. Herschbach, and E. H. Taylor, ibid., 35,
1549 (1961).
(3) M. Karplus, R. N. Porter, and R. D. Sharma, ibid., 43, 3259
(1965).
(4) K. Pitzer and E. M. Mortensen, Special Publication No. 16,
The Chemical Society, London, 1962.

(5) H. Eyring, J. Walter, and G. E. Kimball, “Quantum Chemistry,”
John Wiley and Sons, Inc., New York, N. Y., 1954.

(6) S. Sato, J. Chem. Phys., 23, 592 (1955).
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x = r-a cos 0i — r23 sin 0i
^

y = r12 sin 0i + r23 cos 0i

where x is the distance along the reaction path, with y
the distance perpendicular to the reaction path. That
is

7i = Vo + ?V(/c cos2 0! - ¥ sin2 0i) +
r233(fc sin2 0i — ¥ cos2 0i) +

2ri2r23(/c + ¥) cos 0i sin 0  (II-6)
Similarly, in region II

Vi = 7° + n22(fc cos2 02 — ¥ sin2 02) +
r232(fc sin2 02 — ¥ cos2 02) +

2rnrn(k + fc') cos 02 sin 02 (II-7)

Equation II-l is now solvable in each of the regions
of configuration space (Figure 3). Let us then find the
solutions for region I. Using normal coordinates7

Qn = k\T\2 -j- h2rn

Qn = + hiT2i

eq II-l splits into two equations

( -8)

and

d20n 2

dQn2
+ ¥

d2<fei 2_

dQ2i2
+ ¥

Eu - ™Qn2 <An — 0

En
d—^"Qa^Joai

=

(H*9)

(11-10)

Equation II-9 is the usual Hermite equation for
harmonic oscillators. Equation 11-10 is a confluent
hypergeometric equation, which has two linearly in-
dependent solutions known as the parabolic cylinder or
Weber functions8

D - (i/2) - (tf/2) (621V- 2  2 );
D ~ (1/2) + (i«/2) (Qii'V' — 2  2 ) (11-11)

where e = 2En/h\/'\  and  , = V\t/ñ. The complete
solution for region I is then

¥1 = exp |
-

 (2 2j-H«(Qn V7U) X

[A\D - (1/2) - (,'e/2)(6íiV' 2¿72i) +
BiD - (1/2) + (ie/2) (QsiV'—2¿72i) (II-l 2)

For region II, we have, similarly

*2 =

exp{-yQi22|tf„(Qi2V^2) X

[A2D _ (1/2) _ (¿e/2)2iyn) d*

B2D _ (i/2) + (it/2) (Q22 V/—2í722) ] (11-13)

1 2 3

7* r*3

Figure 1. Activated complex.

Figure 2. Potential energy.
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Figure 3. Configuration space.

Let us now specialize in cases in which all oscillators
are in their fundamental levels. For reaction 1-1 this is
not a bad assumption since the activation energy is
about 7 kcal/mole, whereas the energy needed to excite
the first vibrational level is ca. 12 kcal/mole.

Now the problem is reduced to that of finding the
values of the different A's and B’s. This is done using
the conditions of continuity of the functions and the
first derivatives at the boundaries of the regions.

(7) E. B. Wilson, J. C. Decius, and P. C. Cross, “Molecular Vibra-
tions,” McGraw-Hill Book Co., Inc., New York, N. Y., 1959.

(8) P. M. Morse and H. Feshbach, “Methods of Theoretical Physics,”
McGraw-Hill Book Co., Inc., New York, N. Y., 1953.
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Four boundary channel «-region I

  {  'eikara + Ba'e~ikara)\a =   |« (H-14)

ikaiPa(A«'eikara - Ba'e~ikara)\a = * '|  ( -15)
For boundary region I-region II

£II (11-16)

£II (11-17)

For boundary region II-channel ß

^2¡g — A/eíkPrPif’¿jg (11-18)

^'¡g = í^gAy's’^^^g |g (H-19)

Using conditions of orthogonality of the wave func-
tions of the stable oscillators, we get simpler rela-
tions.

