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Relativistic Schrödinger equation with a nonlinear potential interaction describes the
dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1
of the light speed c = 1. At first, we deal with the local and global existence of
solutions of the flux, and in the second term, and according to the relativistic na-
ture of the problem, we look for boosted solitons as ψ (x, t) = eiμtϕv (x − vt) ,

where the profile ϕv ∈ H 1/2 (R) is a minimizer of a suitable variational prob-
lem. Our proof uses a concentration-compactness-type argument. Stability results
for the boosted solitons are established. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4726198]

I. INTRODUCTION

In this paper, we study the existence of solutions of the potential nonlinear relativistic
Schrödinger equation, for the critical case. For the one-dimensional case, this is the cubic equa-
tion given by

i∂tψ =
(√

−∂2
x + m2 − m

)
ψ − |ψ |2 ψ, (1)

where m ≥ 0 is the rest mass of a relativistic particle. Operator
√−∂2

x + m2 is defined via its symbol√
ξ 2 + m2 under Fourier transform. The nonlinear term represents a self-interaction of the charge

density. With this type of nonlinearity, Eq. (1) is a relativistic equation because the nonlinear term is
Lorentz covariant as well as its linear part, this is a significant difference with the semi-relativistic
equation given in Refs. 5 and 6, where the authors deal with a Hartree’s type nonlinear term. In
this work, they take advantage of the smoothing effect of this kind of nonlinearity with the aim to
establish the existence of ground states. Also, in a recent paper,1 its authors study another semi-
relativistic equation, they deal with the Scrhödinger-Poisson-Slater equation, which arises in the
approximation of the Hartree-Fock model for N particles. They have a nonlinearity with two terms,
a Hartree’s type as the first one and as a second term a potential nonlinearity. By effect of this last
term, they only rely on a slightly smoothing effect due to the Hartree nonlinearity, and they require a
new technique in order to prove the existence of the, nonboosted, ground state. In neither of the two
previous works cited, the authors discuss the local and global existence of the flux of their respective
equations.

At the first part of this work, we deal with the well posedness of the initial problem associated
with Eq. (1). The first result is the local existence in the time, of solutions of Eq. (1) in the space
H s (R) , with s > 1/2, for initial data ψ0 (x) ∈ H s (R) . In a second step, we prove global existence
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in the time of these solutions, if the charge density of the initial data ψ0(x) is small enough. An
estimation of the bound of ‖ψ0‖2

2, under which global existence is guaranteed, is provided.
Throughout this work, we use profusely that the density of chargeN (ψ) = ‖ψ‖2

2 and the energy
functional

E (ψ) = 1

2

∫
R

ψ∗
(√

−∂2
x + m2 − m

)
ψdx − 1

4

∫
R

|ψ |4 dx (2)

are conserved along the flux of Eq. (1).
In the second part of this paper, we study solitary wave solutions of Eq. (1). By the focusing

nature of the nonlinearity in (1), there exist ground states solutions. In addition, due to the relativistic
nature of the problem, and taking into account the need of the fulfilment of the Lorentz’s invariance
of the solution, we propose, such as in Ref. 5, a ground state solution as a boosted solution, i.e.,

ψ (t, x) = eitμϕv (x − vt) , (3)

where |v| < 1 is the normalize velocity of the particle (v = 1 is the light speed) and μ ∈ R is a phase
parameter. Plugging ansatz (3) into Eq. (1), we obtain the equation that has to satisfy the profile
ϕv (x) of the ground state given in (3),(√

−∂2
x + m2 − m

)
ϕv + iv∂xϕv − |ϕv|2 ϕv = −μϕv, (4)

which is the Euler-Lagrange’s equation for the following functional and its related constrained
minimization problem

Ev (ϕ) = 1

2

〈
ϕ,

(√
−∂2

x + m2 − m + iv∂x

)
ϕ

〉
− 1

4

∫
R

|ϕ|4 dx such that N (ϕ) = N , (5)

Ev (N ) =: inf
{
Ev (ϕ) / ϕ ∈ H 1/2 (R) , N (ϕ) = N

}
. (6)

From now on, we call a minimizer ϕv ∈ H 1/2(R) of (6) as the profile of a boosted ground
state.One of the goals of this paper is to prove the existence of solutions of the constrained problem
(4), by solving minimization problem (6).

At the last part of this work, we introduce a weak orbital stability concept and we check that
the flux of Eq. (1) verifies it.

II. PRELIMINARIES

For s ∈ R, we introduce fractional Sobolev spaces

H s (R) =
{
ψ ∈ S ′ (R) :

(
1 + ξ 2

)s/2
ψ̂ ∈ L2 (R)

}
,

where ψ̂ is the Fourier transform of the function ψ ∈ S ′ (R) (space of temperate distributions). Also
we will considerer the inner product in H s (R) given by

〈ϕ,ψ〉H s = Re

(∫ (
1 + ξ 2

)s
ϕ̂∗ (ξ ) ψ̂ (ξ ) dξ

)
. (7)

Notice that H s (R) is a real Hilbert space and, if s > 1/2, ψ̂ ∈ L1 (R) , thus ψ ∈ C0 (R).
We define the following operators, with domain in H s (R) for s ≥ 1/2, and their symbols under

Fourier transform:

Dψ =
√

−∂2
x ψ � |ξ | ψ̂, (8a)

L0ψ = (D + iv∂x ) ψ � (|ξ | − vξ ) ψ̂, (8b)
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Jψ =
√

−∂2
x + m2ψ �

√
m2 + ξ 2ψ̂, (8c)

Lmψ = (J − m I ) ψ + iv∂xψ �
((√

m2 + ξ 2 − m
)

− vξ
)

ψ̂, (8d)

and their corresponding quadratic forms

〈Dψ,ψ〉 =
∫
R

|ξ | ∣∣ψ̂∣∣2
dξ, (9a)

〈L0ψ,ψ〉 =
∫
R

(|ξ | − vξ )
∣∣ψ̂∣∣2

dξ, (9b)

〈Jψ,ψ〉 =
∫
R

√
m2 + ξ 2

∣∣ψ̂∣∣2
dξ, (9c)

〈Lmψ,ψ〉 =
∫
R

(√
m2 + ξ 2 − m − vξ

) ∣∣ψ̂∣∣2
dξ. (9d)

In the following propositions, we present useful estimations in H s (R).

Proposition 1: If s > 1/2, there exists cs > 0 such that if ψ ∈ H s (R) it verifies

‖ψ‖∞ ≤ cs

(
1 + ‖ψ‖H 1/2

√
log

(
2 + ‖ψ‖H s

))
.

Proof: It is a special case of a general result (see Refs. 4 or 8). �

Proposition 2: If s ≥ 0, there exists cs > 0 such that if ϕ,ψ ∈ H s (R) ∩ L∞ (R) it verifies

‖ϕψ‖H s ≤ cs
(‖ϕ‖H s ‖ψ‖∞ + ‖ϕ‖∞ ‖ψ‖H s

)
.

As a special case, if s > 1/2 we have the following algebra structure:

‖ϕψ‖H s ≤ cs ‖ϕ‖H s ‖ψ‖H s . (10)

Proof: See Ref. 8. �

Proposition 3: If χ ∈ C∞
0 (R) , then [L0, χ ] ∈ B

(
L2 (R)

)
and

‖[L0, χ ] ψ‖2 ≤ C ‖∂xχ‖A ‖ψ‖2
H 1/2 .

Proof: See. Ref. 8. �

Now, we present a very important estimation of the norm in L4 (R) by the product of the
semi-norm (9a) and the norm L2 (R) .

