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Abstract

Let N = 1mod 4 be the negative of a prim& = Q(+/N) and Ok its ring of integers. Let
% be a prime ideal inOg of prime norm congruent to 3mod4. Under these assumptions,
there exists Hecke characteys, of K with conductor(%) and infinite type(l, 0). Their L-
seriesL(y, s) are associated to a CM elliptic cunv¥(N, &) defined over the Hilbert class
field of K. We will prove a Waldspurger-type formula fdt(y,, s) of the form L(},,1) =
QZW],,r(@, [Z], Dm[.,1([Z]) where the sum is over class ideal representativesf a
maximal order in the quaternion algebra ramified|&{ and infinity and[.</] are class group
representatives dk. An application of this formula for the casg =—7 will allow us to prove
the non-vanishing of a family of L-series of leve|¥] over K.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Given an elliptic curveE over O, and a fundamental discriminai, a formula of
Waldspurger relates the value bfE ® D, 1), the twist ofE by D, with the coefficients
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of a 3/2 modular form (seq18]). The purpose of this work is to get a formula for
quadratic twists of a family of elliptic curves with complex multiplication not defined
over the rationals.

Given an imaginary quadratic field the theory of complex multiplication (see [14])
gives a relation between elliptic curves with CM given by an ordeKadnd L-series
associated to Hecke charactgrson K. The simplest case is wheki = Q(+/N) with
N =1 mod 4 the negative of a prime andis a character of conductoy’N. In this
case the L-series corresponds to a CM elliptic cutveV) studied by Gross in [4],
defined oveH, the Hilbert class field oK. A formula for the central value of (y, 1)
was given by Villegas in [12].

In this paper we will study the central value of the L-series corresponding to the
CM elliptic curves2(N, D), given by twists of(N) by the quadratic character of
conductor/ND whereD is a prime ideal ofk prime to /N and with prime norm
congruent to 3 mod 4. If we denotethe class number dk, the prime idealD hash
Hecke characterg, of conductorD associated to it. The relation between the L-series
of AW(N, D) and L(Yp, s) is given explicitly by

LAUN,D)/H,s) =[] LOWp, HLWp, ),

Vo

whereH is the Hilbert class field oK and the product is over thie Hecke characters
associated tdD (see[4, formula (8.4.4), Theorem 18.1.7]). If we defilB be the
Weil restriction of scalars oRI(N, D) to K, then B is a CM abelian variety, and
L(A(N,D)/H,s)=L(B/K,s).

Let B be the quaternion algebra ramified|at| and infinity. Given an element € B
we denote Nx) := xx its norm and T¢x) := x + x its trace. To the ideaD and an
element{ A] of CI(Ok) we will associate a maximal ord€l; 4) ;p; in B depending only
on [A] and the class oD. If {I} are representatives for le 4 (p;-ideals, the main
theorem (Theorem 6) gives the formulayp, 1) = QZ[A]’, r(D, [Al, Dm4),1([D])
where the sum is over the idea$} and ideal representatives 6¥x, Q is a period,
r(D,[A], ) is a rational integer and the numbers 4; ; ([D]) are algebraic integers.

The paper consists of four sections besides the introduction. In the second section
we give the basic definitions and derive a first formula for the value of the L-series
at 1 (following Hecke's work on L-series, see [7]). Later we relate theta functions of
quadratic forms to theta functions on the Siegel space. In the third section we introduce
the periodQ and using Shimura’s theory in Complex Multiplication we compute the
field where the algebraic integens 4; ; belong to. In the fourth section we study the
problem of deciding whether two points in the Siegel space are equivalent or not in
our specific case. For this purpose we introduce quaternion algebras, and relate special
points with left Oy 4; pj-ideals. In the last section we study in detail the case when
the class number oK is one. In this case the elliptic curvli(N) is defined overQ
and the numbers: 4; ; turn out to be rational integers. In the ca¥e= —7 using the
fact that the quaternion algebra has class number 1 for maximal ideals, we prove that
the CM elliptic curves2(N, D) defined overK have a non-vanishing L-series for all
primesD.
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We finish this work with a remarkable relation between the numbgrg ; and the
coordinates of the eigenvector of the modular form associated(9) represented in
the Brandt matrices of levev?.

2. L-series
2.1. L-series definition

Given a number fieldk, we will denote Ok its ring of integers,Ci(Ok) its class
group andh its class number.

Let N = 1 mod 4 be the negative of a prima] # —3 and K := Q(/N). Let
D = 1 mod 4 be the negative of a prime such that the ideal generated bylits
completely inK, i.e. (D) = (D)(D). We will denote L := Q(+/D). Since the rings
Ok /D and Z/|D|Z are isomorphic we definep by

ED

(Z/1D|2)*

(Ok/D)*

where (W) is the Kronecker symbol. The charactep induces a Hecke character
Y on principal ideals byyp((0) = ep(a)a.

Proposition 1. The characteny on principal ideals is well defined

Proof. Since 1 and—1 are the only units inK, we must check thatp(x)a =
—ep(—a)a. This follows from the fact thatp is multiplicative and|D| = 3 mod 4,
hencesp(—1) = —-1. [

Given D let ¢p denote an element iGal(K2°/K) corresponding toD via the
Artin—Frobenius map, wher& 2 denotes the abelian closure Kf We can definep
in a different way:

Proposition 2. If « ¢ D, ep(a) = (V)2 L.

Proof. It is clear thata’? = &/a where &, = +1. By definition given® an
ideal of K lying aboveD, op satisfieséo/a = /&' = a”' modD. But o' ”' =

|D|

a%\/& hencex = &> modD. In particularep (o) = ep(&r) = &, since|D| =3
mod 4. O
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The character actually depends on the choiceTof(i.e. we have one character
associated t@ and another one associated®). Abusing notation/ will denote the
character associated @ if it makes no confusion.

The charactery defined on principal ideals extends lidHecke characters oh(Ok)
the set of ideals of0x. We fix an extension once and for all and we calljit Then
Y 1(Og) — Ty, whereTy, is the degreén field extension ofK.

Definition 3. The L-series associated b is

Y (A)
LGy, s) = S 1)

where the sum is over all ideald of Og.

By Hecke’s work we know thaL (i, s) extends to an analytic function in the upper
half plane, and satisfies the functional equation:

2 \° 2n \*72 -
(JW) L)L, s) = wy, (ﬁ) I'2—s)L(y,2—ys),

wherewy, is the root number. The charactgrdefines a weight 2 modular form given

for z in the upper half plane by (z) = 3" 4 ¥/(A)e?™ VA, which has leveND. The
root number is given byny, = fw(ﬁ)/fw(ﬁ).

Proposition 4. Let o« be a generator of". The root number in the functional equation

for yip is wy = & (ﬁ) i, where&, is —1if 2 is ramified in K (v/o/N) and 1 if
not

Proof. See[1, Proposition 10.6, p. 20]. This is equivalent to saying that ifs the
generator ofD" such thatk (v/a+/N) is a quadratic extension & of conductory/ND
then wy, = —<‘—1%,|>i LA

lorf *

The characterg are associated to a CM elliptic cur®(N, D) defined oveH, the
Hilbert class field ofK, by the formula:

LQUN,D)/H,s) = [ [ LWp, )LWp, ).

Yp

See[4, formula (8.4.4), Theorem 18.1.7].
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2.2. Choosing characters in a consistent way

Let D andD’ be prime ideals oK as before (i.e. they have prime norm congruent to
3 mod 4). While extending the Hecke charaafes to 1(Ok) we get a field extension
Ty, If we extend the Hecke character associate®tan an arbitrary way, the image
of both characters will lie in different fields. There is a natural way of defining a Hecke
characten), associated t@" such thatyp (1(Ok)) C Ty,. Any ideal of K raised
to the h-power is principal, hence for all ideald prime to DD’ we define:

epr (A

Y (A) = Yp(A) oA

)

There is some abuse of notation on this definition since althod§tis principal, it
has two generatorg and —o. But ep(—o) = —ep(a) and ep/(—a) = —ep (o) hence
the quotient is well defined.

Proposition 5. There exists a Hecke character associatedXotaking values inT;,
and defined as above on ideals prime®®’.

Proof. We start by proving that the character defined above is a Hecke character on
ideals prime toDD'. If A is principal, sayA = (x), then yp () = SD(OC)OC%.
Sinceh is odd, ande takes the values1, we get that)p (o) = ep(2)a, hence it is
a Hecke character.

Let g be a prime ideal in the same equivalence classDaand prime toDD’
(there exists such an ideal by the Tchebotarev density theorem)g/say D. Then
Yp (D) = Yp(af) = Yp(@yp (f) = Yp(a)ep (B)B. In this way we can extend
the character to all ideals prime @' and clearly this is well defined, taking values

in Tl/,. O

From now on given two different characteys, and iy we will always assume
that they are chosen in a consistent way.

Given a quadratic imaginary fiel@[v/—d] we denotew, the number of units in its
ring of integers. Forz € [), we recall the definition:

00
n(z) = eZm‘z/24H(1_ eZninz).
n=1

While choosing ideal class representatiygd]} for K we will assume they are prime
to the ideal(6) and that they are written ad = (a, %ﬁ) with b = 3 mod 48. We

definen(A) = n(%ﬁv). Our main theorem is the following:

Theorem 6. GivenD a prime ideal of K of prime norm congruent 8mod 4 let yp
be a Hecke character as before. Let B be the quaternion algebra @veamified at
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IN| and infinity. For each ideal class representatiud] of K there existsOp4;p; a
maximal order in B such that

LYp, ) =

2n _
T (DO D, [A], I D) |, 3
oo D11 P10 (ZZr( LALL Dmpagi( ])) €)

[A] 1

where {I} is a set of left Oj4) pj-ideal representativesr(D,[A],I) € Z and
my 4.1 ([D]) are algebraic integers lying in a finite field extensiondf(see Diagramil).

_ 2n N . .
The termQ = w‘mmn(D)n((’)K) on (3) corresponds to a period of the abelian

variety B and the number (D, [A], I) is counting some special points with a1
weight (see Section 4.3 for details). The rest of this paper will be a constructive proof
of Theorem 6.

