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Abstract

Let N ≡ 1 mod 4 be the negative of a prime,K =Q(
√
N) and OK its ring of integers. Let

D be a prime ideal inOK of prime norm congruent to 3 mod 4. Under these assumptions,
there exists Hecke characters�D of K with conductor(D) and infinite type(1,0). Their L-
seriesL(�D, s) are associated to a CM elliptic curveA(N,D) defined over the Hilbert class
field of K. We will prove a Waldspurger-type formula forL(�D, s) of the form L(�D,1) =
�

∑
[A],I r(D, [A], I )m[A],I ([D]) where the sum is over class ideal representativesI of a

maximal order in the quaternion algebra ramified at|N | and infinity and[A] are class group
representatives ofK. An application of this formula for the caseN =−7 will allow us to prove
the non-vanishing of a family of L-series of level 7|D| over K.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Given an elliptic curveE over Q, and a fundamental discriminantD, a formula of
Waldspurger relates the value ofL(E⊗D,1), the twist ofE by D, with the coefficients
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of a 3/2 modular form (see[18]). The purpose of this work is to get a formula for
quadratic twists of a family of elliptic curves with complex multiplication not defined
over the rationals.

Given an imaginary quadratic fieldK the theory of complex multiplication (see [14])
gives a relation between elliptic curves with CM given by an order ofK and L-series
associated to Hecke characters� on K. The simplest case is whenK = Q(

√
N) with

N ≡ 1 mod 4 the negative of a prime and� is a character of conductor
√
N . In this

case the L-series corresponds to a CM elliptic curveA(N) studied by Gross in [4],
defined overH, the Hilbert class field ofK. A formula for the central value ofL(�,1)
was given by Villegas in [12].

In this paper we will study the central value of the L-series corresponding to the
CM elliptic curvesA(N,D), given by twists ofA(N) by the quadratic character of
conductor

√
ND whereD is a prime ideal ofK prime to

√
N and with prime norm

congruent to 3 mod 4. If we denoteh the class number ofK, the prime idealD hash
Hecke characters�D of conductorD associated to it. The relation between the L-series
of A(N,D) andL(�D, s) is given explicitly by

L(A(N,D)/H, s) =
∏
�D

L(�D, s)L(�D, s),

whereH is the Hilbert class field ofK and the product is over theh Hecke characters
associated toD (see [4, formula (8.4.4), Theorem 18.1.7]). If we defineB be the
Weil restriction of scalars ofA(N,D) to K, then B is a CM abelian variety, and
L(A(N,D)/H, s) = L(B/K, s).

Let B be the quaternion algebra ramified at|N | and infinity. Given an elementx ∈ B

we denote N(x) := xx̄ its norm and Tr(x) := x + x̄ its trace. To the idealD and an
element[A] of Cl(OK) we will associate a maximal orderO[A],[D] in B depending only
on [A] and the class ofD. If {I } are representatives for leftO[A],[D]-ideals, the main
theorem (Theorem 6) gives the formulaL(�D,1) = �

∑
[A],I r(D, [A], I )m[A],I ([D])

where the sum is over the ideals{I } and ideal representatives ofOK , � is a period,
r(D, [A], I ) is a rational integer and the numbersm[A],I ([D]) are algebraic integers.

The paper consists of four sections besides the introduction. In the second section
we give the basic definitions and derive a first formula for the value of the L-series
at 1 (following Hecke’s work on L-series, see [7]). Later we relate theta functions of
quadratic forms to theta functions on the Siegel space. In the third section we introduce
the period� and using Shimura’s theory in Complex Multiplication we compute the
field where the algebraic integersm[A],I belong to. In the fourth section we study the
problem of deciding whether two points in the Siegel space are equivalent or not in
our specific case. For this purpose we introduce quaternion algebras, and relate special
points with left O[A],[D]-ideals. In the last section we study in detail the case when
the class number ofK is one. In this case the elliptic curveA(N) is defined overQ
and the numbersm[A],I turn out to be rational integers. In the caseN = −7 using the
fact that the quaternion algebra has class number 1 for maximal ideals, we prove that
the CM elliptic curvesA(N,D) defined overK have a non-vanishing L-series for all
primesD.
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We finish this work with a remarkable relation between the numbersm[A],I and the
coordinates of the eigenvector of the modular form associated toA(N) represented in
the Brandt matrices of levelN2.

2. L-series

2.1. L-series definition

Given a number fieldK, we will denoteOK its ring of integers,Cl(OK) its class
group andh its class number.

Let N ≡ 1 mod 4 be the negative of a prime,N �= −3 and K := Q(
√
N). Let

D ≡ 1 mod 4 be the negative of a prime such that the ideal generated byD splits
completely inK, i.e. (D) = (D) ¯(D). We will denoteL := Q(

√
D). Since the rings

OK/D and Z/|D|Z are isomorphic we defineεD by

(OK/D)×
εD

��

������������
± 1

(Z/|D|Z)×
(
|D|

)
�����������

where
(
|D|

)
is the Kronecker symbol. The characterεD induces a Hecke character

�D on principal ideals by�D(〈�〉) = εD(�)�.

Proposition 1. The character�D on principal ideals is well defined.

Proof. Since 1 and−1 are the only units inK, we must check thatεD(�)� =
−εD(−�)�. This follows from the fact thatεD is multiplicative and|D| ≡ 3 mod 4,
henceεD(−1) = −1. �

Given D let �D denote an element inGal(Kab/K) corresponding toD via the
Artin–Frobenius map, whereKab denotes the abelian closure ofK. We can defineεD
in a different way:

Proposition 2. If � /∈ D, εD(�) = (
√

�)�D−1.

Proof. It is clear that
√

��D = �2
√

� where �2 = ±1. By definition givenD an
ideal of K̄ lying aboveD, �D satisfies�2

√
� = √��D ≡ √�|D| modD. But

√
�|D| =

�
|D|−1

2
√

� hence�
|D|−1

2 ≡ �2 modD. In particularεD(�) = εD(�2) = �2 since |D| ≡ 3
mod 4. �
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The character actually depends on the choice ofD (i.e. we have one character
associated toD and another one associated toD̄). Abusing notation� will denote the
character associated toD if it makes no confusion.

The character� defined on principal ideals extends toh Hecke characters onI (OK)

the set of ideals ofOK . We fix an extension once and for all and we call it�. Then
� : I (OK) −→ T�, whereT� is the degreeh field extension ofK.

Definition 3. The L-series associated to� is

L(�, s) :=
∑
A

�(A)

NAs , (1)

where the sum is over all idealsA of OK .

By Hecke’s work we know thatL(�, s) extends to an analytic function in the upper
half plane, and satisfies the functional equation:

(
2�√
ND

)−s
�(s)L(�, s) = w�

(
2�√
ND

)s−2

�(2− s)L(�̄,2− s),

wherew� is the root number. The character� defines a weight 2 modular form given
for z in the upper half plane byf�(z) =

∑
A �(A)e2�izNA, which has levelND. The

root number is given byw� = f�(
i√
ND

)/f�(
i√
ND

).

Proposition 4. Let � be a generator ofDh. The root number in the functional equation

for �D is w� = �2

(
2
|N |

)
i �
|�| , where�2 is −1 if 2 is ramified inK(

√
�
√
N) and 1 if

not.

Proof. See [1, Proposition 10.6, p. 20]. This is equivalent to saying that if� is the

generator ofDh such thatK(
√

�
√
N) is a quadratic extension ofK of conductor

√
ND

thenw� = −
(

2
|N |

)
i �
|�| . �

The characters� are associated to a CM elliptic curveA(N,D) defined overH, the
Hilbert class field ofK, by the formula:

L(A(N,D)/H, s) =
∏
�D

L(�D, s)L(�D, s).

See[4, formula (8.4.4), Theorem 18.1.7].
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2.2. Choosing characters in a consistent way

Let D andD′ be prime ideals ofK as before (i.e. they have prime norm congruent to
3 mod 4). While extending the Hecke character�D to I (OK) we get a field extension
T�D . If we extend the Hecke character associated toD′ in an arbitrary way, the image
of both characters will lie in different fields. There is a natural way of defining a Hecke
character�D′ associated toD′ such that�D′(I (OK)) ⊂ T�D . Any ideal of K raised
to the h-power is principal, hence for all idealsA prime to DD′ we define:

�D′(A) = �D(A)
εD′(Ah)

εD(Ah)
. (2)

There is some abuse of notation on this definition since althoughAh is principal, it
has two generators� and−�. But εD(−�) = −εD(�) and εD′(−�) = −εD′(�) hence
the quotient is well defined.

Proposition 5. There exists a Hecke character associated toD′ taking values inT�
and defined as above on ideals prime toDD′.

Proof. We start by proving that the character defined above is a Hecke character on

ideals prime toDD′. If A is principal, sayA = 〈�〉, then �D′(�) = εD(�)�
εD′ (�)h
εD(�)h .

Sinceh is odd, andε takes the values±1, we get that�D′(�) = εD′(�)�, hence it is
a Hecke character.

Let q be a prime ideal in the same equivalence class asD and prime toDD′
(there exists such an ideal by the Tchebotarev density theorem), sayq� = D. Then
�D′(D) = �D′(q�) = �D′(q)�D′(�) = �D′(q)εD′(�)�. In this way we can extend
the character to all ideals prime toD′ and clearly this is well defined, taking values
in T�. �

From now on given two different characters�D and �D′ we will always assume
that they are chosen in a consistent way.

Given a quadratic imaginary fieldQ[√−d] we denotewd the number of units in its
ring of integers. Forz ∈ h, we recall the definition:

�(z) = e2�iz/24
∞∏
n=1

(1− e2�inz).

While choosing ideal class representatives{[A]} for K we will assume they are prime

to the ideal(6) and that they are written asA = 〈a, b+
√
N

2 〉 with b ≡ 3 mod 48. We

define�(A) := �( b+
√
N

2a ). Our main theorem is the following:

Theorem 6. GivenD a prime ideal of K of prime norm congruent to3mod 4 let �D
be a Hecke character as before. Let B be the quaternion algebra overQ ramified at
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|N | and infinity. For each ideal class representative[A] of K there existsO[A],[D] a
maximal order in B such that

L(�D,1) = 2�

w|D|
√|D|�(D̄)�(OK)


∑
[A]

∑
I

r(D, [A], I )m[A],I ([D])

 , (3)

where {I } is a set of leftO[A],[D]-ideal representatives, r(D, [A], I ) ∈ Z and
m[A],I ([D]) are algebraic integers lying in a finite field extension ofQ (see Diagram1).

The term� = 2�
w|D|

√|D|�(D̄)�(OK) on (3) corresponds to a period of the abelian

variety B and the numberr(D, [A], I ) is counting some special points with a±1
weight (see Section 4.3 for details). The rest of this paper will be a constructive proof
of Theorem 6.

2.3. Computing the L-series value at 1

Given A an ideal ofK, we will denote [A] its class in the class group. We can
decompose the L-series as

L(�, s) =
∑
[A]

∑
B∼A

�(B)
NBs . (4)

Proposition 7. All integral ideals equivalent toA are of the formcA for somec ∈ A−1.

Proof. Easy to check. �

Since the only units inOK are 1 and−1,

∑
B∼A

�(B)
NBs =

1

2

∑
c∈Ā

�(c)�(A)

�(NA)

NAs

Ncs
= 1

2
NAs �(A)

�(NA)

∑
c∈Ā

�(c)
Ncs

.