Proposition 4: Given ψ ∈ H 1/2 (R) , it verifies that

‖ψ‖4
4 ≤ 8

π
〈ψ, Dψ〉 ‖ψ‖2

2 . (11)

Proof: By Hausdorf-Young’s inequality (see Ref. 9) we have that

‖ψ‖4 ≤ (2π )−1/4
∥∥ψ̂

∥∥
4/3 . (12)

If R > 0, applying Hölder’s inequality we have that∫
|k|<R

∣∣ψ̂ (k)
∣∣4/3

dk ≤ (2R)1/3

(∫
|k|<R

∣∣ψ̂ (k)
∣∣2

dk

)2/3

∫
|k|≥R

∣∣ψ̂ (k)
∣∣4/3

dk ≤
(

2

R

)1/3 (∫
|k|≥R

|k| ∣∣ψ̂ (k)
∣∣2

dk

)2/3

.
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Taking R = ∥∥D1/2ψ
∥∥2

2 / ‖ψ‖2
2, we obtain∥∥ψ̂

∥∥4/3

4/3 ≤ 24/3
∥∥D1/2ψ

∥∥2/3

2
‖ψ‖2/3

2

therefore, using this estimation into inequality (12). we obtain (11). �

At last, we introduce a Gronwall’s type lemma.

Lemma 5: Let a > 0 be, and an increasing and positive function f ∈ C(0, + ∞), such that∫ ∞
a 1/ f (η) dη = +∞. If u ∈ C[0, T], u(t) > 0, such that it verifies the following inequality:

u (t) ≤ a +
∫ t

0
f (u (τ )) dτ,

then there exists an increasing function Ga ∈ C1[0, + ∞), with Ga(0) = a such that

u (t) ≤ Ga (t) for all t ∈ [0, T ].

Proof: It is an elementary calculus. �

III. EVOLUTION PROBLEM

A. Generalization to pseudo-differential operators

Let M : Rn → C, a function that satisfies the following property:

0 < lim inf
|ξ |→∞

|M (ξ )|
|ξ | ≤ lim sup

|ξ |→∞

|M (ξ )|
|ξ | < ∞, (13)

then we define a pseudo-differential operator L as

L̂ψ = M ψ̂. (14)

If γ ∈ R, we can consider the following general pseudo-differential Cauchy problem:

iψt = Lψ − γ |ψ |2 ψ, (15a)

ψ |t=0 = ψ0. (15b)

From condition (13), it is easy to check that there exist numbers 0 < a ≤ b such that a
√

1 + ξ 2

≤ |M (ξ )| ≤ b
√

1 + ξ 2, then we have that the pseudo-differential operator L verifies

a ‖ψ‖2
H 1/2 ≤ 〈ψ, L ψ〉 ≤ b ‖ψ‖2

H 1/2 . (16)

Combined (16) with Proposition 4, we can assert that there exists c > 0 such that for ψ ∈ H 1/2 (R) ,

‖ψ‖4
4 ≤ c ‖ψ‖2

2 〈ψ, L ψ〉 , (17)

therefore, from (17), the following quotient is bounded from below

VL (ψ) =:
〈ψ, L ψ〉 ‖ψ‖2

2

‖ψ‖4
4

≥ c. (18)

Now using (11) and (16), we have that there exists a positive constant

υL =: inf
ψ∈H 1/2(R)

VL (ψ) > 0. (19)

We can define the energy operator for L, such as in (2), as it follows:

E (ψ) = 1

2
〈ψ, Lψ〉 − γ

4
‖ψ‖4

4 . (20)
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B. Local and global existence of solutions

In this section, we prove local and global existence of solutions of the general pseudo-differential
problem given in (15).

Notice that if ψ(t, x) is a solution of (15), then ψ̃ (t, x) = ψ∗ (−t,−x) verifies

iψ̃t = Lψ̃ − γ
∣∣ψ̃∣∣2

ψ̃,

ψ̃
∣∣
t=0 = ψ̃0,

where ψ̃0 (x) = ψ∗
0 (−x), then in order to solve (15) it is enough to consider only t ≥ 0.

Theorem 6 (Local Existence): Let s > 1/2 and ψ0 ∈ H s (R) , then there exists T ∗

= T ∗ (‖ψ0‖H s

)
> 0 such that for all 0 < T < T*, (15) has a unique solution ψ ∈ C ([0, T ], H s (R)) ∩

C1
(
[0, T ], H s−1 (R)

)
. Also, application ψ0 
→ ψ from H s (R) in C ([0, T ], H s (R)) is local Lips-

chitz continuous.

Proof: If S(t) = exp ( − itL), ψ is a solution of the problem (15) if and only if it verifies the fix
point equation given by

ψ (t) = S (t) ψ0 + iγ
∫ t

0
S(t − t ′)|ψ(t ′)|2ψ(t ′)dt ′.

Since S is an unitary group in H s (R) and using (10) and the fix point Banach’s theorem, conclusion
follows. �

Proposition 7 (Conservation Laws): Let s > 1/2 and ψ ∈ C ([0, T ∗), H s (R)) a solution of the
problem (15), then N (ψ (t)) = N (ψ0) and E (ψ (t)) = E (ψ0) for all t ∈ [0, T*), where E (ψ (t))
was given in (20).

Proof: If s ≥ 1, we have that ψ ∈ C1
(
[0, T ], L2 (R)

)
, then, from the continuous embedding of

H 1 (R) into L p (R) and from the fact that L is a bound operator from H 1/2 (R) in H−1/2 (R) , we
have that N (ψ) and E (ψ) are differentiable operators on the time. Then

d

dt
N (ψ (t)) =2 〈ψt , ψ〉 = 2

〈−i Lψ + iγ |ψ |2 ψ,ψ
〉 = 0,

d

dt
E (ψ (t)) = 〈

ψt , Lψ − γ |ψ |2 ψ
〉 = 〈−i Lψ + iγ |ψ |2 ψ, Lψ − γ |ψ |2 ψ

〉 = 0,

therefore, N (ψ (t)) and E (ψ (t)) are constants. �

If 1/2 < s < 1, we take a sequence {ρn}n∈N ⊂ H 1 (R) such that it verifies ρn → ψ0 in
H s (R). If ψn is the solution of the problem (15) with initial data ρn, we know that ψn → ψ

in C ([0, T ], H s (R)). But, due to N (ψn) and E (ψn) are constants and operators N and E are
continuous in H s (R), conservation laws follow.

Corollary 8: If γ ≤ 0, there exists a constant C > 0 such that if ψ ∈ C ([0, T ∗), H s (R)) is the
solution of the problem (15) for s > 1/2, then ‖ψ (t)‖2

H 1/2 ≤ CE (ψ0) for all t ∈ [0, T*).

Proof: If γ ≤ 0, we know that 〈ψ, Lψ〉 ≤ E (ψ) = E (ψ0), then the result follows
from (16). �

Lemma 9: Let s > 1/2 and ψ ∈ C ([0, T ∗), H s (R)) a solution of the problem (15), then

‖ψ (t)‖2
H s ≤ ‖ψ0‖2

H s + cs |γ |
∫ t

0

∥∥ψ
(
t ′)∥∥2

∞
∥∥ψ

(
t ′)∥∥2

H s dt ′.
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Proof: If ψ0 ∈ H s+1 (R) , we know that ‖ψ‖2
H s is differentiable and by using (7), we have that

d

dt
‖ψ (t)‖2

H s = 〈
J s

t ψ, J sψ
〉 = 〈−i L J sψ, J sψ

〉
+ γ

〈
i J s

(|ψ |2 ψ
)
, J sψ

〉 ≤ cs |γ | ‖ψ‖2
∞ ‖ψ‖2

H s ,

where, in the last estimation, we used Proposition 2. Integrating in [0, t], we obtain the inequality.
The general case is proved by approximating ϕ0 by functions of H s+1 (R) and using the continuous
dependence of the function ψ0 
→ ψ . �

Corollary 10: Under above conditions, we have that

‖ψ (t)‖2
H s ≤ ‖ψ0‖2

H s + cs |γ |
∫ t

0

(
1 + ∥∥ψ

(
t ′)∥∥2

H 1/2 log
(
2 + ∥∥ψ

(
t ′)∥∥

H s

)) ∥∥ψ
(
t ′)∥∥2

H s dt ′.