2.3. Computing the L-series value at 1

Given A an ideal ofK, we will denote[A] its class in the class group. We can
decompose the L-series as

L=y 2 U3 @)

[Al B~A

Proposition 7. All integral ideals equivalent to4 are of the formc.A for somec € A~L.
Proof. Easy to check. [J

Since the only units i0g are 1 and-1,

$ UB) L YOI NA 1y WA g h0)

S NB 2 = Y(NA) Nc&& 2 Y(NA) “
. . .. . ™ Y (A)
Since Y is multiplicative Y (A)y(A) = ¥ (N.A), then A = WA) Using the fact
B 1NA (©) ;

that NA = NA it follows that Y. 4 %BY 3 J/V(A) Doced ‘,/(,C and we can write the

L-series as
1 NA* cep(c)

LW.s)=> Y =y 5)

2 o Y i Ne

Without loss of generality, we may assume tbhat aZ + @Z andD = |D|Z +
MZ, hence AD = a|D|Z + Mz (see[12, Section 2.3, p. 552)). It € A
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thenc = ma +n%, andep(c) = ep(ma + n%). Sincen%ﬁ €D, epl(c) =
ep(@)ep(m) = ep(NA)ep(m). We will denotez 4 the pointM (respectivelyzp

the point ”*“lﬁ andz4p the pomt”*l*/T ). Also we denote by)~’ the sum removing
the zero element (or zero vector depending on the context). We have

2 NAY S ep(NA) Y ep(mn + 24p|Din)

S
[AleCl(Ok) YA mnel N(m + z4p|Dln)

L, s) = (6)

If we changem by —m in the sum, sincep(—1) = —1, the term in the inner sum

n written as ep (m) where th iNt—z 4p is in th
can be N A ZAD)|DIn)Im+(—Z 4p)|D[n|> =2’ ere he point=zAp 15 €

upper half plane. This sum is related to Eisenstein series that we define below:

Definition 8. Let p be a prime integer and(m) := <ﬂ> We define the Eisenstein

&(m)

series associated toby E1(z,5) =Y, ez PP po—

By (6) taking p = |D| we get the relation:

Z NAY S ep (N A)

H9 =3 Y (A)

El(_ZApv s — 1) (7)
[AleCl(Ok)

E1(z,s) turns out to be a modular form of weight 1 with a character. We need to
compute its value at = 0 for a pointz in the upper half plane. This was done by
Hecke and its value (given in formuld X)) can be found in [7, formulas (26), (27),
p. 475]. For the reader convenience we re-derive the formula.

The series ofE1(z,s) converges only fordi(s) > % but it can be analytically
continued to the whole plane and satisfy a functional equation. We will compute its
value ats = 0 using Hecke’s trick. Since is a character of conductqy, we break
the sum ovem as

re(m) 1

Ei(z,5) = +2 e(r) (8)
,;Z ,;r,%p E(zpn+r+mp)lzpn+r+mplzs
and dividing the last sum bp®+1 we get

e(r 1

Ei(z.s) = 2L(e, s)—}—ZZ > 2(Y+)1 )
nlrmodp meZ(an+r+m> an+r+m‘
p p
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For z in the upper half plane we define:
1
H(z,s) = P E—
Z (z+m)|z+m|®

meZ

Lemma 9. Let z = x + iy be a point in the upper half planghen

o o0
D @+my TP+ = Y (s + 1Ls)e?
m=—0oQ n=—oo
wheret,(y,s + 1, s) is given by
25 =2y (4 +1,5) (n > 0)
T I n“e o(4nny, s , ,
T, (y, s + 1, s)% =1 |n|Ze 2"V g(4ninly, s, s +1) (n <0),
(2m) [(25)(4ny)~% n=0,

and o(y, o, B) = [o(t + D> 1P~Le " dr.
Proof. This is Lemma 1, p. 8415]. O

The right-hand side of Lemma 9 equality converges for any 0, so we can
compute the limit whers tends to 0 ofr, (v, s + 1, s) in the different cases:

—0 i =+ T(2s) -2 _ _:
e Casen = 0: limy_g TerD To) (4my) = —iT.
L (m»+! 25 2nt|n|y [0 s=1.s ,—4n|n|yt g, _
e Casen < 0: limy_,q TeriTo n|%e Jo t+D* e dt = 0.
i Cm> % _ompy 1 oo ss—1 ,—d4nnyt
e Casen > 0: lims_o TG ) Jo G+t e dt.

We just need to compute Iim)o%fol (t + 1)*t*~Le=%"4; . Doing integration by
parts:

P —4nny

1 1
/ ([ + 1)sts—le—47myl dt = _ / s (t + 1)5—16—47Znyt dt
0 0

N

1 /1 , ,
——/ (¢ + 1) e (—Annyr) dt.
0

N

The functionT'(z) has a simple pole af = 0 with residue 1. Dividing the integral by
I'(s) and taking the limit whers tends to zero we get

SIiLTIO‘cn(y, s+1,5) = —2mie 7, (10)

We just prove:
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Lemma 10. limy,0H(s,z2) = —7i — 271 Y v 14"

Eqg. @) can be written as

Ei(z.s) = 2L(e, s)—i-ZZ 3 82(5’31 (Z”"“,s),

n= lrmodp p

which by Lemma9 is the same as

sy Xpn+r
Ei(z,5) = 2L(e, s)+22 Z 2(521 ZTk(yn,S+l, S)ezmk(lT).

n=1r modp keZ

Let G(e) :== ), modps(r)é; be the Gauss sum associated to the quadratic character

2ni
e. Let é,, = e r . If we take the limit ass tends to zero and use Lemni® in the
inner sum we get:

5 0 (niany ey ) = Eao Y
k=1

r mod p p

If pis congruent to 3 mod 4 it is a well-known result th@te) = i,/p, then

o0

4
lim E1(z.s) = 2L(e. 1) + 77; Y@ q (11)

n=1 \d|n

Applying this to Eq. {) (with p = |D|) we get the value of(y, 1).

We will write this number in terms of theta functions so as to relate the value for
different idealsD. Let B be any ideal ofL. For z in the upper half plane, we define
. Ni
2miz—=
Op() =) ,5€ NB — 1+ 72, re(n)g" whererp(n) is the number of elements
A€ B of normnNB. Clearly if two ideals ofL are equivalent, their theta functions
are the same.

Lemma 11. Let w;p| be the number of roots of unity in, land z a point in the upper
half plane. The w'”‘mEl(z 0) = X iBjecio;) @18 (2)-

Proof. We need to check that thegexpansion on both sides is the same. The constant
term on the right-hand side is, the class number of(v/D). On the left-hand side

L(e, l)w‘D‘f

we have which by the class number formula lis Since the constant term
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is the same, we can apply the Mellin transform on both sides. Dividingulpy we
need to prove the equality:

i—Zd'Zf(d) DS Z (n) (12)

n=1 [B]ECI((’)L) n=1

Given a number field. the zeta function associated to it is
1
{p(s) = ; VB

where the sum is over all integral ideals laf It follows easily from the definition that
() = 2 Y Becio,) 200 1B which is the right-hand side ofLp).

Itis a classmal result tha;tL(s) = {(s)L(s, s) (see for example [19, Theorem 4.3, p.
33]), thenl, (s) = (302, 1) (ZOO_ £<’">) which is the left-hand side of (12). O

n=1 ns m=1 "mS

Note that—z 4p = z 555, hence by Eqg. (7) and Lemma 11 we get

2n ep(NA)
Ly, 1) = > > Oslzp)-
wVIDl ylarion YA midcion

By Eq. @) YA = Yp(Aes(ANep(A) = Yp(A) (TA) Since h is odd it

8'D(N.A) 1
follows that VoD = U

Theorem 12. The value ats = 1 of L(y, s) is given by

2n Op(z 4p)
L. )=——0 ) P
wipIVIPL o iieciioy) YDA

2.4. Theta functions in several variables

The goal now is to write the identity of Theored® in terms of theta functions
in two variables so as to relate thefunction values for different prime®. Given
an elementZ, Q) in C?xly, (the Siegel space of dimension 2), the generalized theta
function is defined by

0G Q) =) exp(min' Qi + 2miii' 7).

iiez?
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It satisfies a functional equation for the grolip, (following Igusa notation), which is
defined to bew = (é g) € Sp2¢(Z) such thatA’C and B'D have even diagonal.

In particular,

00, —(01) 1) = /det(Q) (—i)t0(0, 1), (13)

where Q and B are symmetric, integral and even diagonal two-by-two matri€gs,
corresponds to a positive definite quadratic foris a point in the upper half plane
and &, is a root of unity. (sed8, Section 5, p. 189].)

L is an imaginary quadratic field, so given an id&abf C/(O.) we can associate to
it a quadratic form of discriminarD via the group isomorphism betwe& (Or) and
{equivalence classes of quadratic forms of discriminBht More specifically, given a
quadratic form of discriminanb, say [a, b, c] whereb? — 4ac = D, we associate the

ideal (a, b+2*/5); conversely given any primitive ideal (i.e. not divisible by any rational

integer greater than 1, we can chose a pair of generators of the fd@ra (a, ”*55),

and associate to it the quadratic fofm b, c] wherec = (b°— D) /(4a). We will denote

05 the matrix(Z; 2bc) associated to the quadratic forim, b, c].

Let B be a primitive ideal representing a class@i(O.), say 5 = (a, ”’LQFD) with

a = N(B). If « € B then it can be written uniquely as= ma + n (”+2*/5>. Hence

N(o) = a(am? + mnb + n2b24;D) and

Op(z) = Z exp|:7tiz(m,n) <2; 2bc) <’Z>:| (15)

(m,n)eZ?

Sincez € h and Qi is symmetric,zQpi € h2. Hence®p(z) = 0(6, zQp). SO we can
rewrite the main formula of Theoreh?2 as

2n 000,z 4508
Ly h=—"" Y Yy SoADEE (16)
wipIVIPL yéction miecrioy YDA

3. Normalization of the theta function

Given a pointz 4p, we define the normalizer:

Y(z4p) := (DO )Yp(A).
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Then the main formulal) can be written as

21 00, z 45 0B) =
L(yp, 1) = > Y. =L |nDm©Ox). (17
wyID ([Alecuok)[B]ecz(Om Yap)

We are interested in studying the number; BD = 0(6, 24p0B)/ Y (z 4p)- The nor-
malizer Y is chosen so as to make, 5 5 an algebraic integer as we will see later.