Since � is multiplicative �(A)�(Ā) = �(NA), then �(A)

�(NA)
= 1

�(Ā)
. Using the fact

that NA = NĀ it follows that
∑

B∼A
�(B)
NBs = 1

2
NĀs

�(Ā)

∑
c∈Ā

�(c)
Ncs

and we can write the

L-series as

L(�, s) = 1

2

∑
[A]∈Cl(OK)

NAs

�(A)

∑
c∈A

cεD(c)
Ncs

. (5)

Without loss of generality, we may assume thatA = aZ + b+√N
2 Z and D = |D|Z +

b+√N
2 Z, henceAD = a|D|Z + b+√N

2 Z (see [12, Section 2.3, p. 552]). Ifc ∈ A
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then c = ma + nb+√N
2 , and εD(c) = εD(ma + nb+√N

2 ). Sincenb+√N
2 ∈ D, εD(c) =

εD(a)εD(m) = εD(NA)εD(m). We will denotezA the point b+
√
N

2a (respectivelyzD
the point b+

√
N

2|D| and zAD the point b+
√
N

2a|D| ). Also we denote by
∑′ the sum removing

the zero element (or zero vector depending on the context). We have

L(�, s) = 1

2

∑
[A]∈Cl(OK)

NA1−sεD(NA)

�(A)

∑
m,n∈Z

′ εD(m)(m+ zAD|D|n)
N(m+ zAD|D|n)s . (6)

If we changem by −m in the sum, sinceεD(−1) = −1, the term in the inner sum
can be written as εD(m)

(m+(−z̄AD)|D|n)|m+(−z̄AD)|D|n|2s−2 , where the point−z̄AD is in the

upper half plane. This sum is related to Eisenstein series that we define below:

Definition 8. Let p be a prime integer andε(m) :=
(
m
p

)
. We define the Eisenstein

series associated toε by E1(z, s) =∑′
m,n∈Z

ε(m)

(m+zpn)|m+zpn|2s .

By (6) takingp = |D| we get the relation:

L(�, s) = 1

2

∑
[A]∈Cl(OK)

NA1−sεD(NA)

�(A)
E1(−z̄AD, s − 1). (7)

E1(z, s) turns out to be a modular form of weight 1 with a character. We need to
compute its value ats = 0 for a point z in the upper half plane. This was done by
Hecke and its value (given in formula (11)) can be found in [7, formulas (26), (27),
p. 475]. For the reader convenience we re-derive the formula.

The series ofE1(z, s) converges only for�(s) > 3
2, but it can be analytically

continued to the whole plane and satisfy a functional equation. We will compute its
value ats = 0 using Hecke’s trick. Sinceε is a character of conductorp, we break
the sum overm as

E1(z, s) =
∑
m∈Z

′ ε(m)
m

+ 2
∞∑
n=1

∑
r modp

ε(r)
∑
m∈Z

1

(zpn+ r +mp)|zpn+ r +mp|2s (8)

and dividing the last sum byp2s+1 we get

E1(z, s) = 2L(ε, s)+ 2
∞∑
n=1

∑
r modp

ε(r)

p2s+1

∑
m∈Z

1(
zpn+ r

p
+m

) ∣∣∣∣zpn+ r

p
+m

∣∣∣∣
2s . (9)
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For z in the upper half plane we define:

H(z, s) =
∑
m∈Z

1

(z+m)|z+m|2s .

Lemma 9. Let z = x + iy be a point in the upper half plane, then

∞∑
m=−∞

(z+m)−(s+1)(z̄+ x)−s =
∞∑

n=−∞
�n(y, s + 1, s)e2�inx,

where�n(y, s + 1, s) is given by

�n(y, s + 1, s)
i�(s + 1)�(s)

(2�)2s+1 =


n2se−2�ny�(4�ny, s + 1, s) (n > 0),
|n|2se−2�|n|y�(4�|n|y, s, s + 1) (n < 0),
�(2s)(4�y)−2s n = 0,

and �(y, �,�) = ∫∞
0 (t + 1)�−1t�−1e−yt dt.

Proof. This is Lemma 1, p. 84[15]. �

The right-hand side of Lemma 9 equality converges for anys > 0, so we can
compute the limit whens tends to 0 of�n(y, s + 1, s) in the different cases:

• Casen = 0: lims→0
(2�)2s+1

i�(s+1)
�(2s)
�(s)

(4�y)−2s = −i�.

• Casen < 0: lims→0
(2�)2s+1

i�(s+1)�(s)
|n|2se2�|n|y ∫∞

0 (t + 1)s−1t se−4�|n|yt dt = 0.

• Casen > 0: lims→0
(2�)2s+1n2s

i�(s+1)
e−2�ny 1

�(s)

∫∞
0 (t + 1)s ts−1e−4�nyt dt .

We just need to compute lims→0
1

�(s)

∫ 1
0 (t + 1)s ts−1e−4�nytdt . Doing integration by

parts:

∫ 1

0
(t + 1)s ts−1e−4�nyt dt = 2se−4�ny

s
−

∫ 1

0
t s(t + 1)s−1e−4�nyt dt

−1

s

∫ 1

0
t s(t + 1)se−4�nyt (−4�nyt) dt.

The function�(z) has a simple pole atz = 0 with residue 1. Dividing the integral by
�(s) and taking the limit whens tends to zero we get

lim
s→0

�n(y, s + 1, s) = −2�ie−2�ny. (10)

We just prove:
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Lemma 10. lims→0H(s, z) = −�i − 2�i
∑∞

n=1 q
n.

Eq. (9) can be written as

E1(z, s) = 2L(ε, s)+ 2
∞∑
n=1

∑
r modp

ε(r)

p2s+1H

(
zpn+ r

p
, s

)
,

which by Lemma9 is the same as

E1(z, s) = 2L(ε, s)+ 2
∞∑
n=1

∑
r modp

ε(r)

p2s+1

∑
k∈Z

�k(yn, s + 1, s)e2�ik( xpn+r
p

)
.

Let G(ε) := ∑
r modp ε(r)�

r
p be the Gauss sum associated to the quadratic character

ε. Let �p = e
2�i
p . If we take the limit ass tends to zero and use Lemma10 in the

inner sum we get:

∑
r modp

ε(r)

p

(
−�i − 2�i

∞∑
k=1

qnk�rkp

)
= −2�i

p
G(ε)

∞∑
k=1

ε(k)qnk.

If p is congruent to 3 mod 4 it is a well-known result thatG(ε) = i
√
p, then

lim
s→0

E1(z, s) = 2L(ε,1)+ 4�√
p

∞∑
n=1


∑

d|n
ε(d)


 qn. (11)

Applying this to Eq. (7) (with p = |D|) we get the value ofL(�,1).

We will write this number in terms of theta functions so as to relate the value for
different idealsD. Let B be any ideal ofL. For z in the upper half plane, we define

�B(z) =
∑

	∈B e
2�iz N	

NB = 1+∑∞
n=1 rB(n)qn whererB(n) is the number of elements

	 ∈ B of norm nNB. Clearly if two ideals ofL are equivalent, their theta functions
are the same.

Lemma 11. Let w|D| be the number of roots of unity in L, and z a point in the upper
half plane. Then

w|D|
√|D|

4� E1(z,0) =∑
[B]∈Cl(OL)

�[B](z).

Proof. We need to check that theq-expansion on both sides is the same. The constant
term on the right-hand side ish, the class number ofQ(

√
D). On the left-hand side

we haveL(ε,1)w|D|
√
D

2� which by the class number formula ish. Since the constant term
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is the same, we can apply the Mellin transform on both sides. Dividing byw|D| we
need to prove the equality:

∞∑
n=1

∑
d|n ε(d)
ns

= 1

w

∑
[B]∈Cl(OL)

∞∑
n=1

r[B](n)
ns

. (12)

Given a number fieldL the zeta function associated to it is


L(s) =
∑
B

1

NBs
,

where the sum is over all integral ideals ofL. It follows easily from the definition that

L(s) = 1

w

∑
[B]∈Cl(OL)

∑∞
n=1

r[B](n)
ns

which is the right-hand side of (12).
It is a classical result that
L(s) = 
(s)L(ε, s) (see for example [19, Theorem 4.3, p.

33]), then
L(s) =
(∑∞

n=1
1
ns

) (∑∞
m=1

ε(m)
ms

)
which is the left-hand side of (12). �

Note that−z̄AD = zĀD̄, hence by Eq. (7) and Lemma 11 we get

L(�,1) = 2�

w
√|D|

∑
[A]∈Cl(OK)

εD(NA)

�(A)

∑
[B]∈Cl(OL)

�B(zĀD̄).

By Eq. (2) �D̄(A) = �D(A)εD̄(Ah)εD(Ah) = �D(A)
(
NA
|D|

)h
. Since h is odd it

follows that εD(NA)
�D(A)

= 1
�D̄(A)

.

Theorem 12. The value ats = 1 of L(�, s) is given by

L(�,1) = 2�

w|D|
√|D|

∑
[A]∈Cl(OK)

∑
[B]∈Cl(OL)

�B(zAD̄)
�D̄(Ā)

.

2.4. Theta functions in several variables

The goal now is to write the identity of Theorem12 in terms of theta functions
in two variables so as to relate theL-function values for different primesD. Given
an element(�z,�) in C2xh2 (the Siegel space of dimension 2), the generalized theta
function is defined by

�(�z,�) =
∑
�n∈Z2

exp(�i�nt��n+ 2�i�nt .�z).
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It satisfies a functional equation for the group�12 (following Igusa notation), which is

defined to be:� =
(
A B

C D

)
∈ Sp2g(Z) such thatAtC and BtD have even diagonal.

In particular,

�(�0,−(Q�)−1) = √
det(Q) (−i)��(�0,Q�), (13)

�(�z,�+ B) = ���(�z,�), (14)

where Q and B are symmetric, integral and even diagonal two-by-two matrices,Q
corresponds to a positive definite quadratic form,� is a point in the upper half plane
and �� is a root of unity. (see[8, Section 5, p. 189].)
L is an imaginary quadratic field, so given an idealB of Cl(OL) we can associate to

it a quadratic form of discriminantD via the group isomorphism betweenCl(OL) and
{equivalence classes of quadratic forms of discriminantD}. More specifically, given a
quadratic form of discriminantD, say [a, b, c] whereb2 − 4ac = D, we associate the

ideal 〈a, b+
√
D

2 〉; conversely given any primitive ideal (i.e. not divisible by any rational

integer greater than 1)B, we can chose a pair of generators of the formB = 〈a, b+
√
D

2 〉,
and associate to it the quadratic form[a, b, c] wherec = (b2−D)/(4a). We will denote

QB the matrix

(
2a b

b 2c

)
associated to the quadratic form[a, b, c].

Let B be a primitive ideal representing a class inCl(OL), sayB = 〈a, b+
√
D

2 〉 with

a = N(B). If � ∈ B then it can be written uniquely as� = ma + n
(
b+√D

2

)
. Hence

N(�) = a(am2+mnb + n2 b2−D
4a ) and

�B(z) =
∑

(m,n)∈Z2

exp

[
�iz(m, n)

(
2a b

b 2c

)(
m

n

)]
. (15)

Sincez ∈ h andQB is symmetric,zQB ∈ h2. Hence�B(z) = �(�0, zQB). So we can
rewrite the main formula of Theorem12 as

L(�,1) = 2�

w|D|
√|D|

∑
[A]∈Cl(OK)

∑
[B]∈Cl(OL)

�(�0, zAD̄QB)
�D̄(Ā)

. (16)

3. Normalization of the theta function

Given a pointzAD, we define the normalizer:

�(zAD) := �(D)�(OK)�D(Ā).
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Then the main formula (16) can be written as

L(�D,1) = 2�

w
√|D|


 ∑
[A]∈Cl(OK)

∑
[B]∈Cl(OL)

�(�0, zAD̄QB)
�(zAD̄)


 �(D̄)�(OK). (17)

We are interested in studying the number:nA,B,D̄ = �(�0, zAD̄QB)/�(zAD̄). The nor-
malizer � is chosen so as to makenA,B,D̄ an algebraic integer as we will see later.