Lemma 11: Let ψ0 ∈ Hs an initial data, s > 1/2 and γ > 0, then there exists c > 0 such that if
ψ ∈ C ([0, T ∗), H s (R)) is a solution of the problem (15) and N (ψ0) < υL/γ , where υ is given in
(19), then

‖ψ (t)‖2
H 1/2 ≤ c (1 − γ /υL N (ψ0))−1 E (ψ0) for all t ∈ [0, T ∗). (21)

Proof: From (18) and (19), we have that

‖ψ‖4
4 ≤ υ−1

L ‖ψ‖2
2 〈ψ, L ψ〉 = υ−1

L ‖ψ0‖2
2 〈ψ, L ψ〉 ,

therefore, we have that

E (ψ0) = E (ψ) ≥ 1

2

(
1 − γ

υL
N (ψ0)

)
〈ψ0, L ψ0〉 .

By using (16) and the above inequality, estimation (21) follows. �

Now, we are in condition to deal with the global existence of solutions. We need to distinguish
two cases, according to the sign of the parameter γ at initial value problem (15).

Theorem 12 (Global Existence): Let s > 1/2 and ψ0 ∈ Hs, we have that:

1. If γ ≤ 0, there exists a unique ψ ∈ C (R, H s (R)) ∩ C1
(
R, H s−1 (R)

)
solution of the prob-

lem (15). In addition, if T > 0, then function ψ0 
→ ψ(t) is continuous from H s (R) in
C ([−T, T ], H s (R)).

2. If γ > 0 and N (ψ0) < υL/γ , we have a similar conclusion like in the case γ ≤ 0.

Proof: If γ ≤ 0, we are going to prove that T ∗ (‖ψ0‖H s

) = +∞. From Corollaries (8) and (10),
we have that

‖ψ (t)‖2
H s ≤ ‖ψ0‖2

H s + cs |γ |
∫ t

0

(
1 + E (ψ0) log

(
2 + ∥∥ψ

(
t ′)∥∥

H s

)) ∥∥ψ
(
t ′)∥∥2

H s dt ′.

Let A, B > 0 be, then function f (η) = A
(
1 + B log

(
2 + √

η
))

η verifies the hypothesis of the
Gronwall’s lemma (5). Therefore, there exists G ∈ C1([0, + ∞)) such that ‖ψ (t)‖2

H s ≤ G (t). By
an usual prolongation argument of solutions we can assert that ψ(t) is defined on [0, + ∞). The
continuity on the initial data is a direct consequence of the local existence theorem.

If γ > 0 and N (ψ0) < υL/γ, conclusion follows from (21). �

IV. STATIONARY PROBLEM

A. Basic estimates

By using definitions given in (8) and the trivial inequality |ξ | ≤
√

m2 + ξ 2 ≤ m + |ξ | , we have
the following relationship between their operators and also between their corresponding quadratic
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forms on H 1/2 (R) ,

J − m I ≤ D ≤ J, (22a)

〈Lmψ,ψ〉 ≤ 〈L0ψ,ψ〉 ≤ 〈(Lm + m I ) ψ,ψ〉 , (22b)

If ϕ ∈ H 1/2 (R) and |v| < 1, taking note that inequality
√

m2 + ξ 2 − vξ ≥ m
√

1 − v2 holds,
and using the right side of (9d), we have that

〈ϕ, Lmϕ〉 ≥ −m
(

1 −
√

1 − v2
)

‖ϕ‖2
2 . (23)

Lemma 13: If ϕ ∈ H 1/2 (R) and |v| < 1, then

‖ϕ‖4
4 ≤ 8

π (1 − |v|) 〈ϕ, L0ϕ〉 ‖ϕ‖2
2 . (24)

Proof: Since |v| < 1, it is easy to check that (1 − |v|) |ξ | ≤ |ξ | − vξ ≤ (1 + |v|) |ξ | . Using the
above first inequality, we obtain

〈ϕ, Dϕ〉 =
∫

R
|ξ | |ϕ̂|2 dξ ≤ 1

1 − |v|
∫

R
(|ξ | − vξ ) |ϕ̂|2 dξ = 1

1 − |v| 〈ϕ, L0ϕ〉 . (25)

Plugging (25) into (11), we obtain (24). �

From now on we call V0 (ϕ) the quotient given in (18), where L = L0.
As in (19), taking L = L0, and using (24), we know that V0 is bounded from below and

υ0 (v) = inf
ϕ∈H 1/2(R)

V0 (ϕ) ≥ π (1 − |v|)
8

. (26)

In the next remark, we take note about the changes in the norm L2, in the norm L4 and in the
quadratic form (9b) when we introduce a rescaling.

Remark 14: Let ϕ ∈ H 1/2 (R), |v| < 1 be, y ∈ R and μ, λ > 0, we consider a change of scale
ψ(x) = μ1/2 ϕ(λ(x − y)). It is easy to check that ψ̂(ξ ) = μ1/2 λ−1e−iyξ ϕ̂(λ−1ξ ), therefore,

‖ψ‖2
2 = μλ−1 ‖ϕ‖2

2 , (27a)

‖ψ‖4
4 = μ2λ−1 ‖ϕ‖4

4 , (27b)

〈ψ, L0ψ〉 = μ

∫
R

(|ξ | − v ξ ) λ−2
∣∣ϕ̂ (

λ−1ξ
)∣∣2

dξ = μ 〈ϕ, L0ϕ〉 , (27c)

and

V0 (ψ) = V0 (ϕ) . (28)

The last part of this section is devoted to show how different norms change when we introduce
a concentration function.

Proposition 15: Let ρ ∈ C∞
0 (R) given by

ρ (x) =
⎧⎨
⎩

exp
(

1
x2−1 + 1

)
if |x | < 1,

0 if |x | ≥ 1,
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and its integer translations ρk(x) = ρ(x − k), with k ∈ Z. Then, there exists a constant C > 0 such
that, if ϕ ∈ H 1/2 (R) , we have that∑

k∈N
‖ρkϕ‖2

H 1/2 ≤ C ‖ϕ‖2
H 1/2 . (29)

Proof: Notice that supp (ρk) = (k − 1, k + 1) , 0 ≤ ρk(x) ≤ 1, and |∂xρk (x)| ≤ 5
2 . Now, we

make an inequality in the way of (29) for ϕ ∈ L2 (R) and for ϕ ∈ H 1 (R) . At last, we conclude (29)
by an interpolation argument.

If ϕ ∈ L2 (R) , we have that ∑
k∈Z

‖ρkϕ‖2
2 ≤ 2 ‖ϕ‖2

2 . (30)

If ϕ ∈ H 1 (R) , we have the following bound:∑
k∈Z

‖∂x (ρkϕ)‖2
2 ≤ 35

2
‖ϕ‖2

H 1 . (31)

From (30), we have that application L2 (R) → l2(Z, L2(R)), given by ϕ → (ρkϕ)k, is continuous.
Analogously, we have the same application H 1 (R) → l2(Z, H 1(R)). Then, by interpolation, we
have that application H 1/2 (R) → l2(Z, H 1/2(R)) is continuous. Thus estimation (29) follows. �

Lemma 16: Given ρ(x) and ρk(x) as to the lemma above, and ϕ ∈ L4 (R) , then

‖ϕ‖4
4 ≤ 2

∑
k∈Z

‖ρkϕ‖4
4 . (32)

Proof: For each k ∈ Z, functions ρk and ρk + 1 are the only two functions of {ρ j} evaluated on
the interval [k, k + 1]. Moreover, it is easy to check that 1

2 ≤ ρ4
k (x) + ρ4

k+1 (x) ≤ 1, and if k − 1
< x < k + 1, we have that 1

2 ≤ ρ4
k−1 (x) + ρ4

k (x) + ρ4
k+1 (x) ≤ 1. Then inequality (32) follows. �

Lemma 17: If ϕ ∈ H 1/2 (R) and 0 ≤ |v| < 1, then

‖ϕ‖4
4 ≤ 8

π (1 − |v|)
∑
k∈Z

‖ρkϕ‖2
2 〈ρkϕ, L0 (ρkϕ)〉 . (33)

Proof: Applying estimates (24) and (32), inequality (33) follows. �

B. Concentration-compactness principle and some of its consequences

Now we present a concentration-compactness lemma adapted to our operator. This result is an
adaptation of a similar one made in Ref. 5.