3.1. Complex multiplication

Let Fu be the field of all modular functions of levél whoseg-expansion at every
cusp has coefficients id(&y,) where &y, is any primitive Mth root of unity. Let
K (M) denote the ray class field & mod M, and for a prime ideap in K relatively
prime to M (say of normp), o(p) denotes the Frobenius automorphism M)/ K
corresponding tcp.

Following Stark’s notation ifA is an integral matrix of determinant relatively prime
to M, we denotef o A the action ofA on f which is characterized by the two properties:

o (foA)2) = f(Az) if A€ SlaD),

o (foA)) = oa(f)2) if A = ( é 3) where o, € Gal(Q(éy)/Q) is defined

by a4(&y) = 67{4. We extend this action td by acting on the coefficients of the
g-expansion at infinity.

Theorem 13. Let f(z) be in Fy and suppose thatp) = pp in K where p is a
rational prime such that(p, NM) = 1. Suppose thaid = [y, v] is a fractional ideal
of K with ¥ = u/v in h and let B(!)) be a basis forp.A. Then f(¥) is in K(M) and

TP =[f o (pB~HI(BY).

If in addition f is analytic in the interior ofy and has algebraic integer coefficients
in its g-expansion at every cusfhen f (1) is an algebraic integer
Proof. This is Theorem 3 of16, p. 213]. O

Proposition 14. Following the previous notatign 9(6,ﬁsz)/n(‘%|)n(z) is in
f24aD2'

For the proof we need the elementary result:

Lemma 15. If f(z) is a modular form of weight k and level N and D is a positive
integer thenf (4) is a modular form of weight k and level at most ND

Proof of Proposition 14. Let B be the idealB := Za + Z%ﬁ. Then the quadratic
form associated td3 is [a, b, c] with b2 — 4ac = D and the matrix of the bilinear
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form is <2a b

b 2c
form hence it has levelD|, weight 1 and a characteid) = (%) (see[9, Theorem
20, p. VI-25]). Using the previous lemma, we have tﬁg(ﬁ) is a modular form

of weight 1 and levek DZ.

The eta function is a modular form of weighy2l and level 24, them(lﬁ) has
weight 1/2 and level 24D|, so the product of the two eta functions has weight 1 and
level 24D|. Hence the quotient has weight 0 and level at most/?4 We do not
need a sharp estimate of tlgeexpansion, hence the minimum level is not important.

From theg-expansion of the function8z, andy it is clear that theg-expansion at
infinity of 6(0, ﬁQB)/ﬂ(fﬂ)ﬂ(Z) is in Q(&,4,p2), hence we just need to check this
condition at the other cusps. For that purpose we will studycHexpansion of each
form separately.

Since the theta functiop is a modular form forI'g(|D|), there are just two
inequivalent cusps which may be taken to be 0 andOne transformation that send

01 .
1 O) sendingz to —1/z.

). The theta seriefi is the theta series associated to this quadratic

infinity to zero is given by the matri¥ =

The functional equation (13) reads as
0(0. 05"(~1/2) = det @) (=200, 052) = V/IDI(-)z000, Q7). (18)
Since le = Adj(Qp)/|D|, replacingz by z/|D| we get

0 (0.Adj(05)(~1/2)) = (=)2//IDI 6©. Qs2/ID)). (19)

Replacing Oz by its adjoint matrix, we see that thgexpansion at O includes a
4th root of unity and the square root pb| (the z factor actually cancels out a factor
coming from the eta function). SincgD € Q(&p), the g-expansion ofd(0, Qi) has
coefficients inQ(¢gp) at all cusps. Replacingby z/a|D| we add at most(D?)th roots
of unity to the g-expansions, hence thgexpansion off(0, ﬁQB) has coefficients
in Q(&s4,p2) at all cusps.

We will use the following explicit version of the transformation formula f@which
can be found in12, p. 560]:

Lemma 16. Let (ﬁ; g) € Slp(Z) with y even ¢ positive(and odd, and t € [). Then

" (“H / ) - (g) €241/ + 011 (2), (20)

T+ 0

wherex =36 — 1) + 6(f — 7) — (6% — 1)ya.
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For any matrix in['9(2), the modular formy changes by a 24th root of unity, hence
its g-expansion at the equivalent cusps modiilg2) have coefficients ind(¢,4) and
the g-expansion ow(ﬁ) has coefficients irld(o4,p2). But in moduloI'g(2) there are
just two inequivalent cusps which may be taken to be zero and infinity also. The eta
function satisfies the functional equatigi—1/z) = +/z/i n(z). Hence itsg-expansion
at zero has coefficients 1B(&g) andn(‘%l) certainly has aj-expansion with coefficients
in Q(&oy,p2) at zero. O

3.2. Field of definition

Theorem 17. The numbei)(0, 2 4p0B)/n(zp)n(Ok) is an algebraic integer in Hthe
Hilbert class field of K

Proof. The eta function does not vanish in the upper half plane so we can apply

Theorem13 and 0(6, %QB)/W(%)W(ZO) is an algebraic integer ifr (some field

extension ofK containingH) wherezg = %ﬁ corresponds to the ide&P.

Let g(z) := 00, 55 Q5)/n(F)n(2). Given an element of Gal(F/K) by complex
multiplication theory there exists a prime idealin K such thate = o,, whereos),
is the element inGal(F/K) corresponding top via the Artin—Frobenius map. We
want to prove that the quotient is iH hence we takep to be principal and using
the Tchebotarev density theorem we may assume jipais prime to .4, D and the
ideal (6).

Sincep, A andD are prime to each other, it easily seen thatan be chosen such

that p = (25N p), A= (25N a), D = (25N D)) and O = (25N 1), Let 2

denote the poinM. ThenpAD = (%ﬁ, pa|D|), and on these basis the matix
. . 10 _ 20 -1 _ P 0 _ o—1
of Theorem 13 is given b>(0 ») Now Bzp = > and pB~* = (0 1) = SBS.
By Theorem 13,¢(z0)°™ =[g o (pB~1)1(Bz0).
Let g*(2) = g0 8(2) = g(~1/2) = (0, —1/(a|DI2) 0p) /(5E)n(ZH). If in (19) we
replacez by za|D| and Op by Adj (QR), we get the equation

00, 05(—1/a|D|z)) = (—i)y/|D]az0(0, Adj(Qp)az). (21)

The eta function satisfies the functional equatigr-1/z) = +/z/i n(z). Replacingz
by |D|z and multiplying both equations:

n(=1/2)n(=1/(IDlz)) = |D|§’/I(z)’7(|D|Z)-
Hence we get

0(0, Adj (Qp)az)

o(—1 =
$D = (D)
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The g-expansion of this quotient has rational coefficients hence it is fixed by the action
of g,, i.e. g* o5, =g* Then[go (pB~H] = g and (¢(z0))" = g(z0/p).

Proposition 18. With the notation as aboyéf p is principal, g(z0)°” = g(zo).
Proof. The proposition reduces to proving thatzo/p) = g(zo) if p is principal of
norm p which follows from the next two lemmas. This completes the proof of Theorem

17 since it implies thag(z0)°? = g(zo) for all principal idealsp. [

Lemma 19. Let p = (u) be a principal ideal prime ta4 and D of norm p. Then the
theta function®g satisfies the formula

b+ N e (u)( >® b+ N

2ap|D| ip1) P\ 2aDl )
Note 1. Since ep(pep (i) = (%) the formula may be written a®8(2ap|D\)
%(u)%(@;ﬁ)

Proof. ®5 is a modular form of weight 1 fol o(]D|) with a quadratic character.
We choseb such thatpAD = (b+‘ﬁ pa|D|) = (u b*g/ﬁ, pa|D)). Hence there exists

b+f
a change of basis matrit = (“ ﬂ) in Sl>(Z) such that( ﬁ)( ) —

y o 7 0 ) \ ap|D|
ﬂb+i/ﬁ .
ua|D|
N ; m—nb
2p

If u= % an easy computation shows that=
particular,M is in I'p(|D|) and by modularity of®5 we have

b+ N b+ N b+ N b+ N
<2a|D|> GB( 2ap|D|> <y2ap|D| +5>X(5)®B(2apw|>'

And the formula

andy = n|Dla. In

2a|D| 2ap|D]|

<b+d_) §X(5)®B<b+ﬁ>, 22)

where y(d) = (%) for any prime q which is sufficiently large and satisfieg =
d mod|D] [9, Theorem 20, Chapter VI, p. 25]. Letbe a prime congruent to 1 mod 4

and congruent ta mod|D|. Then y(6) = (%) = (%) = (IqTI) = (%) =
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N[

m—nb
D
DI )(ID) Then the proof follows from the definition of5 and the fact that
=@t O
Lemma 20. With the same assumptions as ahdhe eta function satisfies the equation

nCaDn ) = Rep () (1 ) nCom ).
In term of |deals

n(PD)n(P) = fie (1) ( ) n(D)n(Ok). (23)

|D|

Proof. Since we choos¢N| = 3 mod 4, and|N| # 3, the number of units iH is 2
(see[6, Tables 3, 4, p. 507]). Given a principal ide@) with u € Ok, prime to (6)
define:

1 P
K(w) = yaNg o) = 720r)

where y4(a) = (‘71) Since the number of units iRl is 2, k is a quadratic character
(see[6, Lemma 14]). We can write the left-hand side of (23) as

n(Ox)n(D). (24)

I pD) n(O 2(p
”(pp)n(p)=<n(p ) n( K)) 72(P)

nD) n®) | n?Ok)

If uis a generator op, = k(uwpy4(p). By Proposition 10 of6]

2(0 )
(W?@(vl)()) = (|D\) n(?g)) Then we get
n(»D) n(Ok) n(d) O“D—l_ » ] -
(n(D) ) ) <|D|> (n(om) = (ﬁ>( i)

By Lemma 12 of[6], x(—1) = —1. Since the right term of (23) remains unchanged
replacingu by —u, without loss of generality we can choogesuch thatc(u) = y4(p).
Replacing each term on the right-hand side of (24) and using Proposition 2 we get

nEDIN(R) = (| I’;l) ep () Ln(Ox)n(D).