3.1. Complex multiplication

Let FM be the field of all modular functions of levelM whoseq-expansion at every
cusp has coefficients inQ(�M) where �M is any primitive Mth root of unity. Let
K(M) denote the ray class field ofK modM, and for a prime idealp in K relatively
prime toM (say of normp), �(p) denotes the Frobenius automorphism ofK(M)/K

corresponding top.
Following Stark’s notation ifA is an integral matrix of determinant relatively prime

to M, we denotef ◦A the action ofA on f which is characterized by the two properties:

• (f ◦ A)(z) = f (Az) if A ∈ Sl2(Z),

• (f ◦ A)(z) = �d(f )(z) if A =
(

1 0
0 d

)
where �d ∈ Gal(Q(�M)/Q) is defined

by �d(�M) = �dM . We extend this action tof by acting on the coefficients of the
q-expansion at infinity.

Theorem 13. Let f (z) be in FM and suppose that(p) = pp̄ in K where p is a
rational prime such that(p,NM) = 1. Suppose thatA = [�, 
] is a fractional ideal
of K with ϑ = �/
 in h and letB(�


 ) be a basis forp̄A. Thenf (ϑ) is in K(M) and
f (ϑ)�(p) = [f ◦ (pB−1)](Bϑ).
If in addition f is analytic in the interior ofh and has algebraic integer coefficients

in its q-expansion at every cusp, then f (ϑ) is an algebraic integer.

Proof. This is Theorem 3 of[16, p. 213]. �

Proposition 14. Following the previous notation, �(�0, z
a|D|QB)/�( z

|D| )�(z) is in
F24aD2.

For the proof we need the elementary result:

Lemma 15. If f (z) is a modular form of weight k and level N and D is a positive
integer thenf ( z

D
) is a modular form of weight k and level at most ND.

Proof of Proposition 14. Let B be the idealB := Za + Z b+√D
2 . Then the quadratic

form associated toB is [a, b, c] with b2 − 4ac = D and the matrix of the bilinear
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form is

(
2a b

b 2c

)
. The theta series�B is the theta series associated to this quadratic

form hence it has level|D|, weight 1 and a character�(d) = (
D
d

)
(see[9, Theorem

20, p. VI–25]). Using the previous lemma, we have that�B( z
a|D| ) is a modular form

of weight 1 and levelaD2.
The eta function is a modular form of weight 1/2 and level 24, then�( z

|D| ) has
weight 1/2 and level 24|D|, so the product of the two eta functions has weight 1 and
level 24|D|. Hence the quotient has weight 0 and level at most 24aD2. We do not
need a sharp estimate of theq-expansion, hence the minimum level is not important.

From theq-expansion of the functions�B, and � it is clear that theq-expansion at
infinity of �(�0, z

a|D|QB)/�( z
|D| )�(z) is in Q(�24aD2), hence we just need to check this

condition at the other cusps. For that purpose we will study theq-expansion of each
form separately.

Since the theta function�B is a modular form for�0(|D|), there are just two
inequivalent cusps which may be taken to be 0 and∞. One transformation that send

infinity to zero is given by the matrixS =
(

0 1
−1 0

)
sendingz to −1/z.

The functional equation (13) reads as

�
(�0,Q−1

B (−1/z)
)
= det(QB)1/2(−i)z�(�0,QBz) =

√|D|(−i)z�(0,QBz). (18)

SinceQ−1
B = Adj(QB)/|D|, replacingz by z/|D| we get

�
(�0,Adj(QB)(−1/z)

)
= (−i)z/√|D| �(�0,QBz/|D|). (19)

ReplacingQB by its adjoint matrix, we see that theq-expansion at 0 includes a
4th root of unity and the square root of|D| (the z factor actually cancels out a factor
coming from the eta function). Since

√
D ∈ Q(�D), the q-expansion of�(0,QB) has

coefficients inQ(�8D) at all cusps. Replacingz by z/a|D| we add at most (aD2)th roots
of unity to the q-expansions, hence theq-expansion of�(0, z

a|D|QB) has coefficients
in Q(�24aD2) at all cusps.

We will use the following explicit version of the transformation formula for�, which
can be found in[12, p. 560]:

Lemma 16. Let
(

� �
� �

)
∈ Sl2(Z) with � even, � positive(and odd), and � ∈ h. Then

�
(

��+ �
��+ �

)
=

(
�
�

)
e24(�)

√
��+ ��(�), (20)

where� = 3(�− 1)+ �(�− �)− (�2− 1)��.
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For any matrix in�0(2), the modular form� changes by a 24th root of unity, hence
its q-expansion at the equivalent cusps modulo�0(2) have coefficients inQ(�24) and
the q-expansion of�( z

|D| ) has coefficients inQ(�24aD2). But in modulo�0(2) there are
just two inequivalent cusps which may be taken to be zero and infinity also. The eta
function satisfies the functional equation�(−1/z) = √z/i �(z). Hence itsq-expansion
at zero has coefficients inQ(�8) and�( z

|D| ) certainly has aq-expansion with coefficients
in Q(�24aD2) at zero. �

3.2. Field of definition

Theorem 17. The number�(�0, zAD̄QB)/�(zD̄)�(OK) is an algebraic integer in H, the
Hilbert class field of K.

Proof. The eta function does not vanish in the upper half plane so we can apply
Theorem13 and �(�0, z0

a|D|QB)/�( z0|D| )�(z0) is an algebraic integer inF (some field

extension ofK containingH) wherez0 = b+√N
2 corresponds to the idealOK .

Let g(z) := �(�0, z
a|D|QB)/�( z

|D| )�(z). Given an element� of Gal(F/K) by complex
multiplication theory there exists a prime idealp in K such that� = �p, where�p
is the element inGal(F/K) corresponding top via the Artin–Frobenius map. We
want to prove that the quotient is inH hence we takep to be principal and using
the Tchebotarev density theorem we may assume thatpp̄ is prime to A, D̄ and the
ideal (6).

Since p̄, A and D̄ are prime to each other, it easily seen thatb can be chosen such

that p̄ = 〈 b+
√
N

2 , p〉, A = 〈 b+
√
N

2 , a〉, D̄ = 〈 b+
√
N

2 , |D|〉 and OK = 〈 b+
√
N

2 ,1〉. Let z0

denote the pointb+
√
N

2 . Then p̄AD̄ = 〈 b+
√
N

2 , pa|D|〉, and on these basis the matrixB

of Theorem 13 is given by

(
1 0
0 p

)
. Now Bz0 = z0

p
and pB−1 =

(
p 0
0 1

)
= S−1BS.

By Theorem 13,g(z0)
�(p) = [g ◦ (pB−1)](Bz0).

Let g1(z) = g ◦S(z) = g(−1/z) = �(�0,−1/(a|D|z)QB)/�( −1
|D|z )�(

−1
z
). If in (19) we

replacez by za|D| andQB by Adj (QB), we get the equation

�(�0,QB(−1/a|D|z)) = (−i)√|D|az�(�0,Adj(QB)az). (21)

The eta function satisfies the functional equation�(−1/z) = √z/i �(z). Replacingz
by |D|z and multiplying both equations:

�(−1/z)�(−1/(|D|z)) = √|D|z
i
�(z)�(|D|z).

Hence we get

g(−1/z) = a
�(�0,Adj(QB)az)

�(z)�(|D|z) .
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The q-expansion of this quotient has rational coefficients hence it is fixed by the action
of �p, i.e. g1 ◦ �p = g1. Then [g ◦ (pB−1)] = g and (g(z0))

�p = g(z0/p).

Proposition 18.With the notation as above, if p is principal, g(z0)
�p = g(z0).

Proof. The proposition reduces to proving thatg(z0/p) = g(z0) if p is principal of
normp which follows from the next two lemmas. This completes the proof of Theorem
17 since it implies thatg(z0)

�p = g(z0) for all principal idealsp. �

Lemma 19. Let p̄ = 〈�〉 be a principal ideal prime toA and D̄ of norm p. Then the
theta function�B satisfies the formula:

�B

(
b +√N
2ap|D|

)
= �̄εD̄(�)

(
p

|D|
)

�B

(
b +√N
2a|D|

)
.

Note 1. Since εD̄(�)εD̄(�̄) =
(

p
|D|

)
, the formula may be written as�B( b+

√
N

2ap|D| ) =
�D̄(�̄)�B( b+

√
N

2a|D| ).

Proof. �B is a modular form of weight 1 for�0(|D|) with a quadratic character.

We choseb such thatp̄AD̄ = 〈 b+
√
N

2 , pa|D|〉 = 〈� b+√N
2 ,�a|D|〉. Hence there exists

a change of basis matrixM =
(

� �
� �

)
in Sl2(Z) such that

(
� �
� �

)(
b+√N

2
ap|D|

)
=(

� b+√N
2

�a|D|

)
.

If � = m+n√N
2 , an easy computation shows that� = m−nb

2p and � = n|D|a. In
particular,M is in �0(|D|) and by modularity of�B we have

�B

(
b +√N
2a|D|

)
= �B

(
M

b +√N
2ap|D|

)
=

(
�
b +√N
2ap|D| + �

)
�(�)�B

(
b +√N
2ap|D|

)
.

And the formula

�B

(
b +√N
2a|D|

)
= �

p
�(�)�B

(
b +√N
2ap|D|

)
, (22)

where �(d) =
(
D
q

)
for any prime q which is sufficiently large and satisfiesq ≡

d mod |D| [9, Theorem 20, Chapter VI, p. 25]. Letq be a prime congruent to 1 mod 4

and congruent to� mod |D|. Then �(�) =
(
D
q

)
=

( |D|
q

)
=

(
q
|D|

)
=

(
m−nb

2p
|D|

)
=
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m−nb

2|D|
)(

p
|D|

)
. Then the proof follows from the definition ofεD̄ and the fact that

�
p
= (�̄)−1. �

Lemma 20.With the same assumptions as above, the eta function satisfies the equation

�( b+
√
N

2p|D| )�(
b+√N

2p ) = �̄εD̄(�)
(

p
|D|

)
�( b+

√
N

2|D| )�(
b+√N

2 ).

In term of ideals:

�(p̄D̄)�(p̄) = �̄εD̄(�)
(

p

|D|
)

�(D̄)�(OK). (23)

Proof. Since we choose|N | ≡ 3 mod 4, and|N | �= 3, the number of units inH is 2
(see[6, Tables 3, 4, p. 507]). Given a principal ideal〈u〉 with u ∈ OK , prime to 〈6〉
define:

�(u) = �4(NK/Q(u))
1

ū

�2(u)

�2(OK)
,

where�4(a) =
(−1
a

)
. Since the number of units inH is 2, � is a quadratic character

(see[6, Lemma 14]). We can write the left-hand side of (23) as

�(p̄D̄)�(p̄) =
(

�(p̄D̄)

�(D̄)

�(OK)

�(p̄)

)
�2(p̄)

�2(OK)
�(OK)�(D̄). (24)

If � is a generator of̄p, �2(p̄)
�2(OK)

= �(�)�̄�4(p). By Proposition 10 of[6](
�(p̄)

�(OK)

)�D =
(

p
|D|

)
�(p̄D̄)

�(D̄)
. Then we get

(
�(p̄D̄)

�(D̄)

�(OK)

�(p̄)

)
=

(
p

|D|
)(

�(p̄)
�(OK)

)�D−1

=
(

p

|D|
)(√

�(�)�̄�4(p)
)�D−1

.