Lemma 18: Let {ϕn}n∈N be a bounded sequence in H 1/2 (R) with N (ϕn) = N , for all n ≥ 0.
Then there exists a subsequence

{
ϕnk

}
k∈N satisfying one of the three following properties:

1. Compactness: There exists a sequence {yk}k∈N ⊂ R such that, for every ε > 0, there exists 0
< R(ε) < ∞ with ∫

|x−yk |≤R

∣∣ϕnk (x)
∣∣2

dx ≥ N − ε.

2. Vanishing: For all R > 0,

lim
k→∞

sup
y∈R

∫
|x−y|≤R

∣∣ϕnk (x)
∣∣2

dx = 0.
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3. Dichotomy: There exists α ∈ (0, N) such that, for every ε > 0, there exist R > 0, {yk}k∈N
⊂ R, {Rk}k∈N ⊂ (0,∞) , with Rk →∞, and two bounded sequences, {ψ1

k }k∈N and {ψ2
k }k∈N ⊂

H 1/2 (R) , such that the following properties hold:
(a) supp

(
ψ1

k

) ⊂ (yk − R, yk + R) , supp(ψ1
k ) ⊂ (yk − R, yk + R)c , as a consequence

dist(supp(ψ1
k ), supp(ψ2

k )) → ∞ as k → ∞.
(b) ‖ϕnk − (ψ1

k + ψ2
k )‖2

2 ≤ δ (ε) with δ(ε) → 0 as ε → 0.

(c)
∣∣∣∥∥ψ1

k

∥∥2
2 − α

∣∣∣ < ε and
∣∣∣∥∥ψ2

k

∥∥2
2 − (N − α)

∣∣∣ < ε.

(d) For all m ≥ 0: limk→∞ inf
(〈
ϕnk , Lmϕnk

〉 − 〈
ψ1

k , Lmψ1
k

〉 − 〈
ψ2

k , Lmψ2
k

〉) ≥ −C (ε) →
ε→0

0.

Proof: See Ref. 5. �

In the last part of this section, we present some consequences when each property of Lemma
18 is satisfied.

First, we show a consequence if compactness (property 1 in Lemma 18) is satisfied.

Lemma 19 (Local compactness): Let A be a bounded set in H 1/2 (R), such that, for all ϕ ∈
A,‖ϕ‖2 = N, and for any ε > 0 there exists R > 0 such that

∫ R
−R |ϕ|2 dx ≥ N − ε,∀ϕ ∈ A, then A

is a relatively compact set of L2( − R, R).

Proof: It follows from the Frechet-Kolmogorov strong compactness principle in Lp (see Ref. 3).
It is enough to prove that for all R > 0,

• ∀ϕ ∈ A: ‖ϕ‖L2(R) ≤ C .
• ∀ε > 0, ∃δ(ε) > 0, such that ∀|h| < δ and ∀ϕ ∈ A, it satisfies ‖τhϕ − ϕ‖L2(−R,R) < ε, where

τ hϕ(x) = ϕ(x + h).

First condition is verified by hypothesis. In order to verify the second condition, we can calculate

‖τhϕ − ϕ‖2
2 = ∥∥(τhϕ − ϕ)∧

∥∥2
2 =

∫
R

(2 − 2 cos (hξ )) |ϕ̂|2 dξ.

By hypothesis ‖ϕ‖2
H 1/2 ≤ C and gh (x) = 2−2 cos(hx)√

1+x2 ≤ 8
π

h, then second condition holds. �

Now, we present a result when vanishing (property 2 in Lemma 18) is satisfied.

Lemma 20: Let {ϕn}n∈N ⊂ H 1/2 (R) satisfying property 2 in Lemma 18, then the subsequence
{ϕnk } given in that property, verifies ∥∥ϕnk

∥∥
4 →

k→+∞
0. (34)

Proof: Applying (33), with v = 0, on each element of this subsequence, we have that

∥∥ϕnk

∥∥4
4 ≤ 8

π

∑
j∈Z

∥∥ρ jϕnk

∥∥2
H 1/2

∥∥ρ jϕnk

∥∥2
2 ∀k ∈ Z.

By hypothesis
∥∥ρ jϕnk

∥∥2
2 < ε for k ≥ k0 uniformly in j ∈ Z, then for (29) we have that∑

j∈Z

∥∥ρ jϕnk

∥∥2
H 1/2 ≤ C

∥∥ϕnk

∥∥2
H 1/2 ≤ C

because subsequence {ϕnk } is bounded in H 1/2 (R) . Thus

∥∥ϕnk

∥∥4
4 ≤ 8

π
Cε →

k→+∞
0,

which proves (34). �
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At last, we show two results when dichotomy (property 3 in Lemma 18) is satisfied.

Lemma 21: Let {ϕn}n∈N ⊂ H 1/2 (R) satisfying property 3 in Lemma 18. If {ψ1
k }k∈N, {ψ2

k }k∈N
⊂ H 1/2 (R) are the subsequences given at the dichotomy property, we have that

lim
k→∞

(〈
ψ1

k + ψ2
k , L0

(
ψ1

k + ψ2
k

)〉 − 〈
ψ1

k , L0 ψ1
k

〉 − 〈
ψ2

k , L0 ψ2
k

〉) = 0. (35)

Proof: From (3a) and using that ∂x is a local operator we have that

lim
k→∞

〈
ψ2

k , iv∂xψ
1
k

〉 = lim
k→∞

〈
ψ1

k , iv∂xψ
2
k

〉 = 0.

Then, in order to prove that limit (35) holds, it is enough to prove that

lim
k→∞

〈
ψ2

k , Dψ1
k

〉 = lim
k→∞

〈
ψ1

k , Dψ2
k

〉 = 0.

Due to our problem is invariant under translations, we can suppose that yk = 0, for all k. Let
χk ∈ C∞

0 (R) with 0 ≤ χ k ≤ 1, χ k ≡ 1 in ( − R, R), χ k ≡ 0 in ( − Rk, Rk)c and such that ‖∂xχ‖∞ ≤
C/ (Rk − R) ,then〈

ψ2
k , D ψ1

k

〉 = 〈
ψ2

k , D χkψ
1
k

〉 = 〈
ψ2

k , χk D ψ1
k

〉 + 〈
ψ2

k , [D, χk] ψ1
k

〉
.

From Lemma 183a, we have that
〈
ψ2

k , χk D ψ1
k

〉 = 0, and by using Proposition 3 we have that∣∣〈ψ2
k , [D, χk] ψ1

k

〉∣∣ ≤ C/ (Rk − R), then (35) follows. �

Lemma 22: Let {ϕn}n∈N ⊂ H 1/2 (R) be, satisfying property 3 in Lemma 18, and if {ψ1
k }k∈N,

{ψ2
k }k∈N ⊂ H 1/2 (R) are the subsequences given in the dichotomy property, then∥∥ϕnk

∥∥4
4 ≤ ∥∥ψ1

k

∥∥4

4 + ∥∥ψ2
k

∥∥4

4 + o (ε) . (36)

Proof: We call βk = ϕnk − (ψ1
k + ψ2

k ) and from {ψ1
k + ψ2

k }k∈N is bounded in H 1/2(R). From
(24), we have that

‖βk‖4
4 = ∥∥ϕnk − (

ψ1
k + ψ2

k

)∥∥4

4 ≤ C
∥∥ϕnk − (

ψ1
k + ψ2

k

)∥∥2

2 → 0 with k → +∞. (37)

In order to prove inequality (36), we can consider

∥∥ϕnk

∥∥4
4 = ∥∥βk + ψ1

k + ψ2
k

∥∥4

4 = ∥∥ψ1
k

∥∥4

4 + ∥∥ψ2
k

∥∥4

4 + ‖βk‖4
4 +

12∑
j=1

I j ,

where I j = c
∫
R

∣∣ψ1
k

∣∣α ∣∣ψ2
k

∣∣γ |βk |δ dx with α + γ + δ = 4.By hypothesis ψ1
k and ψ2

k are bounded
in H 1/2 (R) and dist(supp(ψ1

k ), supp(ψ2
k )) → 0 when k → ∞. Therefore, from (37) for all 1 ≤ j ≤

12, we have that Ij → 0 when k → ∞. Hence (36) follows. �

C. Existence of minimum of V0

In this section, we prove that the infimum υ0 (see (26)) is reached on H 1/2 (R) .