And the result follows sincep (i) = ep(n). U
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Theorem 21. The numbernA’Bﬁ is in the field My, = HT,. It corresponds to the
fields diagram(Diagram 1):

My,
N
H M, T,

Diagram 1

Proof. By Theoreml17 the numbeﬁ(a, 24p9B)/Mzp)n(Ok) is in H and Ty, contains
the image off5 hencen 4 ;5 5 is in My. [

Proposition 22. The quotientHQB(zA@)/xp@(ﬁ) depends only on the class 8f and
the class ofA.

Proof. Independence of is clear since®x depends only in the class @.
To prove independence oA, let & € Ok be an element with prime norm such

that ¢t6a|D|. By definition ®3(z, 4p) = ®B(2a \DI) Then by Lemmal9:

b++/N o b+ N
B(m)z%“‘)@ﬁ (W) -

We will denote byn, 4, 55 the numbem 4 ;5.
Proposition 23. The numbem[A]’[B]’@ is an algebraic integer

Proof. In Theorem17 we proved thatlg, (z 45)/(n(zp)N(z0)) is an algebraic integer
and the numbed/@(ﬂ) has normN A. Since the quotient depends on the class of the
ideal A but not A itself, using the Tchebotarev density theorem we can choose two
prime idealsp; and p, in the same class afl of prime normsp; and py. Looking

at p; we see that the minimal polynomial @f[ (BLD has rational coefficients with
only 1 or p1 in the denominator. ConS|der|r1g2 we see that the minimal polynomial



356 A. Pacetti/Journal of Number Theory 113 (2005) 339-379

Of_”_lvzl,lBl.,l_? onIy_ has 1 orp; m_ the denom!ngtor. Smce[pl]’[B],@ = Ny B, its
minimal polynomial must have integer coefficients[]

Proposition 24. N ALIBLD = MALIBLD

Proof. It is easy to check that the theta functi@y associated ta@3 is the same as
the theta functior@Adj p associated to the adjoint matrix &t Note that[8—1] = [B].

Clearly the pointz 45 and the number);(A) are independent oB.  [J

Lemma 25. The characten) . satisfy Yp(A) = Ui (A).

Proof. Yp(AYp(Ad) = NA, and NA = yp(A)Yp(Aep(NA) henceyp(A) =
(%“‘) Yp(A). We chose the characters so thag(A) = l//p(A)e@(Ah)ep(A”) -

Yp(A) (“Yg‘l)h) (see R)). Since|N| is prime,h is odd. O

Proposition 26. R A1 B1.D = "ALIBLD"

Proof. It is clear from their definition tha®p(z 4p5) = Op(—74p) and n(z 4p) =
N(—Z4p)- Since—7 15 = 2 ip and yp(A) = P5(A), the result follows. [

Proposition 27. If the ideal D is principal in Ok, T ALB1.D = " ALIBL.D

Proof. The proof of this proposition involves the same kind of techniques used in the
previous ones (a little more tedious) so we omit the proot.]

In particular, this implies that ifA and D are both principal then the number
N ALIBLD lives in a subfield ofM,, which we denoteM (following [1] notation, see
page 13) and corresponds to the previous field diagram (see Theorem 21, Diagram 3.3).
We will be needing the next lemmas for the theorem relating the numti%ﬁg]ﬁ
for different idealsD.

Lemma 28. Let D and D’ be two prime ideals ofd(+~/N) with norm |D| and |D’|,

2 v
respectively and let u € Q(v/N) be such thatyD = D’. Then 712((141\%)) = k(w)
Xa(N ).

Proof. Note that althoughc is defined on integer elements, since it is a character on
(Ox/120k)*, we can extend it multiplicatively to all elements @(+/N) with both

2
numerator and denominator prime to 12. By definitiouw) = %X4(NH);% then

2 /Y 112
(AD") n*(Okg) _
we are led to prove thafim—nz(m =1

By Proposition 10 off6] we can write the left-hand side M

)0(,5/1’)71) -1
1%(Ok) )
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1>(AD)
n?(Ok) o
Frobenius map fronCI(Ok) to Gal(H/K), and sinceD'D~1 is principal, 6.5,p5-1 is
the identity. O

Since

is in H (by Theorem 20 of6]) then o 4 represents the classical Artin—

Lemma 29. Let D and D’ be two prime ideals of2(+/N) such thatD ~ D’. Then
Dn(D - -
:;EAD))rZ(D’; = ep(AM)ep (AM).

Proof. By Proposition 10 of(6] we have

NAD (D) _ ( n(A) )D ( 1A >‘“ﬁ (i) ( a ) 5)
1D mAD) ~ \n©x))  \n(©x) EYANCIA

Since the Artin—Frobenius map is a homomorphism:

( 7/](-’4) )6@;—0’@ B < ’7(»’4) )U(D’(‘D)l)_l (5]
n(Ok) -~ \\n©x) '

G, 77 —1,—1 ..
But (n"((o—AK))) T = 41 (see the proof of Lemmas), thena acts trivially on

it. Let u € Q(+/N) be such thatD'’D~?! is the principal ideal generated q%—l then
by Theorem 19 of [6]:

< n(A) )%mlrl _ K<L>El <M)
n(Ok) |D| A )

Since |D| is prime to 12, andx is a multiplicative quadratic charactem;(ﬁ) =
k(wx(|D]). The charactenc defined on(Og/120k)* factors as a product of two
charactersys from (Og /30k)* to the group of third roots of unity and, from

(Ok /40k)™ to the group of fourth roots of unity (see Lemma 14[6]). In our case

k3 = 1 and the character is completely determined from the congruence mod4. Then
k(|D|) = k(—1) = —1. Using the quadratic reciprocity law,

A ag DD ,1)—1 a -
(o) = (5) () @

Also sincex(u)x(it) = k(|D||D’'|) = 1, k(u) = x(it) and we can write Z5) as

NADD) _ws g [ a
WAD(D) ~ K * (2) <|D/|)'
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Since DD’ is the principal ideal generated hy and ¢ is a multiplicative quadratic
character,

.Ah
ep(AMep (AN = sD(.Ah)SD(.Ah)SDD/(.A ) = <|D|) ( ) . (27)

Using the reciprocity law inQ(+~/N) (see for example Theorem 21 [8]):

()= () =5 7 () (2. o

And the lemma follows fron('D”D ') (\gl) (Ig_\> O

Lemma 30. Let A : R? x R? — R be the skew-symmetric form given by the matrix

A= (_(;n Ié’) Then the following data oft?" are equivalent

(1) A complex structurd/ : R — R?* (i.e. a linear map withU2 = —1,) such that
there exists a positive definite Hermitian form H for this complex structure with
imaginary part A

(2) An ndimensional complex subspace ®" such that if we notedc the complex
linear extension of Awe have
e Ac(x,y) =0 for all x,y in the subspace
e iAg(x,Xx) < O for all non-zero x in the subspace

(3) A complex matrix in ,.

These are three of the four equivalent conditions proved in Lemma 4[8]ofThe
equivalence associates fo € ), the image of the maX — (X, —QX) as ann-
dimensional subspace @

Theorem 31. Let z4pQp and z4p O be two points inf2 such that they are equiv-
alent mod12 and D ~ D' in Q(v/'N). Thenn 4, 3.5 = £1p 411515

Proof. For simplicity we will denoteQp := z4p Qg and Qp := z4p Qp. Since

Qp is equivalent toQp there exists a matriy = (A B in Sp4(Z) such that

CD
7 * (Qp) = Qp. By the previous lemma, giving a poifdp in the Siegel space is
equivalent to giving the subspace 6f (I, —Qp)’ where the action ofSpa(Z) is
given by multiplication on the left byy")~1. Then

Iy _( D -C p) _ CQp+ D B I
()= (5 0 (5an) = (G m) = (o ) oo
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By the coherent way we chose charact#%’,%& = ep(AMep (A"). Hence,

0(Qp) n(AD)
0(Qp) n(AD)

naBLp  0Qp) n(D) o N
- € A EDr A —
naysy Qo) n(D) D(Aep (A"

The last equality follows from Lemma9. We claim that

2(AD
— Det(CQp + D)L = %. (29)

0%(Qp)
0%(Qp)

The first equality follows at once from the functional equation of the theta function.
Since |D| is prime and DgiQ) = |D| there exists matrice#/, V € Slo(Z) such that

UQv = (é |g|> (respectively,U" and V'’ for Q). Then,

1 0

vlo L \y I _ 0o 1

0 U —Qp T \-UQVzup ) | —zup O
0 -—z4u

Similarly,
1 0
vl o I\ _ I B 0 1
0 U )\ -Qp A\ -U'QV'zup ) | —zap O
0 —z4

We split into two cases:

e If D' =D we take basiD = (|D|, %ﬁ) and A = (a, M). Let r be such that
FID| = b moda then D' = (|D'|, ZIREDYN ) ang 4D = (| /|, ZIRLEDHIN,
Let u € K be such thatyD = D/, then AD' = (q|D'|, ZIRIEDEVN,
= (ua|D|,,u(b++W)) = uAD hence there exists a matrid = (O; [;) in Slo(Z)

(b+ﬁ ) (2r|D|=b)+v/N
such that:m [ M2 = 2 .
ua|D| a|D'|

o If D' £ D, we may choose basi® = (|D|,b+2m), D = (|D/|,M) and
A = (a, 25Ny 1f uis such thatuD = D/, then AD' = (a|D'|, 25{N) =
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(ua|D|,u(%ﬁ)> = puAD hence there exists a matriv = (? ﬁ) in Sla(7)

Y 0
(b+«/ﬁ) b+/N
such that:m | M2 = .