By Lemma 12 of[6], �(−1) = −1. Since the right term of (23) remains unchanged
replacing� by −�, without loss of generality we can choose� such that�(�) = �4(p).
Replacing each term on the right-hand side of (24) and using Proposition 2 we get

�(p̄D̄)�(p̄) =
(

p

|D|
)
εD(�̄) �̄ �(OK)�(D̄).

And the result follows sinceεD(�̄) = εD̄(�). �
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Theorem 21. The numbernA,B,D̄ is in the fieldM� = HT�. It corresponds to the
fields diagram(Diagram 1):

M�

h

��
��

��
��

� h

��
��

��
��

H

��
��

��
��

��
M+

�
T�

��
��

��
��

�

H
+

h ��
��

��
��

�
K

2

T
+
�

h��
��

��
��

Q

Diagram 1

Proof. By Theorem17 the number�(�0, zAD̄QB)/�(zD̄)�(OK) is in H andT� contains
the image of�D̄ hencenA,B,D̄ is in M�. �

Proposition 22. The quotient�QB (zAD̄)/�D̄(Ā) depends only on the class ofB and
the class ofA.

Proof. Independence ofB is clear since�B depends only in the class ofB.
To prove independence ofA, let � ∈ OK be an element with prime normq such

that q�6a|D|. By definition �B(z�AD) = �B( b+
√
N

2aq|D| ). Then by Lemma19:

�B

(
b +√N
2aq|D|

)
= �D̄(�̄)�B

(
b +√N
2a|D|

)
. �

We will denote byn[A],[B],D̄ the numbernA,B,D̄.

Proposition 23. The numbern[A],[B],D̄ is an algebraic integer.

Proof. In Theorem17 we proved that�QB (zAD̄)/(�(zD̄)�(zOK
)) is an algebraic integer

and the number�D̄(Ā) has normNA. Since the quotient depends on the class of the
ideal A but not A itself, using the Tchebotarev density theorem we can choose two
prime idealsp1 and p2 in the same class ofA of prime normsp1 and p2. Looking
at p1 we see that the minimal polynomial ofn[p1],[B],D̄ has rational coefficients with
only 1 or p1 in the denominator. Consideringp2 we see that the minimal polynomial
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of n[p2],[B],D̄ only has 1 orp2 in the denominator. Sincen[p1],[B],D̄ = n[p2],[B],D̄ its
minimal polynomial must have integer coefficients.�

Proposition 24. n[A],[B̄],D̄ = n[A],[B],D̄.

Proof. It is easy to check that the theta function�B associated toB is the same as
the theta function�Adj B associated to the adjoint matrix ofB. Note that[B−1] = [B̄].
Clearly the pointzAD̄ and the number�D̄(A) are independent ofB. �

Lemma 25. The character�D̄ satisfy: �D(Ā) = �D̄(A).

Proof. �D(Ā)�D(Ā) = NA, and NA = �D(Ā)�D(A)εD(NA) hence �D(Ā) =(
NA
|D|

)
�D(A). We chose the characters so that�D̄(A) = �D(A)εD̄(Ah)εD(Ah) =

�D(A)
(
(NA)h

|D|
)

(see (2)). Since|N | is prime,h is odd. �

Proposition 26. n[A],[B],D̄ = n[Ā],[B],D.

Proof. It is clear from their definition that�B(zAD̄) = �B(−zAD̄) and �(zAD̄) =
�(−zAD̄). Since−zAD̄ = zĀD and �D(Ā) = �D̄(A), the result follows. �

Proposition 27. If the idealD is principal in OK , n[A],[B],D̄ = n[Ā],[B],D̄.

Proof. The proof of this proposition involves the same kind of techniques used in the
previous ones (a little more tedious) so we omit the proof.�

In particular, this implies that ifA and D are both principal then the number
n[A],[B],D̄ lives in a subfield ofM� which we denoteM+

� (following [1] notation, see
page 13) and corresponds to the previous field diagram (see Theorem 21, Diagram 3.3).
We will be needing the next lemmas for the theorem relating the numbersn[A],[B],D̄
for different idealsD.

Lemma 28. Let D and D′ be two prime ideals ofQ(
√
N) with norm |D| and |D′|,

respectively, and let � ∈ Q(
√
N) be such that�D = D′. Then �2(AD′)

�2(AD)
= �̄�(�)

�4(N�).

Proof. Note that although� is defined on integer elements, since it is a character on
(OK/12OK)

×, we can extend it multiplicatively to all elements inQ(
√
N) with both

numerator and denominator prime to 12. By definition�(�) = 1
�̄ �4(N�) �2(�)

�2(OK)
then

we are led to prove that�
2(AD′)

�2(AD)

�2(OK)

�2(�) = 1.

By Proposition 10 of[6] we can write the left-hand side as
(

�2(AD)

�2(OK)

)�
(D̄′D̄−1)−1

.
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Since �2(AD)

�2(OK)
is in H (by Theorem 20 of[6]) then �A represents the classical Artin–

Frobenius map fromCl(OK) to Gal(H/K), and sinceD̄′D̄−1 is principal, �D̄′D̄−1 is
the identity. �

Lemma 29. Let D and D′ be two prime ideals ofQ(
√
N) such thatD ∼ D′. Then

�(AD′)�(D)

�(AD)�(D′) = εD(Āh)εD′(Āh).

Proof. By Proposition 10 of[6] we have

�(AD′)�(D)

�(D′)�(AD)
=

(
�(A)

�(OK)

)�D̄′ ( �(A)

�(OK)

)−�D̄ (
a

|D|
)(

a

|D′|
)
. (25)

Since the Artin–Frobenius map is a homomorphism:

(
�(A)

�(OK)

)�D̄′−�D̄ =
((

�(A)

�(OK)

)�
(D̄′(D̄)−1)−1

)�D̄
.

But
(

�(A)

�(OK)

)�
(D̄′(D̄)−1)−1 = ±1 (see the proof of Lemma28), then�D̄ acts trivially on

it. Let � ∈ Q(
√
N) be such thatD̄′D̄−1 is the principal ideal generated bȳ�|D| then

by Theorem 19 of [6]:

(
�(A)

�(OK)

)�
(D̄′(D̄)−1)−1

= �
(

�
|D|

) a−1
2

(
�̄|D|
Ā

)
.

Since |D| is prime to 12, and� is a multiplicative quadratic character,�( �
|D| ) =

�(�)�(|D|). The character� defined on(OK/12OK)
× factors as a product of two

characters,�3 from (OK/3OK)
× to the group of third roots of unity and�4 from

(OK/4OK)
× to the group of fourth roots of unity (see Lemma 14 of[6]). In our case

�3 = 1 and the character is completely determined from the congruence mod 4. Then
�(|D|) = �(−1) = −1. Using the quadratic reciprocity law,

(
�(A)

�(OK)

)�
(D̄′(D̄)−1)−1

= �(�)
a−1

2

(
�̄

Ā

)(
a

|D|
)
. (26)

Also since�(�)�(�̄) = �(|D||D′|) = 1, �(�) = �(�̄) and we can write (25) as

�(AD′)�(D)

�(AD)�(D′) = �(�̄)
a−1

2

( �
A

)(
a

|D′|
)
.



358 A. Pacetti / Journal of Number Theory 113 (2005) 339–379

Since D̄D′ is the principal ideal generated by� and ε is a multiplicative quadratic
character,

εD(Āh)εD′(Āh) = εD(Āh)εD̄(Āh)εD̄D′(Āh) =
(

a

|D|
)(

Āh

�

)
. (27)

Using the reciprocity law inQ(
√
N) (see for example Theorem 21 of[6]):

(
Āh

�

)
=

(
�

Āh

)
�(�̄)

a−1
2 =

(
�

Ā

)
�(�̄)

a−1
2 = �(�̄)

a−1
2

( �
A

)( |D||D′|
a

)
. (28)

And the lemma follows from
( |D||D′|

a

)
=

(
a
|D|

) (
a
|D′|

)
. �

Lemma 30. Let A : R2n ×R2n → R be the skew-symmetric form given by the matrix

A :=
(

0 In
−In 0

)
. Then the following data onR2n are equivalent:

(1) A complex structureU : R2n → R2n (i.e. a linear map withU2 = −In) such that
there exists a positive definite Hermitian form H for this complex structure with
imaginary part A.

(2) An n-dimensional complex subspace ofC2n such that if we noteAC the complex
linear extension of A, we have:
• AC(x, y) = 0 for all x, y in the subspace.
• iAC(x, x̄) < 0 for all non-zero x in the subspace.

(3) A complex matrix� in hn.

These are three of the four equivalent conditions proved in Lemma 4.1 of[8]. The
equivalence associates to� ∈ hn the image of the mapX �→ (X,−�X) as ann-
dimensional subspace ofC2n.

Theorem 31. Let zADQB and zAD′QB′ be two points inh2 such that they are equiv-
alent mod�12 and D ∼ D′ in Q(

√
N). Thenn[A],[B],D̄ = ±n[A],[B′],D̄′ .

Proof. For simplicity we will denote�D := zADQB and �D′ := zAD′QB′ . Since

�D is equivalent to�D′ there exists a matrix� =
(
A B

C D

)
in Sp4(Z) such that

� 1 (�D) = �D′ . By the previous lemma, giving a point�D in the Siegel space is
equivalent to giving the subspace ofC4 (I2,−�D)t where the action ofSp4(Z) is
given by multiplication on the left by(�t )−1. Then

� 1
(

I2

−�D

)
=

(
D −C
−B A

)(
I2

−�D

)
=

(
C�D +D

−(A�D + B)

)
=

(
I2

−�D′

)
(C�D +D).
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By the coherent way we chose characters,�D(A)

�D′ (A)
= εD(Ah)εD′(Ah). Hence,

n[A],[B],D̄
n[A],[B′],D̄′

= �(�D)
�(�D′)

�(D′)
�(D)

εD(Āh)εD′(Āh) = �(�D)
�(�D′)

�(AD′)
�(AD)

.

The last equality follows from Lemma29. We claim that

�2(�D)
�2(�D′)

= Det(C�D + D)−1 = �2(AD)

�2(AD′) . (29)

The first equality follows at once from the functional equation of the theta function.
Since |D| is prime and Det(Q) = |D| there exists matricesU,V ∈ Sl2(Z) such that

UQV =
(

1 0
0 |D|

)
(respectively,U ′ andV ′ for Q′). Then,

(
V −1 0

0 U

)(
I2
−�D

)
V =

(
I2

−UQV zAD

)
=




1 0
0 1

−zAD 0
0 −zA


 .

Similarly,

(
V ′−1 0

0 U ′
)(

I2
−�D′

)
V ′ =

(
I2

−U ′Q′V ′zAD′

)
=




1 0
0 1

−zAD′ 0
0 −zA


 .

We split into two cases:

• If D′ = D̄ we take basisD = 〈|D|, b+
√
N

2 〉 and A = 〈a, b+
√
N

2 〉. Let r be such that

r|D| ≡ b moda then D′ = 〈|D′|, (2r|D|−b)+
√
N

2 〉 and AD′ = 〈a|D′|, (2r|D|−b)+
√
N

2 〉.
Let � ∈ K be such that�D = D′, then AD′ = 〈a|D′|, (2r|D|−b)+

√
N

2 〉
= 〈�a|D|,�( b+

√
N

2 )〉 = �AD hence there exists a matrixM =
(

� �
� �

)
in Sl2(Z)

such that:M

(
�( b+

√
N

2 )

�a|D|

)
=

(
(2r|D|−b)+√N

2
a|D′|

)
.

• If D′ �= D̄, we may choose basisD = 〈|D|, b+
√
N

2 〉, D′ = 〈|D′|, b+
√
N

2 〉 and

A = 〈a, b+
√
N

2 〉. If � is such that�D = D′, then AD′ = 〈a|D′|, b+
√
N

2 〉 =
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〈�a|D|,�( b+
√
N

2 )〉 = �AD hence there exists a matrixM =
(

� �
� �

)
in Sl2(Z)

such that:M

(
�( b+

√
N

2 )

�a|D|

)
=

(
b+√N

2
a|D′|

)
.