Proposition 23: Given |v| < 1, there exists Qv ∈ H 1/2 (R) such that V0(Qv) = ν0(v) (Qv is a
minimum of V0). In addition 〈Qv, Qv〉 = 2υ0 (v) . Therefore,

‖Qv‖4
4 = 1

υ0
〈Qv, L0 Qv〉 ‖Qv‖2

2 = 2 〈Qv, L0 Qv〉 . (38)

Proof: Let {ϕn}n∈N ⊂ H 1/2 (R) a minimizer sequence of (26). In (27a) and (27c), we can take
suitable values λ and μ so that we can suppose ‖ϕn‖2

2 = α and 〈ϕn, L0 ϕn〉 = β, for prescribed
α and β ∈ R, such that this sequence satisfies the hypothesis of Lemma 18. Then, there exists a
subsequence {ϕnk }k∈N such that satisfies one of the three possible alternatives.
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At a first step, we prove that vanishing or dichotomy hold we obtain respective contradictions,
then, since Lemma 18, compactness happens.

Let us suppose that case 2 of Lemma 18 occurs. At the begin of this proof, we can take
‖ϕnk ‖2

2 = α and 〈ϕnk , L0 ϕnk 〉 = β, then the minimization problem (26) is equivalent to the following
maximization problem:

I (α, β) = sup
ϕ �=0

{‖ϕ‖4
4 / ‖ϕ‖2

2 = α and 〈ϕ, L0 ϕ〉 = β
}
.

Notice that in the particular case α = β = 1, from (24) we know that

0 < I (1, 1) ≤ 8

π (1 − |v|) . (39)

If {ϕn} is a maximizer sequence, there exists a subsequence {ϕnk } such that 1
2I (1, 1) ≤ ‖ϕnk ‖4

4 <

I (1, 1) . Due to this sequence satisfies 2 of Lemma 18, it verifies (34). Hence, ‖ϕnk ‖4
4 < 1

2I (1, 1)
for all k great enough, this is a contradiction.

Let us suppose that case 3 of Lemma 18 occurs. Let {ϕn} be a maximizer sequence of I (1, 1)
and {ϕnk } is a subsequence for which there exist the sequences {ψ1

k } and {ψ2
k } given in 3 of Lemma

18. For ε > 0, there exists α ∈ R such that for k greater enough, we have that∥∥ϕnk − (
ψ1

k + ψ2
k

)∥∥2

2 < ε, (40)

∣∣∣∥∥ψ1
k

∥∥2

2 − α

∣∣∣ < ε and
∣∣∣∥∥ψ2

k

∥∥2

2 − (1 − α)
∣∣∣ < ε, (41)

〈
ψ1

k + ψ2
k , L0

(
ψ1

k + ψ2
k

)〉 ≤ 〈
ϕnk , L0 ϕnk

〉 + ε. (42)

We define the rescaled functions ϕ1
k (x) = ψ1

k (λ1x) and ϕ2
k (x) = μ1/2ψ2

k (λ2x) . As in (27a)–(27c),
we have that ∥∥ϕ1

k

∥∥2
2 = λ−1

1

∥∥ψ1
k

∥∥2
2 ,

∥∥ϕ2
k

∥∥2
2 = μλ−1

2

∥∥ψ2
k

∥∥2
2 ,

∥∥ϕ1
k

∥∥4
4 = λ−1

1

∥∥ψ1
k

∥∥4
4 ,

∥∥ϕ2
k

∥∥4
4 = μ2λ−1

2

∥∥ψ2
k

∥∥4
4 ,

〈
ϕ1

k , L0 ϕ1
k

〉 = 〈
ψ1

k , L0 ψ1
k

〉
,

〈
ϕ2

k , L0 ϕ2
k

〉 = μ
〈
ψ2

k , L0 ψ2
k

〉
.

If we call β = 〈ψ1
k , L0 ψ1

k 〉, from (35) and 〈ϕnk , L0 ϕnk 〉 = 1, it is easy to check that β < 1. Fixing λ1

= ‖ψ1
k ‖2

2
α

, λ2 = (1−β)‖ψ2
k ‖2

2

(1−α)〈ψ2
k ,L0 ψ2

k 〉 , and μ = 1−β

〈ψ2
k ,L0 ψ2

k 〉 we have that ‖ϕ1
k ‖2

2 = α, 〈ϕ1
k , L0 ϕ1

k 〉 = β, ‖ϕ2
k ‖2

2

= 1 − α, and 〈ϕ2
k , L0 ϕ2

k 〉 = 1 − β. Hence∥∥ϕ1
k

∥∥4

4 ≤ I (α, β) and
∥∥ϕ2

k

∥∥4

4 ≤ I (1 − α, 1 − β) (43)

and, moreover,

∥∥ψ1
k

∥∥4

4 =
∥∥ψ1

k

∥∥2
2

α

∥∥ϕ1
k

∥∥4

4 ,

∥∥ψ2
k

∥∥4

4 =
〈
ψ2

k , L0 ψ2
k

〉 ∥∥ψ2
k

∥∥2
2

(1 − α) (1 − β)

∥∥ϕ2
k

∥∥4

4 .

In order to prove the subadditivity property

I (1, 1) ≤ I (α, β) + I (1 − α, 1 − β) , (44)

we only need, from (43), to prove that
∥∥ϕnk

∥∥4
4 ≤ ∥∥ϕ1

k

∥∥4
4 + ∥∥ϕ2

k

∥∥4
4 + o (ε) .

From (36), we know ∥∥ϕnk

∥∥4
4 ≤ ∥∥ψ1

k

∥∥4

4 + ∥∥ψ2
k

∥∥4

4 + o (ε)
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now, by a simple calculus we have that

∥∥ψ1
k

∥∥4

4 + ∥∥ψ2
k

∥∥4

4 =
(∥∥ψ1

k

∥∥2
2 − α

)
α

∥∥ϕ1
k

∥∥4

4 + ∥∥ϕ1
k

∥∥4

4 +
〈
ψ2

k , L0 ψ2
k

〉 (∥∥ψ2
k

∥∥2
2 − (1 − α)

)
(1 − α) (1 − β)

∥∥ϕ2
k

∥∥4

4

+
〈
ψ2

k , L0 ψ2
k

〉
1 − β

∥∥ϕ2
k

∥∥4

4 .

Using (24) and (41) in the first and third terms, we have that both terms are ◦(ε). In addition, from

(35) and (42), we have that 〈ψ2
k ,L0 ψ2

k 〉
1−β

≤ 1. Then we conclude that∥∥ϕnk

∥∥4
4 ≤ ∥∥ϕ1

k

∥∥4

4 + ∥∥ϕ2
k

∥∥4

4 + o (ε) ,

then we proved inequality (44).
By rescaling, it is easy to check that

I (α, β) = αβI (1, 1)

and plugging this expression into (44) we have that

1 ≤ αβ + (1 − α) (1 − β) = 1 + 2αβ − α − β,

then

0 ≤ α (β − 1) + β (α − 1)

this is a contradiction because 0 < α, β < 1.
This says neither alternatives 2 and 3 of Lemma 18 are true for a minimizer sequence {ϕn},

then this sequence satisfies alternative 1 of Lemma 18 (compactness).
We define φk(x) = ϕ(x − yk), then {φk} is compact in L2 (R) (see Lemma 19), hence there

exists a subsequence, that without of generality we can call φk, such that lim
k→∞

φk = Q̃v ∈ L2 (R) .