For boundary channel «-region I

AaeikaTa + Bae-ikar* = AlXa + BlXa* (11-20)

ika(Aaeikara - Bae~ikara) = AlXa’ + BlXa*' (11-21)

For boundary region I-region II

A\K\ A-     * = A 2*2 A- S2K2* (11-22)

    ' A"  \  */ = A2*2Z A" B2K2*f (11-23)

For boundary region II-channel ß

Afitpr» =    ß + BiXf¡* (11-24)

ik0A0eik^ = Aid +  * ß*' (II-25)

Here, we used the definitions

X« = J dr12 exp{ -y2|>a(r12 + qjg01)2 +

7116112 ] (6 _ d/2) - (,-«/2) (621^/2^721) (11-26)

Aa = Aa'    (-^")
Ba = B„' exP^-^")

and similar expressions for Xe and As'.
Also

   = J dx exp {
— V2(7i26i22 + 7116112)} X

6_(i/2) -(u/2){Qnd 2i7«i) (11-27)

k2 = J’ dz exp{ — 7i2Qi22}6_(i/2)-(,e/2)(622V2f722)

(11-28)

with va = VO.SMhFhh and x = (l/V/2) (r!2 + r23).

Integration of these expressions gives (see Appendix)

X« = (lAa)(—) exp(-ga2Ca)rr- -/r iV x
\72i/ (4aa2 + 1)

(2a
+ A”/4

2a* — j) S - (V2) - (»/2) (—baqa\/2i) (11-29)

and a similar expression for  ß

_
\/2x 1

(Aa + hi) \/ 2  (4  2 + l)‘/l ^

/2   + A,V4
\2ai — i) ·°-( !/2>—< «/2)(0) (II-30)

and a similar expression for  2. 6OJ ca, etc., are
numerical constants which depend on the parameters of
the potential energy, and are defined in the Appendix.

Upon solving eq 11-20-25, we obtain

AJBa = ( 1/ 2)ß~2,4“’’“ (11-31)

 ß/   = 2-fc“AlAf3 e~ikara
-

(II-32)

where

   = —CiiPiCz - 6264) + 62(62*63 - 61*64)

(11-33)

   — —6i(6i6s — 626e) +
62(62*6s - 64*6e) (11-34)

and

Ag = XgXg*' — Xg'xg*;    = KiKi*' - « '  *
6l =  2  *' — K2V2*; 62 =  2«1 —  2' 2*

61 = Xg*' f^gXg* j 6¡¡ =  ^' ikßXß (11-35)

63 = ffcaXa + Xa'; 64 = í/CaXa* + Xa*'

65 = íkaXa - Xa'; 65 = ífcaXa* ~ Xa*'

If some of the oscillators are in excited states, then
the matching procedure described here is not sufficient.
In that case a more general theory, the B-matrix
theory9, may be used. The use of this theory will be
discussed in separate papers.

III. Discussion of Results
In this section we discuss the coefficients

  = |Afl|y|Ba|2 (iii-i)
R = |Aa|y|Ba|2 (III-2)

where T is the probability of reactive scattering and R
is the probability of elastic scattering.

(9) A. M. Lane and R. G. Thomas, Rev. Mod. Phys., 30, 257 (1958).
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The parameters of the interaction potential V varied
with the range of physically reasonable values. The
results of some calculations for different values of the
parameters are shown in Table I. In all the cases we

Table I: Position and Width of First Resonances'*

First
reso-

h, »!, Reduced nance,
k k' deg deg width «

5 -0.20 50 40 10"» 0.8
5 -0.20 60 30 5 X 10"3 0.27
5 -0.20 70 20 2 X 10"3 1.1
3 -0.20 60 30 10"3 0.6
7 -0.20 60 30 10-2 0.9

Force constants are given in mdynes/A; qc = 0.1 A - e

is defined by eq 11-11.

observed the presence of resonances (see Figure 4).
Just at the top of the resonance peaks, 11-31 and -32
are not very accurate (estimated error at the top, <15).

Though all the cases of Table I were computed using
eq 11-31 and -32, Breit and Wigner’s resonance for-
mula10 gives a more accurate estimate at the top of the
peak. Also, the functional dependence on the parame-
ters ca (which is a function of the interaction potential
parameters) and qa (the range of the potential) is better
seen in that formula.

where

Ta rrfl
(E -     + y4r2

(III-3)

     | „|2; I>fc,[xfl|2;   =  „ + I> (III-4)
is the total width of the level. In our case

  = exp(—2caqa2) (III-5)
as may be seen from (11-29). The estimated widths
of Table I are given using this formula. It is clear that
the dependence on the parameters of the potential,
particularly qa, is very strong. For this reason, more
accurate calculations are needed to prove the existence
of such a behavior.

In particular, we are studying the unidimensional re-
action with a Eyring-Sato6 potential, using a varia-
tional method. Our preliminary results indicate that
for qa = 0.35, ca is of the order of 7; that is, the levels
are relatively broad.