2
ua| D alD'|

In both cases, letv :=

1 0 10
D
0o 1 DI 0o 1
Ml —up 0 D= - 0
ZAD 0 1 ZAD
0 —z4 0 —z4

Combining these results we get that

M D|

V0 v1lo I ) 0\., 1 < I )
1| N 1% / vl
<0U1> (0 U)(—D l%'l —Qp

and

I _ D —-C I _1
[WIDI

Since both lattices have the same volume thRet(CQp + D)|~1 = T

2
By Lemma28, 22((jg>) = Lie(w) = £2lie(w). Now DetCQp + D)~ and r() {10!

have the same absolute value and both liedin/N) hence they differ by+1. Then

< 0(Qp) n(AD)

2
_ L
0(Qp) n(AD) ) = Det(CQp + D) k() = +1.

Taking square roots:

0(Qp) n(AD)

VE1l= .
0(Qp) n(AD)
0Qp) 0(Qp)

By Theorem21 we know that”(D)n(OK) and TDnOp are in H. Since/—1 ¢ H
the theorem follows. [

It is not clear how to determine the sign a priori, and we are not able to give any
answer in this direction.
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4. Equivalence of special points

The problem of determining whether two pointsijp are equivalent or not is com-
plicated in general. For our case we will get this equivalence via ideals in quaternion
algebras. A good reference for the basic definitions and some elementary facts about
quaternion algebras is Pizer's pagéd].

Let B be a quaternion algebra ovél. A lattice £ is a rank 4Z-module. An order
O is a lattice that is a ring with unity. Given an ordér a left O-ideal is a lattice®
such that¥), := £ ®z Z, = Opu, Wherew, is an element inB ;. Given a lattice®
we define its left order0; (L) := {x € B|x¥ C £} (respectively the right order). We
define N®) as the positive generator of t/amodule (N(x) | x € ).

Proposition 32. Let B be a quaternion algebra oved ramified at p1,..., p, and
£ be an ideal in B. ThenO;(2) is a maximal order if and only if disq¥)=
(p1--- p)*N(®)%

Proof. By definition disc(®) is the determinant of the bilinear form associatedo
on any basis. Since& is locally principal at all primes, given a finite primg £, =
01(L),0,. Clearly disc(£,) = N(a,)*disc(0,); then the statement follows from the
fact that this proposition is true replacirtg by an orderO and N(&) by 1 (see[11,
Proposition 1.1, p. 344]), and the fact that the normaf the product over all primes
q of ¢%N%) wherev,(n) is the g-valuation. [J

We restrict ourselves to the caBea quaternion algebra ovéb ramified at the prime
IN| and infinity.

Lemma 33. Let O be a maximal ordef 11, ..., I} a set of left Gideal representatives
and {R1, ..., R;} be the right orders of{l1, ..., I}, respectively. Then for a given
i =1,...,h the maximal orderR; appears twice on the list if and only if there is no

embedding oZ[+/N] into R;.

Proof. Although this is a well-known statement we give a proof since we will use it
latter. An embedding oZ[+/N] into R; is determined by the image of/ N. Hence
giving such an embedding is equivalent to giving an elemeért R; of trace zero
and norm|N|. Let P be the bilateralO-ideal of norm |N|. For a given leftO-
ideal /;, the ideal PI; is another leftO-ideal. Note that ifP; is the bilateralR;
ideal of norm|N|, then 1‘1791 = P; by the uniqueness of such a bilateral |deal
Then the ideals/; and 731 are equivalent if and only if there exisfs € RX such

that 7;5 = PI;. Multiplying on the left by 1‘1 we see thatR;f = 1‘1731 =
P henceP, is principal, and the elemeng has norm|nN|. S|nce|N| |s a rami-
fled prime, i.e. By is a division ring, it is easy to see that if(® = |[N| then
Tr(x) = 0.

To see that this is the only way in which a maximal ordeappears twice on the
list of right orders, suppose thatandJ are two non-equivalent lefd-ideals with same
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right orderR. ThenZ~1J is a non-principal bilateral ideal foR. Let P; be the ideal
of norm |N| in R, thenPz is non-principal and] is equivalent toP/. O

4.1. Siegel space and applications

Definition 34. Let £ be aZ lattice of rank 2 and V the vector spacg ® R. We call
a triple (P, J, U) a Siegel point if:

e Pis areal 2 x2n symmetric matrix such that the associated quadratic fBin, y)
is positive definite (that will correspond to the real partHf

e Jis a real 2 x 2n non-degenerate skew symmetric matrix with associated form
J(x,y) (that will correspond to the imaginary part bf).

e U e R¥*? js such thatU? = — I, (complex structure)

with the relation:
—JU=U"J =P. (30)

Via the matrixU we can put a complex structure on the vector spédcket H be the
bilinear form H(x, y) := P(x,y) +iJ(x, y). Condition @0) implies thatH (ix, y) =
iH(x,y). SinceJ is skew symmetric and® symmetric, it follows thatH (x, y) =
H(y, x). ThenH defined in this way is a positive definite Hermitian form. Each choice
of a reduced basis fod will give a point in the Siegel space (by Lemma 30) and
different bases give equivalent points.

Given two lattices€ and &', a morphismy : & — &' is an Z-linear map fromg to
. Giveny: £ — € an isomorphism of lattices, we define an actionyain a Siegel
point (P, J, U) as (y*P,y*J,y*U) where givenx,y € &, y*P(x,y) = P(y(x), y(»)),
Y I, y) = (), () andy*(x) = 31U (G())).

If we chooseVy to be a skew symmetric reduced base Joi.e. a base wherd is

of the form( OI Ié’) andy is an automorphism sending a skew symmetric reduced
—n

basis to another one, thene Sp2,(Z) and the action ofy on the Siegel point}
associated td/p is the usual action ofpy,(Z) onl,.

4.2. Siegel points from quaternion algebras

Let N be the negative of a prime congruent to 3 mod 4, ad= (-1, N) the
quaternion algebra ramified &t and infinity. LetO be a maximal order ifB such that
there exists an embedding (not necessarily optimaly &f Z+/N into O. Let u € O
be the image of/N, i.e. u? = N and Tru) = 0. By | we will denote a leftO-ideal
for a maximal ordelO. To | we associate a Siegel poiaP, J, U); as follows:

e We takeV the real vector spac¥ := B ®q R.
e Define U acting onV as left multiplication by

u
. . . JVINT
¢ We think of | as a full rank lattice inv.
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e Forx,y eI define P(x,y) := ﬁTr(xy)/N(l).
e Forx,y eI defineJ(x,y) := Tr(u"1xy)/N().

Proposition 35. The triple (P, J, U); defined as above is a Siegel point

Proof. We start checking the properties of the matriégs) and U:

e P is a real form. Since Txy) is real, Tixy) = Tr(yx) which implies thatP (x, y)
is symmetric. ClearlyP (x, x) = ﬁN(x)/N(I) is positive definite.

e Jis a real form. Sinceu is pure imaginaryu ! is also. ThenJ(x,x) = Tr(u™?!
N(x))/N(I) = 0. It is also clear that/(x, y) is non-degenerate, since for any non-
zerox € V, J(x,u"1x) # 0. SinceJ(x, x) = 0 for all x it follows that J(x, y) =
_J(ya .X). )

e Letx € V, thenUZ2(x) = U(ﬁx) = IL]‘V—Ix = —X.

ion. it u — _u_

As for the relation, it is easy to check tha(mx, y) = P(x, y) and thatJ (x, my)

=—-Px,y). U

Definition 36. Given a lattice® in B we define its dual byﬁ# ={beB:Tr(b¥) C

Z}. Given an ordeR we define its different byR' := N R,

Proposition 37. If O is a maximal order O' is a bilateral ideal for O of indexv?,
and 0 C 0' C 0.

Proof. See[17, Lemma 4.7, p. 24].

Proposition 38. If x,y € I then J(x, y) € Z. Also the matrix of J on the basis given
by | has determinani.

Proof. Since we are considering the reduced normyifs the matrix associated to
multiplication (on the left or on the right) by, then Nv) = /det(V). Let W(x, y) =
Tr(xy) be the bilinear form oB. If we denoteW the matrix of W(x, y) on the basis
given by l, J = ﬁ(U*l)’W. Then det/) = N(I)~*N(u)~2det(W). By definition
det(W) = disc(I), which is an ideal for a maximal order, then by Proposit&a
disc(I) = N2N(I)* and detJ) = 1. i

Since the trace is lineat/ (x, y) = Tr(u_lx%). For idealsl with maximal left
order it is true that/=t = I/N(/) and II"1 = O, henceJ(x,y) € Z for all
x,y € I if and only if Tru=tv) € Z for all v € O. By Proposition 37 this is
the same asi~! € 0% But u=! = —%, and sinceu € O it follows that £ «
to0cof O

This gives a method for assigning to every I€itideal a Siegel point. Note that
choosing different skew symmetric reduced basis wfll give equivalent Siegel points.
From now on we fixed a maximal ord€@ with an embedding o [+/N].
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Proposition 39. Let u € O with N(u) = |N| and Tr(x) = 0, and denote by U the
complex multiplication associated to u. If I’ are two equivalent left O-idealghen
the Siegel pointgP, J,U); and (P, J, U) are equivalent

Proof. Since I ~ I’ there existsa € B> such that/ = I'a. Let W denote the
isomorphism ofB given by W(v) = va. We claim thatW is the isomorphism that
makes the two Siegel points equivalent.

SinceW(I’') = I, we need to check thav*P = P/, W*J =J and W*U = U.

e If x,y € I by definition (W*P)(x, y) := P(W(x), W(y)) = P(xa, yo) = Tfﬁfg” =
NGy Tr(xe) = P'(x, y).

e The equalityW*J = J’ follows from a similar argument.

e By definition U is given by multiplying on the left by://[N| while W is given by
multiplying on the right byo then clearly this maps commute with each other and
WU =W loUoW=U. O

Lemma 40. Let U be the complex multiplication given by u amé& B an element such
thatoOo~1 = 0. Definel’ = ala~t andu’ = oua™1, then(P, J, U); ~ (P, J', U") .