Due to this sequence is bounded in H 1/2 (R), we can take a new subsequence such that it converges
weakly to Q̃v, i.e., φk ⇀ Q̃v in H 1/2 (R), therefore, 〈Q̃v, L0 Q̃v〉 ≤ 1. Using (24) we know that φk

tends to Q̃v in L4 (R), then V0
(
Q̃v

) ≤ υ0. How υ0 is the infimum value of V0, then

V0
(
Q̃v

) = υ0.

At last, we can consider Qv = √
2υ0 Q̃v, then from (28) we have that V0

(
Q̃v

) = V0 (Qv) and
‖Qv‖2

2 = 2υ0. Then (38) follows. �

Definition 24: We note Nc (v) =: ‖Qv‖2
2 . Moreover, we know that Nc (v) = 2υ0.

D. Existence of boosted ground states

With the above results, especially Proposition 23, now we are able to follow a similar way as it
was taken in Ref. 5. We prove the existence of solutions of Eq. (4) through finding the minimizers
of the problem (5). Previously, we need to adapt some results to our case.

In a first step we remake, for our energy operator, the lemma where we set up Nc as a critical
value of the charge. Actually, Nc is a critical value for N because if N < Nc there exists minimum
and if N > Nc it does not exist.

Lemma 25: Let ϕ ∈ H 1/2 (R) be, such that N = ‖ϕ‖2
2 . If m ≥ 0 and |v| < 1, then

1. Ev (ϕ) ≥ 1
2

(
1 − N

Nc(v)

)
〈ϕ, L0ϕ〉 − m

2 N

2. If Ev (N ) is the minimum of the energy, given in (6), then
(a) If 0 < N ≤ Nc (v) ⇒ Ev (N ) ≥ − 1

2 m N.
(b) If N > Nc (v) ⇒ Ev (N ) = −∞.
(c) If 0 < N ≤ Nc (v) , all minimizer sequence is bounded.
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Proof: We prove each one of the above statements.

1. From (22b) and (38), we have that

Ev (ϕ) ≥ 1

2

(
1 − N

Nc (v)

)
〈ϕ, L0ϕ〉 − m

2
N . (45)

2. In order to prove that Nc (v) is a critical value of the charge, we can consider the following
cases:

(a) If 0 < N ≤ Nc (v) , coefficient
(

1 − N
Nc(v)

)
≥ 0. From (9b), it is easy to check that 〈ϕ, L0ϕ〉

≥ 0, then using inequality (45) we have that

Ev (N ) ≥ −m

2
N .

(b) If N > Nc (v) , we consider the evaluation of the energy Ev on the straight line spanned by
Qv, and using that

√
m2 − ∂2

x − m ≤ √−∂2
x (see (22a)),

Ev (N ) ≤ Ev (λQv) ≤ Ev (λQv)|m=0 for all λ ∈ R.

The right side is explicitly computable using the definition of Ev and (38),

2Ev (λQv)|m=0 = λ2 〈Qv, L0 Qv〉 − λ4

2
‖Qv‖4

4 = λ2 − λ4

2
‖Qv‖4

4 .

Therefore,

Ev (N ) ≤ Ev (λQv)|m=0 = −λ2
(
λ2 − 1

)
4

‖Qv‖4
4 .

Taken |λ| > 1, we have that Ev (N ) ≤ Ev (λQv) < 0 and also Ev (λQv) →
λ→+∞

−∞, then

Ev (N ) = −∞.

(c) If 0 < N < Nc (v) , we know that for each N the functional Ev (ϕ) has infimum. Fixed a
value of N we consider a minimizer sequence {ϕn}n such that ‖ϕn‖2

2 = N . In order to prove
that sequence remains bounded in H 1/2 (R) we only need to prove that term 〈ϕn, Dϕn〉 is
bounded from above.
From inequalities (25) and (45), for each ϕn we have that

Ev (ϕn) ≥ C (1 − |v|) 〈ϕn, Dϕn〉 − m

2
N

but, due to ϕn is a minimizer sequence, we have that |Ev (ϕn)| ≤ M for n greater enough,
then 〈ϕn, Dϕn〉 ≤ C.

�

1. Non-relativistic boundedness

Next step is to provide an upper bound for Ev (N ) given for the energy of the non-relativistic
ground state. At first term, we will define the non-relativistic problem and its energy.

Definition 26: Let m > 0 and |v| < 1, we define the following energy functional in H 1 (R) :

Enr
v (ψ) =:

√
1 − v2

4m
‖∂xψ‖2

2 − 1

4
‖ψ‖4

4 (46)

and its corresponding minimization problem

Enr
v (N ) =: inf

{
Enr

v (ψ) / ψ ∈ H 1 (R) , N (ψ) = N
}

(47)

with Euler-Lagrange equation

−
√

1 − v2

4m
∂2

x ψ − |ψ |2 ψ = −μψ. (48)
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The study of the stationary 1D cubic Schrödinger equation (48) is a classical subject in the
literature, and it is very important for its physical means, although, actually, it is just a special case of
the nonlinear potential-type equation. Existence of solution for this stationary equation was studied
for many authors. For instance, existence in R was studied in Refs. 10 and 11 and the Cauchy
Periodic problem, in an interval, in Ref. 2.

In order to give a bound of Ev (N ) using Enr
v (N ), we need some previous results.

Lemma 27: Let ψ ∈ H 1 (R) an even function, with ‖ψ‖2 = N. Consider |v| < 1 and the one
parametric family of functions

ψλ (x) := eiλvxψ (x) , where λ > 0, (49)

then the following formulas hold:

i

2
〈ψλ, v∂xψλ〉 = −λ |v|2

2
N , (50)

〈
ψλ,−∂2

x ψλ

〉 = 〈
ψ,−∂2

x ψ
〉 + λ2 |v|2 N . (51)

Proof: Equality (50) follows from the fact that ψ(x) and ψ̂ (ξ ) are even functions. Equality (51)
follows from Re

∫
R (ψ∂xψ) dx = 0. �

Lemma 28: If λ > 0, the following inequality holds:√
m2 − ∂2

x ≤ 1

2λ

(−∂2
x + m2 + λ2) . (52)

Proof: Let ϕ ∈ H 1/2 (R) , using Parseval’s equality we have that

1

2λ

〈
ϕ,

(−∂2
x + m2 + λ2)ϕ

〉 = 1

2λ

∫
R

(
ξ 2 + m2 + λ2) |ϕ̂|2 dx

and (52) follows. �

Now, we are able to prove an upper bound for Ev (N ) using the energy of the non-relativistic
ground state.

Proposition 29: Given m > 0 and |v| < 1, the following bound of the energy holds

Ev (N ) ≤ Enr
v (N ) − 1

2

(
1 −

√
1 − v2

)
m N (53)

and, immediately, Ev (N ) < 0.

Proof: This proposition performs a similar result to it was proved in Ref. 5. In that work, the
authors show an estimation similar to (53), working over the linear part of the energy. Actually, our
problem differs from the problem discussed in Ref. 5 only in its nonlinear part, then this proposition
is verified by a similar way. We are going to make a sketch of the proof that it was given there,
adapted to our problem.

Let ψ be an even function in H 1 (R) , such that ‖ψ‖2
2 = N , and ψλ is like in (49). We look for a

bound of Ev (ψλ) depending on λ, and then we prove the existence of λ*, a minimizer of this bound.
By using (50)–(51), and |ψλ| = |ψ |, we have that

Ev (ψλ) ≤ N

4

(
1 − v2

)
λ +

〈
ψ,−∂2

x ψ
〉 + m2 N

4λ
−

(
1

2
m N + 1

4
‖ψ‖4

4

)
. (54)

Evaluating (54) at λ∗ = m√
1−v2 , we have that

Ev (N ) ≤ Ev (ψλ∗ ) ≤ −1

2

(
1 −

√
1 − v2

)
m N + Enr

v (ψ) with ψ ∈ H 1 (R) even. (55)
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We know (see Ref. 10) that there exists an even ψ∗ ∈ H 1 (R) , where functional Enr
v (ψ) reaches

its minimum value, i.e., Enr
v (N ) = Enr

v (ψ∗) . Now, evaluating inequality (55) at ψ* we get
estimation (53).