Resonances in molecular collisions have been dis-
cussed in several cases.11-13 The influence of these
resonances in chemical reactions is to reduce the steric

Figure 4. First resonance: k = 5.0, k' = —0.2;
0i = 60°, 02 = 30°; qc = qff = 0.1 A; cf. eq 11-11 for «.

factor.14 The precise nature of these resonances will
be discussed in forthcoming papers. They may be due
to some kind of dynamical matching between the mo-
tion of the atoms, but they may also be due to a poor
overlap of the internal wave function with the channel
wave functions. This overlap would be greater in a
“curved reaction path.”

Acknowledgments. The author is indebted to Dr.
R. Ch. de Guber for her kind permission to use the Mer-
cury Ferranti computer of this university.

Appendix
After some elementary transformations we may write

(11-26) in the form

e"eel‘ ’

WxrnD^h)-M2)(xV2i) (A-l)
where

a a
= ñA 0« + 7   2) (A-2)

2n32 72i

ba =
, \—[yuhi(hi - hju/hi) —

AW 721

va{hi/hi — tgd i)] (A-3)

cj = l/i[va(h/h - tgdi)2 +
yn(hi — hihi/hz)2] (A-4)

(10) See, for example, T. Y. Wu and T. Ohmura, “Quantum Theory
of Scattering,” Prentice-Hall Inc., Englewood Cliffs, N. J., 1962.

(11) S. Matthiess and V. G. Neudachin, Soviet Phys. JETP, 18, 95
(1964).
(12) A. M. Brodskii and A. Y. Temkin, Dokl. Akad. Nauk SSSR,
152, 127 (1963).
(13) L. Blum, Bull. Am. Phys. Soc., 9, 42 (1964).
(14) L. Blum, Nuovo Cimento, 35, 1164 (1964).
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Using the integral representation of the Weber func-
tion16

D.   (1/2) — (ie/2) (zV2 ) =

»-»**/2

G+ )
j"*dt e

~ (‘!/2) ~(zt%/2t)t- (1/2)+(ie/2)

we get

—    1 — 6a'xr*i_ ( v“ Va e~Ca'rn> r*

JJdt e-‘V2-ziV2ir(l/2) + (.V2) (A.6)

Changing the order of integration
/ v \Vl -ca'rij!

x« = (^) -7:—rv f d¿e-^2r'1/2>+«*/2> X
\7TT2l/ /1 2e\Jo

W\2 + 2)

J’ dx e~xHaa */2^ ~ x(.ha’ri3 + (A-7)

   = ( / 3) \7  2 / Al
/ 2 -

— ca'rzi8 y/w

r(l + 0 («. + Í/2) Vs X

fadt e-tt/2r (i/2)+(«/2) expf"(A-8)Jo L 2(2a„ + 0 J

= (i/W \t721/ A 1

/ 2 fl-caW g —6«'ir288/2 ( 2a+t)

G+ )
(aa + z/2) Vs X

^ ^ ^ —rs/2[(2aa —s)/2aa+s)I + [(ta'rgsí V»)/(2aa4i)]  

-(l/2) + (««/2) (A-9)

and changing variables to

í' - «(AAV''\2aa + 1) (A-10)

we get

Xa = l/W(A- ^ —caV238 ^ —6a'r288/2(2aaH-t)

\72i/_/l ,
¿e\ (aa + i'/2)vG+ )

(9a
_L ,'\Vt(i+H) rtco^±-  f dt'e-*'

2oa - í/ Jo

X

— <'!/2) +<’ V2s6ars3^
- (1/2) + (»«/2)

where

 >  =
ia'

4fla2 + 1

(A-ll)

(A-12)

Recalling the definition of the Weber function A-5, we

get, after some simplifications

Xa = l/is1(A  21/

 /s 1
-ca'ga«_ 1 /2flg +

x
a

~ 2/(4aa2 + l)v,X2oQ

(1/2) — (t«/2) (— 6a?aV/2í) (A-13)

with Ca = Ca' — OaV·
To find zci and k2 we note that (11-27) and (II-28)

can be written as

V27Ü(L +  «)/.e"°,ZlD"(1/2>"tie/2)(zV^)

with j = 1,2 and

1
Ol =

2( » + hi)2  2 

(A-14)

[712(^5 + ie)2 + Ynjii + Í2)2]

CLq,
—

712(^5 + ^)2
722(^7 + is)2

(A-15)

(A-16)

Using (A-13) we get

\Ztt 1
Kj =

V2yy(hs + A) (4 ^2 + 1) '4

U/i

T7; X

(2a
4- vVe/4

2TT-J 5-(i/2)-(,V2)(0) (A-17)

(15) I. S. Gradshtein and I. M. Ryzhik, "Tablitsii Integralov Summi
Riadovi Proizvedenii,” Moscow, 1962.
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