In both cases, letN :=




� 0 −� 0
0 1 0 0
−� 0 � 0
0 0 0 1


, then it is clear that

N




1 0
0 1

−zAD 0
0 −zA





 �|D|
|D′| 0

0 1


 =




1 0
0 1

−zAD′ 0
0 −zA


 .

Combining these results we get that

(
V ′ 0
0 U ′−1

)
N

(
V −1 0

0 U

)(
I2
−�D

)
V


 �|D|
|D′| 0

0 1


V ′−1 =

(
I2

−�D′

)

and (
I2

−�D′

)
=

(
D −C
−B A

)(
I2
−�D

)
(C�D +D)−1.

Since both lattices have the same volume then|Det(C�D + D)|−1 = |�||D|
|D′| .

By Lemma 28, �2(AD)

�2(AD′) = 1
�̄ �(�) = �|D|

|D′| �(�). Now Det(C�D + D)−1 and �(�)�|D|
|D′|

have the same absolute value and both lie inQ(
√
N) hence they differ by±1. Then

(
�(�D)
�(�D′)

�(AD′)
�(AD)

)2

= Det(C�D + D)−1�̄�(�) = ±1.

Taking square roots:

√±1= �(�D)
�(�D′)

�(AD′)
�(AD)

.

By Theorem21 we know that �(�D)
�(D)�(OK)

and �(�′D)

�(D′)�(OK)
are in H. Since

√−1 �∈ H

the theorem follows. �

It is not clear how to determine the sign a priori, and we are not able to give any
answer in this direction.
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4. Equivalence of special points

The problem of determining whether two points inh2 are equivalent or not is com-
plicated in general. For our case we will get this equivalence via ideals in quaternion
algebras. A good reference for the basic definitions and some elementary facts about
quaternion algebras is Pizer’s paper[11].

Let B be a quaternion algebra overQ. A lattice L is a rank 4Z-module. An order
O is a lattice that is a ring with unity. Given an orderO a left O-ideal is a latticeL
such thatLp := L⊗Z Zp = Op�p where�p is an element inB×p . Given a latticeL
we define its left orderOl(L) := {x ∈ B | xL ⊂ L} (respectively the right order). We
define N(L) as the positive generator of theZ-module 〈N(x) | x ∈ L〉.

Proposition 32. Let B be a quaternion algebra overQ ramified at p1, . . . , pn and
L be an ideal in B. ThenOl(L) is a maximal order if and only if disc(L)=
(p1 . . . pn)

2N(L)4.

Proof. By definition disc(L) is the determinant of the bilinear form associated toL
on any basis. SinceL is locally principal at all primes, given a finite primeq, Lq =
Ol(L)q�q . Clearly disc(Lq) = N(�q)4 disc(Oq); then the statement follows from the
fact that this proposition is true replacingL by an orderO and N(L) by 1 (see[11,
Proposition 1.1, p. 344]), and the fact that the norm ofL is the product over all primes
q of qvq(N�q ) wherevq(n) is the q-valuation. �

We restrict ourselves to the caseB a quaternion algebra overQ ramified at the prime
|N | and infinity.

Lemma 33. Let O be a maximal order, {I1, . . . , Ih} a set of left O-ideal representatives,
and {R1, . . . , Rh} be the right orders of{I1, . . . , Ih}, respectively. Then for a given
i = 1, . . . , h the maximal orderRi appears twice on the list if and only if there is no
embedding ofZ[√N ] into Ri .

Proof. Although this is a well-known statement we give a proof since we will use it
latter. An embedding ofZ[√N ] into Ri is determined by the image of

√
N . Hence

giving such an embedding is equivalent to giving an element� ∈ Ri of trace zero
and norm |N |. Let P be the bilateralO-ideal of norm |N |. For a given leftO-
ideal Ij , the ideal PIj is another leftO-ideal. Note that ifPj is the bilateralRj

ideal of norm |N |, then I−1
j PIj = Pj by the uniqueness of such a bilateral ideal.

Then the idealsIj and PIj are equivalent if and only if there exists� ∈ R×j such

that Ij� = PIj . Multiplying on the left by I−1
j we see thatRj� = I−1

j PIj =
Pj hencePj is principal, and the element� has norm|N |. Since |N | is a rami-
fied prime, i.e.B|N | is a division ring, it is easy to see that if N(�) = |N | then
Tr(�) = 0.

To see that this is the only way in which a maximal orderR appears twice on the
list of right orders, suppose thatI andJ are two non-equivalent leftO-ideals with same
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right orderR. Then I−1J is a non-principal bilateral ideal forR. Let PR be the ideal
of norm |N | in R, thenPR is non-principal andJ is equivalent toPI . �

4.1. Siegel space and applications

Definition 34. Let L be aZ lattice of rank 2n and V the vector spaceL⊗R. We call
a triple (P, J, U) a Siegel point if:

• P is a real 2n×2n symmetric matrix such that the associated quadratic formP(x, y)

is positive definite (that will correspond to the real part ofH).
• J is a real 2n × 2n non-degenerate skew symmetric matrix with associated form
J (x, y) (that will correspond to the imaginary part ofH).

• U ∈ R2n×2n is such thatU2 = −I2g (complex structure)

with the relation:

−JU = UtJ = P. (30)

Via the matrixU we can put a complex structure on the vector spaceV. Let H be the
bilinear form H(x, y) := P(x, y) + iJ (x, y). Condition (30) implies thatH(ix, y) =
iH(x, y). Since J is skew symmetric andP symmetric, it follows thatH(x, y) =
H(y, x). ThenH defined in this way is a positive definite Hermitian form. Each choice
of a reduced basis forJ will give a point in the Siegel space (by Lemma 30) and
different bases give equivalent points.

Given two latticesL andL′, a morphism� : L→ L′ is an Z-linear map fromL to
L′. Given � : L′ → L an isomorphism of lattices, we define an action of� on a Siegel
point (P, J, U) as (�∗P, �∗J, �∗U) where givenx, y ∈ L′, �∗P(x, y) = P(�(x), �(y)),
�∗J (x, y) = J (�(x), �(y)) and �∗(x) = �−1(U(�(x))).

If we chooseV0 to be a skew symmetric reduced base forJ, i.e. a base whereJ is

of the form

(
0 In
−In 0

)
, and� is an automorphism sending a skew symmetric reduced

basis to another one, then� ∈ Sp2n(Z) and the action of� on the Siegel point�
associated toV0 is the usual action ofSp2n(Z) on hn.

4.2. Siegel points from quaternion algebras

Let N be the negative of a prime congruent to 3 mod 4, andB = (−1, N) the
quaternion algebra ramified atN and infinity. LetO be a maximal order inB such that
there exists an embedding (not necessarily optimal) ofZ + Z

√
N into O. Let u ∈ O

be the image of
√
N , i.e. u2 = N and Tr(u) = 0. By I we will denote a leftO-ideal

for a maximal orderO. To I we associate a Siegel point(P, J, U)I as follows:

• We takeV the real vector spaceV := B ⊗Q R.
• DefineU acting onV as left multiplication by u√|N | .• We think of I as a full rank lattice inV.
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• For x, y ∈ I defineP(x, y) := 1√|N |Tr(xȳ)/N(I ).

• For x, y ∈ I defineJ (x, y) := Tr(u−1xȳ)/N(I ).

Proposition 35. The triple (P, J, U)I defined as above is a Siegel point.

Proof. We start checking the properties of the matricesP, J andU:

• P is a real form. Since Tr(xȳ) is real, Tr(xȳ) = Tr(yx̄) which implies thatP(x, y)
is symmetric. ClearlyP(x, x) = 1√|N |N(x)/N(I ) is positive definite.

• J is a real form. Sinceu is pure imaginary,u−1 is also. ThenJ (x, x) = Tr(u−1

N(x))/N(I ) = 0. It is also clear thatJ (x, y) is non-degenerate, since for any non-
zero x ∈ V , J (x, u−1x) �= 0. SinceJ (x, x) = 0 for all x it follows that J (x, y) =
−J (y, x).

• Let x ∈ V , thenU2(x) = U( u√|N |x) = u2

|N |x = −x.

As for the relation, it is easy to check thatJ ( u√|N |x, y) = P(x, y) and thatJ (x, u√|N |y)
= −P(x, y). �

Definition 36. Given a latticeL in B we define its dual byL# := {b ∈ B : Tr(bL) ⊂
Z}. Given an orderR we define its different byR� := NR#.

Proposition 37. If O is a maximal order, O� is a bilateral ideal for O of indexN2,
and 1

N
O ⊂ O� ⊂ O.

Proof. See[17, Lemma 4.7, p. 24].

Proposition 38. If x, y ∈ I then J (x, y) ∈ Z. Also the matrix of J on the basis given
by I has determinant1.

Proof. Since we are considering the reduced norm, ifV is the matrix associated to
multiplication (on the left or on the right) byv, then N(v) = √det(V ). Let W(x, y) :=
Tr(xȳ) be the bilinear form ofB. If we denoteW the matrix ofW(x, y) on the basis
given by I, J = 1

N(I ) (U
−1)tW . Then det(J ) = N(I )−4N(u)−2 det(W). By definition

det(W) = disc(I ), which is an ideal for a maximal order, then by Proposition32
disc(I ) = N2N(I )4 and det(J ) = 1.

Since the trace is linear,J (x, y) = Tr(u−1x
ȳ

N(I ) ). For idealsI with maximal left

order it is true thatI−1 = Ī /N(I ) and II−1 = O, hence J (x, y) ∈ Z for all
x, y ∈ I if and only if Tr(u−1v) ∈ Z for all v ∈ O. By Proposition 37 this is
the same asu−1 ∈ O#. But u−1 = − u

N
, and sinceu ∈ O it follows that u

N
∈

1
N
O ⊂ O#. �

This gives a method for assigning to every leftO-ideal a Siegel point. Note that
choosing different skew symmetric reduced basis ofI will give equivalent Siegel points.
From now on we fixed a maximal orderO with an embedding ofZ[√N ].
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Proposition 39. Let u ∈ O with N(u) = |N | and Tr(u) = 0, and denote by U the
complex multiplication associated to u. If I, I ′ are two equivalent left O-ideals, then
the Siegel points(P, J, U)I and (P, J, U)I ′ are equivalent.

Proof. Since I ∼ I ′ there exists� ∈ B× such thatI = I ′�. Let W denote the
isomorphism ofB given by W(v) = v�. We claim thatW is the isomorphism that
makes the two Siegel points equivalent.

SinceW(I ′) = I , we need to check thatW ∗P = P ′, W ∗J = J ′ andW ∗U = U .

• If x, y ∈ I ′ by definition(W ∗P)(x, y) := P(W(x),W(y)) = P(x�, y�) = Tr(x��̄ȳ)
N(I ) =

N�
N(I )Tr(xȳ) = P ′(x, y).

• The equalityW ∗J = J ′ follows from a similar argument.
• By definitionU is given by multiplying on the left byu/

√|N | while W is given by
multiplying on the right by� then clearly this maps commute with each other and
W ∗U := W−1 ◦ U ◦W = U . �

Lemma 40. Let U be the complex multiplication given by u and� ∈ B an element such
that �O�−1 = O. DefineI ′ = �I�−1 andu′ = �u�−1, then(P, J, U)I ∼ (P ′, J ′, U ′)I ′ .