Proof. Let W : B — B be the isomorphism defined by (x) = axa~1. By hypothesis
W(R) = R, W) = I'. It is easy to see thaW*P = P’ and W*J = J'. If x ¢ B
thenWloUoWx) =W loU(xa™) = W luwoxa™)//IN] = o tuax//IN| =
U'(x). O

This lemma suggests that we should consider not just eleneint®© corresponding
to /N (i.e. > = N and Tru) = 0) but modulo conjugation by the normalizer 6f
It is clear thatNorm(0O) = {h € B| Oh is bilatera}. All bilateral ideals are principal,
generated by m wheres = 0,1 andm is a rational nhumber (sef3, Proposition 1,
p. 92]). The generator of an ideal is well defined up to unitinthen Norm(0) =
{lu*m|s=0o0r1,meQand{ e O is a unit.

Corollary 41. If | and I’ are left O-ideals with the same right order then the Siegel
points (P, J, U); and (P, J, U); are equivalent.

Proof. If | and I’ are equivalent this follows from Propositi@®9. If | and I’ are not
equivalent, we know by Lemma 33 thal,. (/) has no embedding of[V/N]. Letu
be the element ir© giving the complex multiplication. Thenl has the same left and
right order asl but they are not equivalent, hened ~ I’ ~ ulu~t. By Proposition
40 the Siegel point§P, J, U); and (P, J,U"),; are equivalent. Just note that is
given by utuu =u. O

In particular, we should index the Siegel points not by the class number of ideals, but
by the type number of maximal orders. We still have equivalent Siegel points coming
from conjugation by units 0O and these are all the possibilities foform(0). For
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counting equivalent classes of Siegel points, fixed a maximal d@@dee have to count
the number of embeddings @[+/N] into O modulo conjugation by units o®.

Given a maximal ideaD, let B := {I1, ..., I;;} be a set of lefD-ideal representatives
and T :={R1, ..., R,} the distinct right orders of the ideals . We index the Siegel
points by pairs(¢, R;) where¢ is an embedding fron@[+/N] to someR; andR; is an
order inT. By this we mean the Siegel point obtained with the complex multiplication
given by ¢(+/N), and an ideal with left order R; and right orderr;.

If dis a negative discriminant we denote bg) the class number of binary quadratic
forms of discriminantd. Let u(d) = 1 unlessd = —3, —4 whenu(d) = 3, 2, respec-
tively (half the number of units in the ring of integers of discriminaipt For d > 0
we define the Hurwitz’'s class numbéf(d) by

h(d
H®) = Y %d; (31)
df=—d

if D is a discriminant and by zero if not. A short table of the non-zero values is given
by

If —b is a discriminant we denoté®_j; the order of discriminanb in the imaginary
quadratic fieldQ[+/ —D]. For p € Z prime we definef, (D) to be the modified invariant
as follows:

0 if —D is not a discriminant
0 if p splits in O_y,
) H®) if pisinertinO_y,
Hy®=11p@®) it pis ramified inO_, but does not divide 2
the conductor ofO_y,
H,(d/p? if p divides the conductor o_,.
The number of embeddings @?_; into any R; (i =1, ...,n) modulo conjugation by

R /{#£1} is H|y (D) (see[5, Proof of Proposition 1.9, p. 122]).
We want to compute the number of embeddingsZe¥/N1 into any R;, i.e. choose
D = 4|N|, then

$h(4N) if N =1mod 4
H\N|(A4N) = { h(N) if N=7mod8§ (33)
2h(N) if N=3mod8 andN >11
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Note that in the cas® = 4|N| an orderR; on T appears twice as a right order
if and only if it has no embedding af4y. In this case it does not contribute to the
sum, and hence the number of embeddingsZp{/ N] into thet orders inT is also
Hy(4N). With this we proved:

Proposition 42. The number of non-equivalent Siegel points constructed is at most
Hy(4N)t.

Proposition 43. Let B be a quaternion algebra over a commutative fieldakd let
Bo :={f € B|Tr(f) = 0}. If  : Bo - Bo is an isometry of Kvector spaces then
there exists an elemeifte B* such thato(x) = fxf~ or a(x) = —fxp~t = pxpL.

Proof. See[17, Theorem 3.3, p. 12]. O

Lemma 44. Let y : B — B be an isomorphism ofd-vector spacegrespectively
o : B, — B, an isomorphism ofl,-vector spacgssuch thats(1) = 1 and ¢ is an

isometry. Then there exists ane B* (respectivelyx € Bj) such thato(x) = axo L
1

or g(x) = oxo .
Proof. Sinced(1) = 1 ando is a morphism,c(Q) = Q. Denoting By the trace zero
elements,a(Bo) = Bo and a|p, : Bo — Bo is an isometry. By PropositioA3 we get
two different cases:

(1) opy(x) = axat for somea € B*. Then ¢ is the antiautomorphism given by
1

o(x) = axo -,
(2) opy(x) = axa~t for somea € B*. Theng is an automorphism given by(x) =
axo~t. O

Theorem 45. The Hy(4N):r Siegel points {(¢, R;)} constructed above are
non-equivalent

Proof. The proof breaks in two steps. First we will prove that for a fixed embedding
of Z[+/N] into R (sayu is the image ofy/N), thet left R-ideals give non-equivalent
points(P, J, U) whereU is multiplication by« /+/[N]. Then we will prove that different
embeddings give non-equivalent Siegel points.

Let I1, I> two left R-ideals. Abusing notation we will denote the symmetric form
Py, and analogously for;. Suppose there exis@® : V — V an isomorphism making
the Siegel points( Py, J1, U) and (P2, J2, U) equivalent. Letf = W (1), ¢ the map
a(v) = W(v)ﬁ_l and Vp the space of elements M with trace zero. We claim that
is an isometry.

By hypothesisW*P; = P, then evaluating atl, 1) we have

2
(W*P1)(1,1) = P2(1,1) = W
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By definition, (W*P1)(1, 1) = Tr(W,\(,?,’l@) = 2,5'((}?) hence Nf) = . Then
Ixll/VN = Pa(x, ))N(12)/2 = W*(P1(x, ))N(2)/2 = IgHlNG2) = H;,;?“ =

lo(x)|I/+/N, i.e. ¢ is an isometry. Since is an isometry andr(1) = 1, by Lemma
44 we have two different cases:

(1) o(x) = axo~ ! for somex € B*, i.e. ¢ is an antiautomorphism an# (x) =
S 1p-1
oxo .

(2) o(x) = oxa~! for someo € BX and W(x) = axa 2.

We know thatW preserves the complex multiplication, i.8.~1o U o W(x) = U (x).

In the first caseW ~1(x) = «~1fxa. ThenW*U (x) = W t(uoxa 171 = oFlBB_l
7 txaiio = xa Yo, It must be the case thatx = xo Lio for all x € B (which is
the same as saying thatca—1 = xa~1i) which would imply thatu € @ and is not
the case. Then we must be in the second case.

Since W(I1) = I, I» = al1o~ L. In particularaRoa~t = R, i.e. o € Norm(R).
Then I7 and I> have the same right order and represent the same class between the
left R-ideals we started with.

Assume that there is a leR-ideal | and a leftR’-ideal I’ such thatR and R’ are
non-conjugate maximal orders and the Siegel poiftsJ, U); and (P’, J',U’); are
equivalent. Then there exist an isomorphis: V — V that sends one point to the
other. Arguing as before we get the same two possible caséd/.fon the first case,
since W*U = U’ we would get thatu’xe~! = xoa~tiz for all x € V. Taking x = «
we would get thats’ = i and it commutes with all elements & then it is rational
which is not the case.

Then W(x) = axa~ 17t and I’ = ale1p. In particular the order® and R’ are
conjugate which is a contradiction. [

4.3. Ideals associated to Siegel points

For finding relations between the numbers,, 5, 5, we will assign to each point
z4p @ on the Siegel spach, a rank 47- lattice I, € B and a basis of it such that
the Siegel point(P, J, U); on this basis is 45 0p5. We will then prove that the left

order of I, is a maximal orderOy 4 p; with an embedding ofZ[+/N] into it. This
will imply that the number of different values (up to a sign) WA],[B],@ is at most

h(On)?t.

Proposition 46. There exists u ana in B such that

e Tr(uv) =0, Tr(u) =0 and Tr(v) =
e N(u) =|N]|.

e N(v) = |D|.

[ ]

u andv are in a maximal order R of B

Proof. Since|N| = 3 mod 4, we can assume = (—1, N). Choosingu = j it is clear
that Tr(u) = 0 and Nu) = |N|, hence we are looking for in B such that T¢uv) = 0
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Tr(v) = 0 and Nv) = | D|. This conditions force® to have the formv = xi + yk and
we are looking for an integer solution of the quadratic equation:

x2 4 |N|y%2 = |D|z2 = 0. (34)

We can assume that the solution is primitive (iged(x,y,z) = 1). If (x,y,z) is a
solution, clearlyged(z, N) = 1= gecd(x, N) and gcd(x, D) = 1 = gcd(y, D).

To prove the existence of such a solution we use the Hasse—Minkowski principle.
Clearly 34) has a non-zero solution ov&; so we need to prove the existence of local
non-zero solutions for all primes. We consider the different cases:

e For a primep # N and p # D the quadratic form clearly has a local solution (see
[13, Corollary 2, p. 6]).

e For the prime|N| by Hensel's lemma it is enough to look for solutions &4}
modulo |[N]:

x2—|D|z2 = 0 mod|N| iff (xz~H° = |D| mod|N|.

This equation has solution if and only 6‘%) = 1. By the quadratic reciprocity

law and the fact thatN| = 3 mod 4 this last condition is equivalent to asking that
|D| splits in @(+/N) which is the case.
e For the prime|D]|, looking at 34) modulo|D]|:

. . N
24 INy2=0mod|D| iff N = (xy~H% mod|D| iff (ﬁ) =1

Which is the case sincgD| splits in Q(v/N).

Given u and v as before, consider the rankZlattice R = (1, u, v, uv). It is easy to
see thatR is actually an order, hence contained in a maximal onél

Remark. If we define R = (1, %/, v, (HT]) v) it is easy to see that this is also an

order. The advantage of this order is that it contains an embedding of the ring of
integers of Q(+/N), but is not maximal.