Due to Enr
v (N ) < 0 and inequality (53), we have that Ev (N ) < 0. �

2. Subadditivity of the energy Ev (N)

Now, we give a last previous result that we will use in the proof of the existence of ground
states. It is a strict subadditivity condition by a general function.

Lemma 30: If f : R → R is a function such that ∀x ∈ R and ∀λ > 1: f (λx) < λf(x), then f(x)
satisfies the following strict subadditivity condition: given x ∈ R and 0 < α < |x|, then

f (x) < f (α) + f (x − α) . (56)

Proof: It is an elementary calculus. �

In the following proposition, we use the above lemma y order to prove a strict subadditivity
condition for the energy Ev (N ) .

Proposition 31: If m > 0 and |v| < 1, then Ev (N ) satisfies the following strict subadditivity
condition for 0 < N < Nc (v) : if 0 < α < N, then

Ev (N ) < Ev (α) + Ev (N − α) . (57)

Moreover, Ev (N ) is a strict decreasing and concave function on the interval 0 < N < Nc (v).

Proof: Despite the differences between the nonlinear part of our model and the same term of
the equation of Lemma 2.3 in Ref. 5, the technic of proving and the conclusion remains true. Now,
we provide a sketch of the proof.

We take in account that from the definition of the non-relativistic energy, we know that Enr
v (N )

≤ Enr
v=0 (N ) < 0, Using this estimation into inequality (53), we have

Ev (N ) < −1

2

(
1 −

√
1 − v2

)
m N . (58)

Let ev (N ) := inf
‖ϕ‖2

2=1

{
1
2 〈ϕ, Lmϕ〉 − N

4 ‖ϕ‖4
4

}
. It is easy to check that ev (N ) is decreasing on N and

that ev (N ) < 0. This follows from

Ev (N ) = Nev (N ) . (59)

Moreover, ev (N ) is strict decreasing on N. For proving this last assertion, it is enough to check that
each N > 0, there exists a constant cN > 0 such that

‖ϕn‖4
4 ≥ cN > 0 ∀n. (60)

This follows by making a proof by contradiction, as it was made in Ref. 5: supposing that any
minimizer sequence {ϕn} of ev (N ) satisfies ‖ϕn‖4

4 → 0, then equality (59) and estimation (23) lead
to a contradiction with (58).

Now, from equality (59) and the strict decrease of ev (N ) , we have that for all λ > 1 and 0 < N
< Nc,

Ev (λN ) < λ Ev (N ) . (61)

Then, function Ev (N ) satisfies the hypothesis of Lemma 30, then inequality (57) follows. �
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E. Main result

Theorem 32: Given m > 0 and |v| < 1, let Ev (ϕ) and Ev (N ) as in (5) and (6), respectively. If
Nc (v) is the positive constant given in Definition 24, then the following hold:

1. For 0 < N < Nc (v) problem (6) has a minimizer, ϕv ∈ H 1/2 (R) , and it is a solution of Eq. (4)
for some μ ∈ R. Moreover, every minimizer sequence {ϕn} of problem (6) is relatively compact
in H 1/2 (R) up to translations, i.e., there exists a sequence {yk} ⊂ R and a subsequence {ϕnk }
such that ϕnk (. + yk) → ϕv strongly in H 1/2 (R) .

2. For N ≥ Nc (v) , no minimizer exists for problem (6), even though Ev (N ) = − 1
2 m N in the

case N = Nc (v) .

Proof Part 1: If 0 < N < Nc (v) ,there exists a minimizer ϕv ∈ H 1/2 (R) .

Let {ϕn} ⊂ H 1/2 (R), a minimizer sequence for problem (6), i.e., limn→∞ Ev (ϕn) = Ev (N ) and
‖ϕn‖2

2 = N . From Lemma 25 we know that, in this case, Ev (N ) > −∞ and a minimizer sequence
is bounded in H 1/2 (R) , then we can apply the concentration-compactness principle (Lemma 18).
We need to prove that a minimizer sequence {ϕn} does not satisfy neither vanishing nor dichotomy
property.

1. Let us suppose that a minimizer sequence {ϕn} satisfies property 2 in Lemma 18 (vanishing),

then there exists a subsequence such that
∥∥ϕnk

∥∥4
4 →

k→+∞
0 (see (34)), but it is a contradiction

(see the proof of inequality (60).
2. Let us suppose that a minimizer sequence {ϕn} satisfies property 3 in Lemma 18 (dichotomy),

and suppose that subsequence {ϕnk } and sequences {ψ1
k } and {ψ2

k } satisfy property 3 in Lemma
18. Therefore, from Lemma (18 3 c), we know there exists 0 < α < N such that for all ε > 0
and k greater enough ∥∥ψ1

k

∥∥2

2 ≤ α + ε and
∥∥ψ2

k

∥∥2

2 ≤ (N − α) + ε. (62)

Using (36) joint to Lemma (18 3 d), we have that

Ev (N ) = lim
k→∞

Ev(ψnk ) ≥ lim
k→∞

inf Ev

(
ψ1

k

) + lim
k→∞

inf Ev

(
ψ2

k

) − o (ε)

and due to Ev decreases in N and inequalities (62), we have that

Ev (N ) ≥ Ev (α + ε) + Ev (N − α + ε) − r (ε) .

Here, Ev is continuous because it is strictly concave, then taking limit with ε → 0,

Ev (N ) ≥ Ev (α) + Ev (N − α)

but this is a contradiction by the subadditivity of Ev (see (57)).

In consequence, from Lemma 18, a minimizer sequence {ϕn} satisfies the property of compact-
ness, then it has a weak limit ϕv ∈ H 1/2 (R) , up to translations. As a second step, we will prove that
this sequence has a subsequence {ϕnk } such that ϕnk → ϕv in H 1/2 (R) (strong convergence).

Due to {ϕnk } is bounded in L2 (R) , then it converges weakly to ϕv in L2 (R) . Hence we can
apply Theorem 8.6 of Ref. 7: weak convergence implies strong convergence over small sets, adapted
to H 1/2 (R) , i.e., ϕnk → ϕv in Lp for all 2 ≤ p < ∞, over compact sets. Due to {ϕnk } satisfies
alternative 1 at Lemma 18, we know that the last condition hold, then

ϕnk → ϕv in L p (R) for all 2 ≤ p < ∞. (63)

Now, we will prove that the minimum value of Ev is reached at ϕv, i.e., Ev (ϕv) = Ev (N ) . For
this is enough to prove that

∥∥ϕnk

∥∥4
4 → ‖ϕv‖4

4 . Using (63) we have that

∣∣‖ϕnk ‖4
4 − ‖ϕv‖4

4

∣∣ ≤
(∫

R

(
ϕ2

nk
+ ϕ2

v

)2 (
ϕnk + ϕv

)2
dx

)1/2 (∫
R

∣∣ϕnk − ϕv

∣∣2
dx

)1/2

≤ C
∥∥ϕnk − ϕv

∥∥
2 .
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Hence, by using (63) with p = 2 we obtain that

‖ϕnk ‖4
4 → ‖ϕv‖4

4 . (64)

From Lemma A.4 of Ref. 5, we know the functional Lm is weakly lower semi-continuous and, due
to, ϕnk ⇀ ϕv in H 1/2 (R) we have that

lim
k→∞

inf(Lmϕnk ) ≥ Lm(ϕv),

then

Ev (N ) = lim
k→∞

Ev(ϕnk ) ≥ Ev(ϕv) ≥ Ev(N ) (65)

and in consequence we have the equality Ev (ϕv) = Ev (N ) , then ϕv ∈ H 1/2 (R) is a minimum of
the energy under restriction N (ϕv) = N .