Proof. Let W : B → B be the isomorphism defined byW(x) = �x�−1. By hypothesis
W(R) = R, W(I) = I ′. It is easy to see thatW ∗P = P ′ and W ∗J = J ′. If x ∈ B

thenW−1 ◦ U ◦W(x) = W−1 ◦ U(�x�−1) = W−1(u�x�−1)/
√|N | = �−1u�x/

√|N | =
U ′(x). �

This lemma suggests that we should consider not just elementsu in O corresponding
to
√
N (i.e. u2 = N and Tr(u) = 0) but modulo conjugation by the normalizer ofO.

It is clear thatNorm(O) = {h ∈ B |Oh is bilateral}. All bilateral ideals are principal,
generated byusm where s = 0,1 andm is a rational number (see[3, Proposition 1,
p. 92]). The generator of an ideal is well defined up to units inO, thenNorm(O) =
{
usm | s = 0 or 1,m ∈ Q and 
 ∈ O is a unit}.

Corollary 41. If I and I ′ are left O-ideals with the same right order then the Siegel
points (P, J, U)I and (P, J, U)I ′ are equivalent.

Proof. If I and I ′ are equivalent this follows from Proposition39. If I and I ′ are not
equivalent, we know by Lemma 33 thatOr(I) has no embedding ofZ[√N ]. Let u
be the element inO giving the complex multiplication. ThenuI has the same left and
right order asI but they are not equivalent, henceuI ∼ I ′ ∼ uIu−1. By Proposition
40 the Siegel points(P, J, U)I and (P, J, U ′)uI are equivalent. Just note thatU ′ is
given by u−1uu = u. �

In particular, we should index the Siegel points not by the class number of ideals, but
by the type number of maximal orders. We still have equivalent Siegel points coming
from conjugation by units ofO and these are all the possibilities forNorm(O). For
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counting equivalent classes of Siegel points, fixed a maximal orderO we have to count
the number of embeddings ofZ[√N ] into O modulo conjugation by units ofO.

Given a maximal idealO, let B := {I1, . . . , Ih} be a set of leftO-ideal representatives
and T := {R1, . . . , Rt } the distinct right orders of the ideals inB. We index the Siegel
points by pairs(�, Ri) where� is an embedding fromZ[√N ] to someRj andRi is an
order inT. By this we mean the Siegel point obtained with the complex multiplication
given by �(

√
N), and an idealI with left orderRj and right orderRi .

If d is a negative discriminant we denote byh(d) the class number of binary quadratic
forms of discriminantd. Let u(d) = 1 unlessd = −3,−4 whenu(d) = 3,2, respec-
tively (half the number of units in the ring of integers of discriminantd). For d > 0
we define the Hurwitz’s class numberH(d) by

H(d) :=
∑

df 2=−d

h(d)

u(d)
(31)

if d is a discriminant and by zero if not. A short table of the non-zero values is given
by

d H(d)
3 1/3
4 1/2
7 1
8 1

d H(d)
11 1
12 4/3
15 2
16 3/2

If −d is a discriminant we denoteO−d the order of discriminantd in the imaginary
quadratic fieldQ[√−d]. Forp ∈ Z prime we defineHp(d) to be the modified invariant
as follows:

Hp(d) =




0 if − d is not a discriminant,
0 ifp splits in O−d,
H(d) if p is inert in O−d,
1
2H(d) if p is ramified inO−d but does not divide

the conductor ofO−d,
Hp(d/p

2) if p divides the conductor ofO−d.

(32)

The number of embeddings ofO−d into anyRi (i = 1, . . . , n) modulo conjugation by
R×i /{±1} is H|N |(d) (see[5, Proof of Proposition 1.9, p. 122]).

We want to compute the number of embeddings ofZ[√N ] into anyRi , i.e. choose
d = 4|N |, then

H|N |(4N) =



1
2h(4N) if N ≡ 1 mod 4,
h(N) if N ≡ 7 mod 8,
2h(N) if N ≡ 3 mod 8 andN�11.

(33)
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Note that in the cased = 4|N | an orderRi on T appears twice as a right order
if and only if it has no embedding ofO4N . In this case it does not contribute to the
sum, and hence the number of embeddings ofZ[√N ] into the t orders inT is also
HN(4N). With this we proved:

Proposition 42. The number of non-equivalent Siegel points constructed is at most
HN(4N)t .

Proposition 43. Let B be a quaternion algebra over a commutative field K, and let
B0 := {� ∈ B |Tr(�) = 0}. If � : B0 → B0 is an isometry of K-vector spaces then
there exists an element� ∈ B1 such that�(x) = �x�−1 or �(x) = −�x�−1 = �x̄�−1.

Proof. See[17, Theorem 3.3, p. 12]. �

Lemma 44. Let � : B → B be an isomorphism ofQ-vector spaces(respectively
� : Bq → Bq an isomorphism ofQq -vector spaces) such that�(1) = 1 and � is an
isometry. Then there exists an� ∈ B1 (respectively� ∈ B1

q ) such that�(x) = �x�−1

or �(x) = �x̄�−1.

Proof. Since�(1) = 1 and� is a morphism,�(Q) = Q. DenotingB0 the trace zero
elements,�(B0) = B0 and �|B0 : B0 → B0 is an isometry. By Proposition43 we get
two different cases:

(1) �B0(x) = �x̄�−1 for some � ∈ B1. Then � is the antiautomorphism given by
�(x) = �x̄�−1.

(2) �B0(x) = �x�−1 for some� ∈ B1. Then � is an automorphism given by�(x) =
�x�−1. �

Theorem 45. The HN(4N)t Siegel points {(�, Ri)} constructed above are
non-equivalent.

Proof. The proof breaks in two steps. First we will prove that for a fixed embedding
of Z[√N ] into R (say u is the image of

√
N ), the t left R-ideals give non-equivalent

points(P, J, U) whereU is multiplication byu/
√|N |. Then we will prove that different

embeddings give non-equivalent Siegel points.
Let I1, I2 two left R-ideals. Abusing notation we will denotePi the symmetric form

PIi and analogously forJi . Suppose there existsW : V → V an isomorphism making
the Siegel points(P1, J1, U) and (P2, J2, U) equivalent. Let� = W(1), � the map
�(v) = W(v)�−1 andV0 the space of elements inV with trace zero. We claim that�
is an isometry.

By hypothesisW ∗P1 = P2 then evaluating at(1,1) we have

(W ∗P1)(1,1) = P2(1,1) = 2

N(I2)
.
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By definition, (W ∗P1)(1,1) = Tr(W(1),W(1))
N(I1)

= 2 N(�)
N(I1)

hence N(�) = N(I1)
N(I2)

. Then

‖x‖/√N = P2(x, x)N(I2)/2 = W ∗(P1(x, x))N(I2)/2 = ‖W(x)‖
N(I1)

N(I2) = ‖W(x)‖
‖�‖ =

‖�(x)‖/√N , i.e. � is an isometry. Since� is an isometry and�(1) = 1, by Lemma
44 we have two different cases:

(1) �(x) = �x̄�−1 for some � ∈ B×, i.e. � is an antiautomorphism andW(x) =
�x̄�−1�−1.

(2) �(x) = �x�−1 for some� ∈ B× andW(x) = �x�−1�−1.

We know thatW preserves the complex multiplication, i.e.W−1 ◦ U ◦W(x) = U(x).

In the first case,W−1(x) = �−1�̄x̄�. ThenW ∗U(x) = W−1(u�x̄�−1�−1) = �−1�̄�̄
−1

�̄−1x�̄ū� = x�−1ū�. It must be the case thatux = x�−1ū� for all x ∈ B (which is
the same as saying thatux�−1 = x�−1ū) which would imply thatu ∈ Q and is not
the case. Then we must be in the second case.

SinceW(I1) = I2, I2 = �I1�−1�−1. In particular�R�−1 = R, i.e. � ∈ Norm(R).
Then I1 and I2 have the same right order and represent the same class between thet
left R-ideals we started with.

Assume that there is a leftR-ideal I and a leftR′-ideal I ′ such thatR and R′ are
non-conjugate maximal orders and the Siegel points(P, J, U)I and (P ′, J ′, U ′)I ′ are
equivalent. Then there exist an isomorphismW : V → V that sends one point to the
other. Arguing as before we get the same two possible cases forW. In the first case,
sinceW ∗U = U ′ we would get thatu′x�−1 = x�−1ū for all x ∈ V . Taking x = �
we would get thatu′ = ū and it commutes with all elements ofV, then it is rational
which is not the case.

Then W(x) = �x�−1�−1 and I ′ = �I�−1�. In particular the ordersR and R′ are
conjugate which is a contradiction. �

4.3. Ideals associated to Siegel points

For finding relations between the numbersn[A],[B],D̄, we will assign to each point
zAD̄QB on the Siegel spaceh2 a rank 4Z-lattice Iz ∈ B and a basis of it such that
the Siegel point(P, J, U)I on this basis iszAD̄QB. We will then prove that the left
order of Iz is a maximal orderO[A],[D] with an embedding ofZ[√N ] into it. This
will imply that the number of different values (up to a sign) forn[A],[B],D̄ is at most

h(ON)
2t .

Proposition 46. There exists u andv in B such that:

• Tr(uv̄) = 0, Tr(u) = 0 and Tr(v) = 0.
• N(u) = |N |.
• N(v) = |D|.
• u and v are in a maximal order R of B.

Proof. Since |N | ≡ 3 mod 4, we can assumeB = (−1, N). Choosingu = j it is clear
that Tr(u) = 0 and N(u) = |N |, hence we are looking forv in B such that Tr(uv) = 0,
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Tr(v) = 0 and N(v) = |D|. This conditions forcesv to have the formv = xi+ yk and
we are looking for an integer solution of the quadratic equation:

x2+ |N |y2− |D|z2 = 0. (34)

We can assume that the solution is primitive (i.e.gcd(x, y, z) = 1). If (x, y, z) is a
solution, clearlygcd(z,N) = 1= gcd(x,N) and gcd(x,D) = 1= gcd(y,D).

To prove the existence of such a solution we use the Hasse–Minkowski principle.
Clearly (34) has a non-zero solution overR, so we need to prove the existence of local
non-zero solutions for all primes. We consider the different cases:

• For a primep �= N andp �= D the quadratic form clearly has a local solution (see
[13, Corollary 2, p. 6]).

• For the prime|N | by Hensel’s lemma it is enough to look for solutions of (34)
modulo |N |:

x2− |D|z2 ≡ 0 mod|N | iff (xz−1)
2 ≡ |D| mod |N |.

This equation has solution if and only if
( |D|
|N |

)
= 1. By the quadratic reciprocity

law and the fact that|N | ≡ 3 mod 4 this last condition is equivalent to asking that
|D| splits in Q(

√
N) which is the case.

• For the prime|D|, looking at (34) modulo|D|:

x2+ |N |y2 ≡ 0 mod|D| iff N ≡ (xy−1)
2

mod |D| iff

(
N

|D|
)
= 1.

Which is the case since|D| splits in Q(
√
N).

Given u and v as before, consider the rank 4Z-lattice R = 〈1, u, v, uv〉. It is easy to
see thatR is actually an order, hence contained in a maximal one.�

Remark. If we defineR = 〈1, 1+j
2 , v,

(
1+j

2

)
v〉 it is easy to see that this is also an

order. The advantage of this order is that it contains an embedding of the ring of
integers ofQ(

√
N), but is not maximal.

Let zAD̄QB = ( b1+
√
N

2a1|D| )
(

2a b

b 2c

)
, u and v as in Proposition46 (choosingu = j ).