O — (VN (20 D

), u andv as in Propositiord6 (choosingu = j).
Define
b1 —j b1 —j |ID|+bv\ v—>b
I, = . 35
‘ <<2a1|D|>“”’ <2a1|o|) ( 2 ) 2 ’“> 49
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If we denote¢ the embedding of2(v/N) into B and iy the embedding of2(v/D)
into B with ¢(+/N) = u andy/(+/D) = v and choosing the basi8 = (v1, v2) (Where

in our notationv; = “T‘/E and vz = a) then the ideall, was defined by

I = <¢ (”;a u“)'_) VDWW (2). ( 5 |g|_) V(D)) Y (i), w<vz>>

If we forget the specific basis, and think &f just as a rank 4Z-lattice in B it is

given by I. = (¢ (457 ) W(WDW(B), ¥ (B)).
Proposition 47. The elemem% is in the left order off..

Proof. This is an easy but tedious computation. We will just give the coordinates of
the product ofHTf with each element of the basis @f (given above) as a linear
combination.

° (1;]) a = [bay, —2aay, 0, bl+1]

° (HT]> (Uzh) [—2ca1, bay, ;1,0].

o (%2) (s54) av = 1552, 0, 2ac1, bea).

) () (255 - . b2

Proposition 48. The element:;qv is in the left order ofI.,.

Proof. Since B is an ideal, it is clear thab(ws, wa) C (w3, ws). By the way we
choosev, it satisfiesvj = —jv, then

b1 —j b1 b1
(alv)<2a1ID|> <2a1|D|>(_ W)+ v (36)

For the part corresponding to the first two elementd,ofote that they can be written
as (2121”5') v(a) and (%) v (%) SinceB is an ideal,vB Cc B and the assertion
follows from Eq. @6). O

Corollary 49. The orderR = (1, ”/ ,alv, 1+T]alv> is contained in the left order of

I, and has discriminantafND)2 or IndEXa1|D| in a maximal order

Proof. It is clear thatR is in the left order ofl, by the previous two propositions.
It is also clear that it is an order. To compute its discriminant, note that the bilinear
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matrix associated to it is

2 1 0 0
158 0o 0
00 2a2|D| a?|D|

0 0 a?D| a?|D|EY
Then note that the index in a maximal order (which has discriminédtis the square
root of the discriminant. [J

Theorem 50. Let U be the complex multiplication associated%. Then the Siegel
point (P, J, U),. associated to the ideal; in the given basis is ,505.

Proof. This is a straightforward computation so we omit the details. Just check that
the given basis of; is symplectic i.e. that the matriX(x, y) in the given basis is a

multiple of the matrix (since J(x, y) is skewsymmetric there are half the

-1 0
conditions to check), and that the mattikassociated to the point,QOp is the same
as the complex multiplication matrix oh. [

Theorem 51. The latticel, is an ideal for a maximal order

Proof. The strategy is to prove that the quadratic form associated to the Iddal
locally equivalent to the maximal order one for all primes. We need the next lemma:

Lemma 52. The quadratic form associated to the latti¢e has discriminant?.

Proof. The bilinear form is the same as the Siegel paint; 05 hence its bilinear

form matrix is
B, — (2C1QB b1l )
bilz 2a1DQg" )’
Since Qp has determinanb, it is an easy computation to prove that the determinant
of this matrix is N? (using thath? — 4asc1|D| = N). O

A maximal order forB = (—1, N) is given by O = ( ’, %" J, k) (see Proposition
5.2, p. 369 of{11]), then it is easy to compute the matrlx of the quadratic form trace
and to check that it has discrimina?, and is an improperly primitive integral form.
Since the discriminant of both forms is a unit for all primgs# |N| then they are
locally equivalent (see Corollary of Theorem 3.1 of [2, p. 116]). Heffgg, is locally
principal for all primesp # |N|.

For the ramified primeD(I,) = N? hence it is locally principal. Locally principal
ideals have the same discriminant as their left orders hén¢g) is maximal. O

4.4. Comparing Siegel points

If 1 is an ideal for a maximal order, and a complex multiplication, the Siegel
point associated t@U, I) is the same as the one associated to the p@int/«) for
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any o € B* (with the same choice of basis). Suppose two Siegel pairaisd 7/ have
equivalent ideald, and I/, say I, = Iya for someo € B*. Then since the complex
multiplication is the same for all the ideals we constructed, the two Siegel points are
equivalent by Propositior39. Let M be the matrix inSpa(Z) making the change of
basis betweer, and 0.

Lemma 53. The matrix M is in the subgroup’ ».

_ A B _ (1N ’_ bi+‘/ﬁ / /
Proof. LetM_<CD ,z_( 2ar )Qandz_ 27 Q" whereQ and Q

have even diagonal. Sindd sends the bilinear form associated to the idgato the
bilinear form associated to the idealo,

A B\ (20 boly A B\ (240 byl
CD boly 2a,071 J\ € D)~ \ byl 2a,0 )"

By the way we choose generatobs,= 1 mod 4,i = 1,2 (alsob; = 1 mod 4,i = 1, 2)
hence D = (g g) mod 4. LetJ := (2 é) Looking at the first 2« 2 matrix of the
previous equality mod4 we getc2A’JA + C'A + A'C + 2a,C'JC = 2J mod 4. In
particular 4 divides the diagonal.
_fab P 2ac  ad+ bc
If A'_<cd) then A ]A_(ad—i—bc 2bd
2coA'JA and 21,C'JC. Also A'C is symmetric henceA’C + C'A = 2A’C and we
get that 2 divides the diagonal ef C. The proof for B’ D is analogous looking at the
last 2x 2 matrix. [0

) hence 4 divides the diagonal of

Proposition 54. For fixed idealsA and D, the left order ofI, ,, 0, is independent of
the ideal B.

Proof. We know I, — <¢(b§;1,ﬁ ) WD (B), np(é)). The ideal B, := B® Z, is
principal, hence there exists an elemépte L, := Q,(+~/D) such thatB, = O.d,.

Thenl, ® Z, = <<f> (bzlgzg) (D) (Oy), z//((’)L)>c_5q, hence its left order is clearly
independent of3. O

Proposition 55. Let A and A’ two equivalent ideals of g prime toD, say A’ = a.A.
Thend (1 4p0s = I jyp0s-

Proof. It is enough to prove that., ,,0s € ¢ DI pos. Thenl 05 S G(@)
I, »pos and the result follows.
Without loss of generality we may assume thétand A’ are prime to each other,

then we can choose basis such th&® = (a|D|, %ﬁ) and A'D = (d'|D|, %ﬁ).
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Then there existd/ = (x; xi) € Sl2(7) such that

b—+N
x1a|D|5c+x2( 2f>&:a/|D|, (37)
b—+N b—+N
x3a|D|o + x4 VN o= VN (38)
2 2
Claim. D |xp. If o= = “1+°‘2f with o; € Z looking at the imaginary parts of the
above equalities we get that
VN
e (2x1a| D)oz + x2(boz — 1)) = O,
VN —av/N
I (2x3a|D|og + x4(bop — a1)) = >

This implies the claim. IfB = (w1, wa), ¢ N1, = <¢ (' 21 D] ) Y (v/ D),
& (35D ) (D), bl (i), dlo w(wz)) Sinceas = 2~ta’ Eq. (7) im-

plies that
x3p(eY) + xa¢p (cxl (Z;fé?)) =¢ (Z;,ﬁ) )

Since B is an ideal,v/Dw; € B henced)(za/lm)tp(\/_w,) € oI poy for i =
1,2. SinceD | x2 Eg. (38) can be written as

o+ 24 (o ( (b — ‘W)) Y(VD)? =1,

|D| 2a|D|

which implies thaty(w;) € ¢ I, 4 pop fori=1,2. O

Corollary 56. If A, A" are two equivalent ideals ik prime to D then the ideal
I, apos @nd I, o, have equivalent left orders

Proposition 57. Let D and D’ be two split prime ideals of2[+/N] of norms |D|
and |D'|, respectively such thatD’ = uD. Let B and B’ be ideals ofQ[+v/D] and of
Q[v/D'], respectively. Then the ideals ., 0, and I 40 Oss have the same left order
if following the notation of Propositiod6 we takev’ = puv.
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Proof. We are abusing notation while stating this theorem, sipcés an element
of Q[+v/N]. We will not distinguish between an element Bhor in Q[/N] via the
identification/N — j, and the case will be clear from the context.
By Proposition54 it is enough to restrict to the cad¢® and B’ principal. In this
case we will prove that the ideals associated to them are slightly different and use this

to prove the proposition. We can choose basis suchZhat (| D|, M) andD’ =
(D', M) Let u= 7 + %\/ﬁ. Since u (@) eD andu~?! (M) eD,
“Tﬁfl € Z and = ,l"l eZ.
Sinceb = 1 the definition of the ideals is
bi— b1— D
o Ip:=1Ipop = <(2alluj)|) v, <2a11|l§|> (vH l) v >
. _|{ b1—j bi—j +1D| -
o Ipi=1 0, = <<2a11|5’|> v <2a11|5’|> (v 2 ) . >
wherev andv’ are the elements of noriD| and |D’|, respectively, as in Proposition

46. We will write the elements ofp in the basis oflp, the other case follows from
symmetry.

V-1l _ o+b1f  o+bifp+D
—[ alﬁ 0 D] * 2D] ]1

—) v = [%, 0, 4f3c, 2f3c] which has integer coefficients,

. (22\_1)]"|)(U/+2|D/‘) = [P 1, 26c, el

We cannot say that the two ideals are the same, since the numbansl f§ may
have a 2 in thedenominator, bui/p), = (Ip), for all primes p # 2. In particular

if we denote Op and Op the left order of Ip and Ip respectively, we get that
(Op)p = (Op), for all p # 2. Since the denominators are at most 2 it is easy to
check that ©p + Z c Op, and has index at mostt2By Corollary 49, the order

R C Op with |ndexa1|D| which is odd. Then @p+R = Opr. Also 40p+R = Op
hence both orders are the samel]

[ ]
N
N
e
S

By Theorem 31 we know that the numberﬁA]’[B]’@ depend (up to multiplication
by +1) on the equivalence class of, the equivalence class @ and the class of
zApQ@pmodI'1o. If we fix the class of4 and the class oD we can associate ideals
to the pointsz4pQp as in (35) and by Proposition 31 they all have the same left
order. Then by Corollary 41 we get at masgiB) different points in the Siegel space.
This implies:

Theorem 58. The number of diﬁerem[A],[B]’@ up to multiplication by+1 in M is
at mosth(Ok )%t (B), wherer(B) is the type number for maximal orders

Note that this number is independent of the class numbe® pof With all these
results we return and finish the proof of Theorém

Given A and[D] as before we associate to them a maximal o@grp;. For any
left O 4 pj-ideal | we want to define the number 4; ; ([D]).