At last, in order to prove the strong convergence ϕnk → ϕv in H 1/2 (R) , we take note, again,
of Lemma A.4 of Ref. 5, where was proved that is enough to see that limk→∞ Lmϕnk = Lm (ϕv) in
order to prove that ϕnk → ϕv in H 1/2 (R) . From (64) and the equality (65), we can assert this fact
holds. Then

ϕnk → ϕv strongly in H 1/2 (R) .

Part 2: No minimizer exists for N ≥ Nc (v) .

If N > Nc (v) , from Lemma 25 2(b), we know that Ev (N ) = −∞, then no minimizer exists.
Now, we deal with the case N = Nc (v) . First, we prove the that Ev (N ) = − 1

2 m N . From
Lemma 25 2(a) we know that Ev (N ) ≥ − 1

2 m N , then in order to prove the equality is enough to
prove the opposite inequality. We take an optimizer Qv ∈ H 1/2 (R) , as it was given in (38), and we
consider the rescaling Q(λ)

v (x) = λ1/2 Qv (λx) , therefore
∥∥Q(λ)

v

∥∥2
2 = ‖Qv‖2

2 = Nc (v) , then

Ev (N ) ≤ Ev

(
Q(λ)

v

) = 1

2

∫
R

(√
λ2ξ 2 + m2 − λ |ξ |

) ∣∣Q̂v (ξ )
∣∣2

dξ − 1

2
m Nc (v) →

λ→∞
−1

2
m Nc (v) .

Finally, we prove that there does not exist a minimizer for problem (6) with N = Nc (v) . We
argue by contradiction as follows. Suppose that ϕ̃v ∈ H 1/2 (R) is a minimizer for (6), thus, from the
previous result and the inequality

√
m2 − ∂2

x >
√−∂2

x , we have that

−1

2
m Nc (v) = Ev (ϕ̃v) = 1

2
〈ϕ̃v, Lm ϕ̃v〉 − 1

4
‖ϕ̃v‖4

4

>
1

2
〈ϕ̃v, L0ϕ̃v〉 − 1

2
m Nc (v) − 1

4
‖ϕ̃v‖4

4 ,

then

‖ϕ̃v‖4
4 > 2 〈ϕ̃v, L0ϕ̃v〉 .

But this is a contradiction because, using Definition 24 and Proposition 23,

Nc (v)

2
= υ0 ≤ 〈ϕ̃v, L0ϕ̃v〉 ‖ϕ̃v‖2

2

‖ϕ̃v‖4
4

then

‖ϕ̃v‖4
4 ≤ 2 〈ϕ̃v, L0ϕ̃v〉 .

Hence, conclusion follows. �

V. REGULARITY AND WEAKLY ORBITAL STABILITY

At the last part, we conclude with two very important properties of the boosted ground states
solutions (3). The first property is the regularity of the ground states.
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Proposition 33: If ϕ ∈ H 1/2 (R) is a solution of (4), then ϕ ∈ H s (R) for all s ≥ 1/2.

Proof: We use a bootstrapping argument. We know that H 1/2 (R) ↪→ L p (R) for all 2 ≤ p
< ∞, in particular ϕ ∈ L6 (R) and therefore |ϕ|2 ϕ ∈ L2 (R) . Thus, a solution ϕ of (4) satisfies(√−∂2

x + m2 + iv∂x

)
ϕ ∈ L2 (R) , and this implies ϕ ∈ H 1 (R) . By repeating this argument we

have that ϕ ∈ H 2 (R) , and so on. �

At the second term, we prove that solutions of Eq. (1) are weakly orbital stable, i.e., if the initial
data ψ0 (x) ∈ H s (R) , with s > 1/2, is near to a ground state profile ϕv, in the sense of H1/2 norm,
thus the flux of Eq. (1) remains near to the set of ground states profiles, also in the sense of H1/2

norm. More precisely, let Sv,N be the set of minimizers of Ev with N (ϕv) = N , i.e.,

Sv,N = {
ϕv ∈ H 1/2 (R) / Ev (ϕv) = Ev (N ) , N (ϕv) = N

}
.

Notice that, from Proposition 33, ϕv ∈ Sv,N implies that ϕv ∈ H s (R) for all s ≥ 1/2. Also, from
Theorem 32, set Sv,N is non-empty, for N < Nc (v) .

We define the following concept of stability.

Definition 34: The flux of Eq. (1) is weakly orbitally stable with regard to the set Sv,N if for
ψ0 (x) ∈ H s (R) , with s > 1/2, and every ε > 0, there exists δ > 0 such that

inf
ϕv∈Sv,N

‖ψ0 − ϕv‖H 1/2 < δ ⇒ sup
t≥0

inf
ϕv∈Sv,N

‖ψ (t) − ϕv‖H 1/2 < ε,

where ψ(t) = ψ(t, x) is the solution, at time t, of Eq. (1) with initial data ψ0.

Theorem 35: Given m > 0, |v| < 1, 0 < N < Nc (v) and initial data ψ0 ∈ Hs, with s > 1/2,
then the flux of Eq. (1) is weakly orbitally stable with regard to the set Sv,N .

Proof: We can work in the lines of Theorem 2 of Ref. 5. First, if 0 < N < Nc (v) ≤ Nc, we can
choose δ > 0 small enough such that if ψ0 (x) ∈ H s (R) and infϕv∈Sv,N ‖ψ0 − ϕv‖H 1/2 < δ guarantees
that N (ψ0) < Nc, then by the global well-posedness result for Eq. (1) given in Theorem 12, we
have that its corresponding solution has global existence, thus taking supt≥0 is well defined.

Now, we assume that the weak orbital stability does not hold, then there exists ε > 0 and a
sequence of initial data {ψn (0)}n ⊂ H s (R) such that

inf
ϕv∈Sv,N

‖ψn (0) − ϕv‖H s →
n→∞ 0 and inf

ϕv∈Sv,N

‖ψn (tn) − ϕv‖H s > ε for all n ≥ 0, (66)

where tn > 0 is a suitable sequence of times. Notice that from (66) and for the imbedding of H s (R)
in L2 (R) , we have that N (ψn (0)) → N as n → ∞. Then, we can assume that N (ψn (0)) < Nc

for all n ≥ 0, which guarantees that the corresponding solution ψn(t), exists globally in time.
From Proposition 7, N (ψ) and E (ψ) are conserved by the flux of (1), and it is easy to check

that the charge current 〈i∂xψ , ψ〉 is also conserved, then we conclude that the energy Ev (ψ) is
conserved.

We call φn (x) := ψn (x, tn) ∈ H s (R) . By the conservation law of N (ψ) and Ev (ψ) , we have
that N (φn) = N (ψn (0)) → N as n → ∞, and Ev (φn) = Ev (ψn (0)) . Hence

lim
n→∞ Ev (φn) = Ev (N ) and lim

n→∞N (φn) = N .

Then sequence {φn} is a minimizer sequence for energy Ev, even it has not the required charge N.
We can define a rescaled sequence

φ̃n := anφn with an =
√

N/N (φn),

we obtain that N
(
φ̃n

) = N . Now, we want to prove that φ̃n is also a minimizer sequence of (2).
From Lemma 25, we know {φn} is bounded in H 1/2 (R) , then we have the following estimation:∥∥φn − φ̃n

∥∥
H 1/2 ≤ C |1 − an| → 0, as n → ∞. (67)
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By continuity of Ev : H 1/2 (R) → R, we have that

lim
n→∞ Ev

(
φ̃n

) = Ev (N ) ,

then
{
φ̃n

}
is a minimizer sequence of (2), under the constraint N (ψ) = N . By Theorem 32, there

exists a subsequence
{
φ̃nk

}
strongly convergence in H 1/2 (R) , up to translations, to a minimizer

ϕ ∈ Sv,N . From (67), we can replace φ̃n by φn. But, this fact contradicts the second part of (66).
Then, weak orbital stability holds. �
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