Define

Iz :=
〈(

b1− j

2a1|D|
)
av,

(
b1− j

2a1|D|
)( |D| + bv

2

)
,
v − b

2
, a

〉
. (35)
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If we denote� the embedding ofQ(
√
N) into B and � the embedding ofQ(

√
D)

into B with �(
√
N) = u and �(

√
D) = v and choosing the basisB = 〈v1, v2〉 (where

in our notationv1 = b+√D
2 and v2 = a) then the idealIz was defined by

Iz =
〈
�

(
b1−

√
N

2a1|D|

)
�(
√
D)�(v̄2),�

(
b1−

√
N

2a1|D|

)
�(
√
D)�(v̄1),�(v̄1),�(v̄2)

〉
.

If we forget the specific basis, and think ofIz just as a rank 4Z-lattice in B it is

given by Iz =
〈
�

(
b1−

√
N

2a1|D|
)

�(
√
D)�(B̄),�(B̄)

〉
.

Proposition 47. The element1+j2 is in the left order ofIz.

Proof. This is an easy but tedious computation. We will just give the coordinates of
the product of 1+j

2 with each element of the basis ofIz (given above) as a linear
combination.

•
(

1+j
2

)
a = [ba1,−2aa1,0, b1+1

2 ].
•

(
1+j

2

) (
v−b

2

) = [−2ca1, ba1,
b1+1

2 ,0].
•

(
1+j

2

) (
b1−j

2a1|D|
)
av = [1−b1

2 ,0,2ac1, bc1].
•

(
1+j

2

) (
b1−j

2a1|D|
) ( |D|+bv

2

)
= [0, 1−b1

2 , bc1,2cc1]. �

Proposition 48. The elementa1v is in the left order ofIz.

Proof. Since B is an ideal, it is clear thatv〈w3, w4〉 ⊂ 〈w3, w4〉. By the way we
choosev, it satisfiesvj = −jv, then

(a1v)

(
b1− j

2a1|D|
)
=

(
b1− j

2a1|D|
)
(−a1v)+ b1

|D|v. (36)

For the part corresponding to the first two elements ofIz note that they can be written

as
(

b1−j
2a1|D|

)
v(a) and

(
b1−j

2a1|D|
)
v

(
v−b

2

)
. SinceB is an ideal,vB ⊂ B and the assertion

follows from Eq. (36). �

Corollary 49. The orderR = 〈1, 1+j
2 , a1v,

1+j
2 a1v〉 is contained in the left order of

Iz and has discriminant(a2
1ND)2 or index a2

1|D| in a maximal order.

Proof. It is clear thatR is in the left order ofIz by the previous two propositions.
It is also clear that it is an order. To compute its discriminant, note that the bilinear
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matrix associated to it is 


2 1 0 0
1 1−N

2 0 0
0 0 2a2

1|D| a2
1|D|

0 0 a2
1|D| a2

1|D|1−N2


.

Then note that the index in a maximal order (which has discriminantN2) is the square
root of the discriminant. �

Theorem 50. Let U be the complex multiplication associated to−j√|N | . Then the Siegel
point (P, J, U)Iz associated to the idealIz in the given basis iszAD̄QB.

Proof. This is a straightforward computation so we omit the details. Just check that
the given basis ofIz is symplectic, i.e. that the matrixJ (x, y) in the given basis is a

multiple of the matrix

(
0 I2
−I2 0

)
(sinceJ (x, y) is skewsymmetric there are half the

conditions to check), and that the matrixU associated to the pointzAD̄QB is the same
as the complex multiplication matrix onIz. �

Theorem 51. The latticeIz is an ideal for a maximal order.

Proof. The strategy is to prove that the quadratic form associated to the idealIz is
locally equivalent to the maximal order one for all primes. We need the next lemma:

Lemma 52. The quadratic form associated to the latticeIz has discriminantN2.

Proof. The bilinear form is the same as the Siegel pointzAD̄QB hence its bilinear
form matrix is

BI =
(

2c1QB b1I2

b1I2 2a1DQ−1
B

)
.

SinceQB has determinantD, it is an easy computation to prove that the determinant
of this matrix isN2 (using thatb2

1 − 4a1c1|D| = N ). �

A maximal order forB = (−1, N) is given byO = 〈1+j
2 , i+k2 , j, k〉 (see Proposition

5.2, p. 369 of[11]), then it is easy to compute the matrix of the quadratic form trace
and to check that it has discriminantN2, and is an improperly primitive integral form.
Since the discriminant of both forms is a unit for all primesp �= |N | then they are
locally equivalent (see Corollary of Theorem 3.1 of [2, p. 116]). Hence(Iz)p is locally
principal for all primesp �= |N |.

For the ramified prime,D(Iz) = N2 hence it is locally principal. Locally principal
ideals have the same discriminant as their left orders henceOl(Iz) is maximal. �

4.4. Comparing Siegel points

If I is an ideal for a maximal order, andU a complex multiplication, the Siegel
point associated to(U, I ) is the same as the one associated to the point(U, I�) for
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any � ∈ B× (with the same choice of basis). Suppose two Siegel pointsz and z′ have
equivalent idealsIz and Iz′ , say Iz = Iz′� for some� ∈ B×. Then since the complex
multiplication is the same for all the ideals we constructed, the two Siegel points are
equivalent by Proposition39. Let M be the matrix inSp4(Z) making the change of
basis betweenIz and Iz′�.

Lemma 53. The matrix M is in the subgroup�1,2.

Proof. Let M =
(
A B

C D

)
, z =

(
b1+

√
N

2a1

)
Q and z′ =

(
b′1+

√
N

2a′1

)
Q′ whereQ and Q′

have even diagonal. SinceM sends the bilinear form associated to the idealIz to the
bilinear form associated to the idealIz′�,

(
A B

C D

)t ( 2c2Q b2I2

b2I2 2a2Q
−1

)(
A B

C D

)
=

(
2c′2Q b′2I2

b′2I2 2a′2Q′−1

)
.

By the way we choose generators,bi ≡ 1 mod 4,i = 1,2 (alsob′i ≡ 1 mod 4,i = 1,2)

hence 2Q ≡
(

0 2
2 0

)
mod 4. LetJ :=

(
0 1
1 0

)
. Looking at the first 2×2 matrix of the

previous equality mod 4 we get: 2c2A
tJA + CtA + AtC + 2a2C

tJC ≡ 2J mod 4. In
particular 4 divides the diagonal.

If A :=
(
a b

c d

)
thenAtJA =

(
2ac ad + bc

ad + bc 2bd

)
hence 4 divides the diagonal of

2c2A
tJA and 2a2C

tJC. Also AtC is symmetric henceAtC + CtA = 2AtC and we
get that 2 divides the diagonal ofAtC. The proof forBtD is analogous looking at the
last 2× 2 matrix. �

Proposition 54. For fixed idealsA andD, the left order ofIzADQB is independent of
the idealB.

Proof. We know Iz =
〈
�

(
b1−

√
N

2a1|D|
)

�(
√
D)�(B̄),�(B̄)

〉
. The idealBq := B ⊗ Zq is

principal, hence there exists an element�q ∈ Lq := Qq(
√
D) such thatBq = OL�q .

Then Iz ⊗ Zq =
〈
�

(
b1+

√
N

2a1|D|
)

�(
√
D)�(OL),�(OL)

〉
�̄q , hence its left order is clearly

independent ofB. �

Proposition 55. LetA andA′ two equivalent ideals ofOK prime toD, sayA′ = �A.
Then�(�−1)IzADQB = IzA′DQB .

Proof. It is enough to prove thatIz�ADQB ⊆ �(�−1)IzADQB . Then IzADQB ⊆ �(�)
Iz�ADQB and the result follows.

Without loss of generality we may assume thatA and A′ are prime to each other,

then we can choose basis such thatĀD̄ = 〈a|D|, b−
√
N

2 〉 and Ā′D̄ = 〈a′|D|, b−
√
N

2 〉.



372 A. Pacetti / Journal of Number Theory 113 (2005) 339–379

Then there existsM =
(
x1 x2
x3 x4

)
∈ Sl2(Z) such that

x1a|D|�̄+ x2

(
b −√N

2

)
�̄ = a′|D|, (37)

x3a|D|�̄+ x4

(
b −√N

2

)
�̄ = b −√N

2
. (38)

Claim. D | x2. If �̄ = 1
a

(
�1+�2

√
N

2

)
with �i ∈ Z looking at the imaginary parts of the

above equalities we get that

√
N

4
(2x1a|D|�2+ x2(b�2− �1)) = 0,

√
N

4
(2x3a|D|�2+ x4(b�2− �1)) = −a√N

2
.

This implies the claim. IfB = 〈w1, w2〉, �(�−1)IzAD =
〈
�

(
�̄( b−

√
N

2a|D| )
)

�(
√
Dw̄1),

�
(
�̄( b−

√
N

2a|D| )
)

�(
√
Dw̄2),�(�−1)�(w̄1),�(�−1)�(w̄2)

〉
. Sincea�̄ = �−1a′ Eq. (37) im-

plies that

x3�(�−1)+ x4�

(
�−1

(
b −√N
2a|D|

))
= �

(
b −√N
2a′|D|

)
.

Since B is an ideal,
√
Dwi ∈ B hence�( b−

√
N

2a′|D| )�(
√
Dw̄i) ∈ �(�−1)IzADQB for i =

1,2. SinceD | x2 Eq. (38) can be written as

x1�(�−1)+ x2

|D|�
(

�−1

(
b −√N
2a|D|

))
�(
√
D)2 = 1,

which implies that�(w̄i) ∈ �(�−1)IzADQB for i = 1,2. �

Corollary 56. If A, A′ are two equivalent ideals inOK prime to D then the ideal
Iz�ADQB and Iz�A′DQB have equivalent left orders.

Proposition 57. Let D and D′ be two split prime ideals ofQ[√N ] of norms |D|
and |D′|, respectively, such thatD′ = �D. Let B and B′ be ideals ofQ[√D] and of
Q[√D′], respectively. Then the idealsIzADQB and IzAD′QB′ have the same left order
if following the notation of Proposition46 we takev′ = �v.
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Proof. We are abusing notation while stating this theorem, since� is an element
of Q[√N ]. We will not distinguish between an element inB or in Q[√N ] via the
identification

√
N �→ j , and the case will be clear from the context.

By Proposition54 it is enough to restrict to the caseB and B′ principal. In this
case we will prove that the ideals associated to them are slightly different and use this

to prove the proposition. We can choose basis such thatD = 〈|D|, b1+
√
N

2 〉 and D′ =
〈|D′|, b1+

√
N

2 〉. Let � = �
|D| + �

|D|
√
N . Since�

(
b1+

√
N

2

)
∈ D′ and �−1

(
b1+

√
N

2

)
∈ D,

�+�b1
|D| ∈ Z and �−�b1

|D′| ∈ Z.
Sinceb = 1 the definition of the ideals is

• ID := IzADQB =
〈(

b1−j
2a1|D|

)
v,

(
b1−j

2a1|D|
) (

v+|D|
2

)
, v−1

2 ,1
〉
,

• ID′ := IzAD′Q′B =
〈(

b1−j
2a1|D′|

)
v′,

(
b1−j

2a1|D′|
) (

v′+|D′|
2

)
, v

′−1
2 ,1

〉
,

wherev and v′ are the elements of norm|D| and |D′|, respectively, as in Proposition
46. We will write the elements ofID′ in the basis ofID, the other case follows from
symmetry.

• v′−1
2 = [−a1�,0, �+b1�

|D| ,
�+b1�+D

2|D| ],
•

(
b1−j

2a1|D′|
)
v′ = [�−�b1

|D′| ,0,4�c,2�c] which has integer coefficients,

•
(

b1−j
2a1|D′|

) (
v′+|D′|

2

)
= [�−�b1−|D′|

2|D′| ,1,2�c,�c].