374 A. Pacetti/Journal of Number Theory 113 (2005) 339-379

o If there exists a paifD’, B) whereD’ € Ok is a prime ideal of normD’ congruent
to 3 mod 4,0’ ~ D and B is an ideal ofQ(~/—D’) such thatl = I, we
definem 4 ;([D]) = fZ”A,[B],D’-

The number¢, is chosen such that 4 ;([DP]) is a complex number in the upper
half plane unionR 3.
e If no such pair exists we define 4 ;([D]) = 0.

Zap 9B

Proposition 59. This definition is‘independerit of the equivalent class of the idedl.

Proof. By Corollary 56 if two ideal A, A" are equivalent (sayl’ = a.A), their left or-
ders are conjugate. Furthermore a bijection betweendefip,-ideals and leftO 4 p;-
ideals is given by multiplication on the right by(z~1) (by Proposition 55). Since the
numbern[A] (Bl is independent of the equivalent class.fthis map preserves the
numbers{mA (DD} O

Hence we think of the numberng 4 ;([P]) as defined on equivalence classes and
denote themm 4; ; ([D]).
Formula (17) says:

2n
Lp, 1) = mn( )n(OK)( > > [AMBJ@)'

AleCl(Ok) [B1eCl(OL)

To the Siegel point 4,503 We associate the lef0|4) p)-ideal Iz as in @5). Given
I a left Op 4 pj-ideal, we define

r(D.[A]. T) = Z{BEOL\IB~1}n[A],[B],[)/mA.I([D]) if ma (D)) #0,
U 0 otherwise

Lemma 53 and Theorem 31 imply that if the idealgs and Iz are equivalent,
N ALBLD = TNALIB. 5 hencer(D, [A], I) € Z. Rearranging the sum we get

2n
Lp. 1) = o (D)n(OK)( > Zr(D,[A]J)m[A],,([D]))

[AleCl(Ok) 1

as claimed. O
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Question. Is it true that for any leftO; 47 ipj-ideal | there exists a paitD’, B) such
[AL[D]
that 7 ~ Z.AD’QB

All the examples we computed show this is the case.

Proposition 60. Let A be an ideal ofQ(+/N), then naBLD andno. .o differ
by a unit in a quadratic extension o¥1.

Proof. Let 4 be the automorphism dfl corresponding to the idead via the Artin—

Frobenius map. Then we proved t &%) ,;)((Z DD),?(B) . Hencen 4, 5 p =
1n(A)n(AD) ) OA.
(W(D)W(OK) Wy (Mo 1.181.D) Note that the quotient of etas squared idHirwhile

= is i — ((_1ANAD)
Yp(A) isinT, hencel := (n(D)n(OK)%(A)) is in a quadratic extension o¥1. Clearly

N() =1 as required. O

5. The class number one case

We study now the case of imaginary quadratic fields with class number equal to
one. In this case 4 5 p are rational integers for any choice Bf There are just six
such cases (we exclude the cage= —3) so we can study all this cases by numerical

computations. Here are some examples:

5.1. CaseN = —7

This case is the easiest one since the class number in the quaternion algebra is also
one. Then the numbers[A] 3.0 are integers and differ by a unit.

Theorem 61. Let N = —7 and D be any ideal of prime norm congruent 8mnod 4.
ThenL({p, 1) #O.

Proof. By Proposition24 we know that the number associated to an idéail; the

same as the one associatedoFor a prime idealD let Q = n(D)n(Og)—LE= W where

—D = N(D) andw is the number of units if[+/D]. Formula (17) forL(y, 1) reads:

Ly, D= > moams | 2= | mogonn +2 2 Moass | % (69
[BleCl(Oy) [Ble®

where @ is a maximal subset o€/(Or) such that[O.] ¢ ® and if [B] € ® then
[B] ¢ .
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Taking the maximal orde© as left O-ideal representative, we see that the number
associated to it is 1 up to a sign, théu%’—l) =1mod2. [O

In the next table, we list some of the numbar@K] 8. 10 show the behavior of
the sign. o

D B LALB]
11 [L, -1, 3] 1
23 [1, -1, 6] 1
23 [13, —17, 6] ~1
23 [13, 17, 6] ~1
43 [1, -1, 11] —1
67 [1, -1, 17] 1
71 [1, -1, 18] ~1
71 [19, 9, 2] ~1
71 [19, -9, 2] ~1
71 [29, 33, 10] 1
71] [29, —33, 10] 1
71] [43, 141, 116] -1
7143, —141, 116] -1

5.2. CaseN = —-11

In this case the quaternion algebra has type number 2 for maximal orders, so we
get two different integers associated to differ@is. Each numben (Ok1.[BLD will be
associated to an ideal class Let= ( 1, —11) be the quaternion algebra ramified at
11 and infinity. LetO := ( +4 2+ 5. j» k) be a maximal order antla non-principal
ideal. Here is a table oi[o LB p for different values ofD and 3, writing down the
associated ideal also.

D B " ALIBLD Idea
23 [1, -1, 6] 2 I1
23 [13, —17, 6] 0 O
23 [13, 17, 6] 0 (0]
31 [1, -1, 8§] -2 I1
31 [5, 17, 16] 0 (@]
31 [5, —17, 16] 0 (@)
47, [1, -1, 12] 0 (0]
47 [7, —17, 12] 2 I
a7, [7, 17, 12] 2 Ih
47[17, —53, 42] 0 (@]
47| [17, 53, 42] 0 (@]
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Note that the number 0 is associated to the principal ideal, while the number 2 is
associated to/;. With the same reasoning as in Theor&h we can get a partial
result proving that the ideat® such that:p Qp, is associated to the idedl have a
non-vanishing L-series.

Following the method described in [10], takif@, I1} as representatives for the
maximal order and constructing the Brandt matrices for levél e get that the
eigenvector associated to the modular form of weight 2 and level il
[0,0,0,1,-1,0,0,0,1, —1]. The first three zeros correspond to the principal ideal,
and the+1 to I;. Then the number associated to each ideal is the same as the
one associated to it via[OK]’[B]’@, since the eigenvector is well defined up to a
constant.

5.3. CaseN = —163

Let B = (—1, —163 be the quaternion algebra ramified at 163 and infinity. In this
case, the class number for maximal orders is 14 while the type number is 8. Consider
the maximal orderO := (1,1, % + 4, IE + ’5). A set of representatives of lef-ideals
is given by {/;}}2, with I; = 0 and
o Ir:= (2, 21,2+l+2,—1+ +3)
3,3, 3+i+ 4, -1+5+5
3,3i, —+l+f,—1—§+§)

)
k
2
)

NI= NI

(

o [3:=(

o Iy:=

o [5:= (6612—|—l+ -1+5+5

o [g:= (661——}—1—!—],—1——
(4,41, 3+i+4, - 1+3’+
(4,41, 2 +i+ 4 - —ﬁ+§>
(661,2+z+j, 1+ £

o Io:=(6,6i, 2 +i+%-1-F+%)

o [11:=55,3+2+4 -2+5+5%)

o Iip:= (55,3 +2i+ 45 -2—5+5%)

o Iig:= (7,7, 3+3i+4,-3+%+5%

o Iiy= (1.7, 2 +3i+ 4. -3-5+5%)

o [7:=
o [g:=
o [g:=

The pairs of idealg/;,1, I>j+2) With j =1,...,6, have the same right order, hence
each pair will have the same integer associated. For the table we consider the range of
primes between 150 and 200 so as to get all the idgalsassociated to some number
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nog 8- The table is

D B ”[A],[B],@ Idea
151 [1, —1, 38] 20 Iy
151 [29, 9, 2] 14 Ig
151 [29, -9, 2] 14 Ig
151 [11, -5, 4] 8 113
151 [11, 5, 4] 8 T4

151 [43, 137, 110] 4 I»
151 [43, —137, 110] 4 I»

167 [1, -1, 42] 0 11
167 [157, 33, 2] —-20 I
167 [157, —-33, 2] —-20 Iz
167 [61, 65, 18] -2 1y
167 [61, —65, 18] -2 I3
167 [29, 93, 76] -10 I
167 [29, —93, 76] -10 Is
167 [127, —177, 62] —-14 I7
167 [127, 177, 62] —14 Ig
167 [19, —21, 8] —-12 Ig
167 [19, 21, 8] —-12 I10
179 [1, —1, 45] 0 11
179 [19, 45, 29] 2 I3
179 [19, —45, 29] 2 Ig
179 [13, 17, 9] 4 112
179 [13, —17, 9] 4 111
199 [1, —1, 50] 0 11
199 [31, —69, 40] —-20 Iz
199 [31, 69, 40] —-20 Iz
199 [43, —133, 104] —4 112
199 [43, 133, 104] -4 111
199 [13, 29, 20] -14 I
199 [13, —29, 20] —-14 I7

199 [131, 453, 392] -8 114
199131, —453, 392 -8 I3

The eigenvector for the Brandt matrices corresponding to the form of weight 2 and level
167 is given by the vectof0, 10, 1, 1,5, 5,7, =7, —6, 6, 2, 2, —4, 4] with respect to
the maximal order representatives }.

Considering all the class number 1 imaginary quadratic fields (the computations being
the same in all cases), we can prove:
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Theorem 62. Let E be a CM elliptic curve ovef) of level p2. Then the coordinate
of the eigenvector of the Brandt matrices associated to E on the place corresponding
to an ideal | is given up to a sign by o1 ([D).
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