We cannot say that the two ideals are the same, since the numbers� and � may
have a 2 in thedenominator, but(ID)p = (ID′)p for all primesp �= 2. In particular
if we denoteOD and OD′ the left order of ID and ID′ respectively, we get that
(OD)p = (OD′)p for all p �= 2. Since the denominators are at most 2 it is easy to
check that 4OD + Z ⊂ OD′ , and has index at most 28. By Corollary 49, the order
R ⊂ OD′ with index a2

1|D|, which is odd. Then 4OD+R = OD′ . Also 4OD+R = OD
hence both orders are the same.�

By Theorem 31 we know that the numbersn[A],[B],D̄ depend (up to multiplication
by ±1) on the equivalence class ofA, the equivalence class ofD and the class of
zADQB mod�12. If we fix the class ofA and the class ofD we can associate ideals
to the pointszADQB as in (35) and by Proposition 31 they all have the same left
order. Then by Corollary 41 we get at mostt (B) different points in the Siegel space.
This implies:

Theorem 58. The number of differentn[A],[B],D̄ up to multiplication by±1 in M is

at mosth(OK)
2t (B), where t (B) is the type number for maximal orders.

Note that this number is independent of the class number ofOL. With all these
results we return and finish the proof of Theorem6:

Given A and [D] as before we associate to them a maximal orderOA,[D]. For any
left OA,[D]-ideal I we want to define the numberm[A],I ([D]).
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• If there exists a pair(D′,B) whereD′ ∈ OK is a prime ideal of normD′ congruent
to 3 mod 4,D′ ∼ D and B is an ideal ofQ(

√−D′) such thatI = IzAD′QB , we
definemA,I ([D]) = �2nA,[B],D̄′ .
The number�2 is chosen such thatmA,I ([D]) is a complex number in the upper
half plane unionR�0.

• If no such pair exists we definemA,I ([D]) = 0.

Proposition 59. This definition is“ independent” of the equivalent class of the idealA.

Proof. By Corollary 56 if two idealA, A′ are equivalent (sayA′ = �A), their left or-
ders are conjugate. Furthermore a bijection between leftOA,[D]-ideals and leftOA′,[D]-
ideals is given by multiplication on the right by�(�−1) (by Proposition 55). Since the
numbern[A],[B],D̄′ is independent of the equivalent class ofA this map preserves the
numbers{mA,I ([D])}. �

Hence we think of the numbersmA,I ([D]) as defined on equivalence classes and
denote themm[A],I ([D]).

Formula (17) says:

L(�D,1) = 2�

w
√|D|�(D̄)�(OK)


 ∑
[A]∈Cl(OK)

∑
[B]∈Cl(OL)

n[A],[B],D̄


 .

To the Siegel pointzAD̄QB we associate the leftO[A],[D]-ideal IB as in (35). Given
I a left O[A],[D]-ideal, we define

r(D, [A], I ) =
{ ∑

{B∈OL|IB∼I } n[A],[B],D̄/mA,I ([D]) if mA,I ([D]) �= 0,
0 otherwise.

Lemma 53 and Theorem 31 imply that if the idealsIB and IB′ are equivalent,
n[A],[B],D̄ = ±n[A],[B′],D̄ hencer(D, [A], I ) ∈ Z. Rearranging the sum we get

L(�D,1) = 2�

w
√|D|�(D̄)�(OK)


 ∑
[A]∈Cl(OK)

∑
I

r(D, [A], I )m[A],I ([D])



as claimed. �
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Question. Is it true that for any leftO[A],[D]-ideal I there exists a pair(D′,B) such
that I ∼ IzAD′QB?

All the examples we computed show this is the case.

Proposition 60. Let A be an ideal ofQ(
√
N), then n[A],[B],D̄ and n[OK ],[B],D̄ differ

by a unit in a quadratic extension ofM.

Proof. Let �A be the automorphism ofH corresponding to the idealA via the Artin–

Frobenius map. Then we proved that
(

�(zOKDQB)
�(D)�(OK)

)�A = �(zADQB)
�(AD)�(A)

. Hencen[A],[B],D̄ =(
�(A)�(AD)

�(D)�(OK)�D̄(A)

)
(n[OK ],[B],D̄)

�A . Note that the quotient of etas squared is inH while

�D̄(A) is in T, hence
 :=
(

�(A)�(AD)

�(D)�(OK)�D̄(A)

)
is in a quadratic extension ofM. Clearly

N(
) = 1 as required. �

5. The class number one case

We study now the case of imaginary quadratic fields with class number equal to
one. In this casen[A],[B],D̄ are rational integers for any choice ofD. There are just six
such cases (we exclude the caseN = −3) so we can study all this cases by numerical
computations. Here are some examples:

5.1. CaseN = −7

This case is the easiest one since the class number in the quaternion algebra is also
one. Then the numbersn[A],[B],D̄ are integers and differ by a unit.

Theorem 61. Let N = −7 and D be any ideal of prime norm congruent to3mod 4.
ThenL(�D,1) �= 0.

Proof. By Proposition24 we know that the number associated to an idealB is the
same as the one associated toB̄. For a prime idealD let � = �(D̄)�(OK)

2�
w
√|D| where

−D = N(D) andw is the number of units inQ[√D]. Formula (17) forL(�,1) reads:

L(�,1) =

 ∑
[B]∈Cl(OL)

n[OK ],[B],D̄


� =


n[OK ],[OL],D̄ + 2

∑
[B]∈	

n[OK ],[B],D̄


�, (39)

where 	 is a maximal subset ofCl(OL) such that[OL] /∈ 	 and if [B] ∈ 	 then
[B̄] /∈ 	.
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Taking the maximal orderO as leftO-ideal representative, we see that the number
associated to it is 1 up to a sign, thenL(�,1)� ≡ 1 mod 2. �

In the next table, we list some of the numbersn[OK ],[B],D̄ to show the behavior of
the sign.

D B n[A],[B],D̄
11 [1, −1, 3] 1
23 [1, −1, 6] 1
23 [13, −17, 6] −1
23 [13, 17, 6] −1
43 [1, −1, 11] −1
67 [1, −1, 17] 1
71 [1, −1, 18] −1
71 [19, 9, 2] −1
71 [19, −9, 2] −1
71 [29, 33, 10] 1
71 [29, −33, 10] 1
71 [43, 141, 116] −1
71 [43, −141, 116] −1

5.2. CaseN = −11

In this case the quaternion algebra has type number 2 for maximal orders, so we
get two different integers associated to differentD’s. Each numbern[OK ],[B],D̄ will be
associated to an ideal class. LetB = (−1,−11) be the quaternion algebra ramified at
11 and infinity. LetO := 〈1

2+ j
2,

i
2+ k

2, j, k〉 be a maximal order andI a non-principal
ideal. Here is a table ofn[OK ],[B],D̄ for different values ofD andB, writing down the
associated ideal also.

D B n[A],[B],D̄ Ideal

23 [1, −1, 6] 2 I1
23 [13, −17, 6] 0 O
23 [13, 17, 6] 0 O
31 [1, −1, 8] −2 I1
31 [5, 17, 16] 0 O
31 [5, −17, 16] 0 O
47 [1, −1, 12] 0 O
47 [7, −17, 12] 2 I1
47 [7, 17, 12] 2 I1
47 [17, −53, 42] 0 O
47 [17, 53, 42] 0 O
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Note that the number 0 is associated to the principal ideal, while the number 2 is
associated toI1. With the same reasoning as in Theorem61 we can get a partial
result proving that the idealsD such thatzDQOL

is associated to the idealI1 have a
non-vanishing L-series.

Following the method described in [10], taking{O, I1} as representatives for the
maximal order and constructing the Brandt matrices for level 112 we get that the
eigenvector associated to the modular form of weight 2 and level 112 is
[0,0,0,1,−1,0,0,0,1,−1]. The first three zeros correspond to the principal ideal,
and the±1 to I1. Then the number associated to each ideal is the same as the
one associated to it vian[OK ],[B],D̄, since the eigenvector is well defined up to a
constant.

5.3. CaseN = −163

Let B = (−1,−163) be the quaternion algebra ramified at 163 and infinity. In this
case, the class number for maximal orders is 14 while the type number is 8. Consider
the maximal orderO := 〈1, i, 1

2 + j
2,

i
2 + k

2〉. A set of representatives of leftO-ideals
is given by {Ij }14

j=1 with I1 = O and

• I2 := 〈2,2i, 1
2 + i + j

2,−1+ i
2 + k

2〉
• I3 := 〈3,3i, 1

2 + i + j
2,−1+ i

2 + k
2〉

• I4 := 〈3,3i, −1
2 + i + j

2,−1− i
2 + k

2〉
• I5 := 〈6,6i, 1

2 + i + j
2,−1+ i

2 + k
2〉

• I6 := 〈6,6i, −1
2 + i + j

2,−1− i
2 + k

2〉
• I7 := 〈4,4i, 3

2 + i + j
2,−1+ 3i

2 + k
2〉

• I8 := 〈4,4i, −3
2 + i + j

2,−1− 3i
2 + k

2〉
• I9 := 〈6,6i, 5

2 + i + j
2,−1+ 5i

2 + k
2〉

• I10 := 〈6,6i, −5
2 + i + j

2,−1− 5i
2 + k

2〉
• I11 := 5,5i, 1

3 + 2i + j
2,−2+ i

2 + k
2〉

• I12 := 〈5,5i, −1
2 + 2i + j

2,−2− i
2 + k

2〉
• I13 := 〈7,7i, 5

2 + 3i + j
2,−3+ 5i

2 + k
2〉

• I14 := 〈7,7i, −5
2 + 3i + j

2,−3− i
2 + k

2〉

The pairs of ideals(I2j+1, I2j+2) with j = 1, . . . ,6, have the same right order, hence
each pair will have the same integer associated. For the table we consider the range of
primes between 150 and 200 so as to get all the ideals{Ij } associated to some number
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n[OK ],[B],D̄. The table is

D B n[A],[B],D̄ Ideal

151 [1, −1, 38] 20 I2
151 [29, 9, 2] 14 I8
151 [29, −9, 2] 14 I8
151 [11, −5, 4] 8 I13
151 [11, 5, 4] 8 I14
151 [43, 137, 110] 4 I12
151 [43, −137, 110] 4 I12
167 [1, −1, 42] 0 I1
167 [157, 33, 2] −20 I2
167 [157, −33, 2] −20 I2
167 [61, 65, 18] −2 I4
167 [61, −65, 18] −2 I3
167 [29, 93, 76] −10 I6
167 [29, −93, 76] −10 I5
167 [127, −177, 62] −14 I7
167 [127, 177, 62] −14 I8
167 [19, −21, 8] −12 I9
167 [19, 21, 8] −12 I10
179 [1, −1, 45] 0 I1
179 [19, 45, 29] 2 I3
179 [19, −45, 29] 2 I4
179 [13, 17, 9] 4 I12
179 [13, −17, 9] 4 I11
199 [1, −1, 50] 0 I1
199 [31, −69, 40] −20 I2
199 [31, 69, 40] −20 I2
199 [43, −133, 104] −4 I12
199 [43, 133, 104] −4 I11
199 [13, 29, 20] −14 I8
199 [13, −29, 20] −14 I7
199 [131, 453, 392] −8 I14
199[131, −453, 392] −8 I13

The eigenvector for the Brandt matrices corresponding to the form of weight 2 and level
1672 is given by the vector[0,10,1,1,5,−5,7,−7,−6,6,2,2,−4,4] with respect to
the maximal order representatives{Ij }.

Considering all the class number 1 imaginary quadratic fields (the computations being
the same in all cases), we can prove:
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Theorem 62. Let E be a CM elliptic curve overQ of level p2. Then the coordinate
of the eigenvector of the Brandt matrices associated to E on the place corresponding
to an ideal I is given up to a sign bym[OK ],I ([D]).
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