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The role of Killing and Killing-Yano tensors for studying the geodesic motion of
the particle and the superparticle in a curved background is reviewed. Additionally,
the Papadopoulos list [G. Papadopoulos, Class. Quantum Grav. 25, 105016 (2008)]
for Killing-Yano tensors in G structures is reproduced by studying the torsion types
these structures admit. The Papadopoulos list deals with groups G appearing in the
Berger classification, and we enlarge the list by considering additional G structures
which are not of the Berger type. Possible applications of these results in the study
of supersymmetric particle actions and in the AdS/CFT correspondence are outlined.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698087]

I. INTRODUCTION

Killing and Killing-Yano tensors1, 2 and their conformal generalizations3, 4 are a powerful tool
in general relativity. When a given space time does admit such tensors, a classical constant of motion
for particle probes moving in the background appears. This is a reminiscent of the isometries, and it
is often said that Killing and Killing-Yano tensors are the generators of hidden symmetries for the
background. In fact, for the rotating black hole the separability of the Hamilton-Jacobi equation for
a particle probe in the background5, 6 is closely related to the presence of a conformal Killing tensor
of rank two. This tensor admits a square root which is Killing-Yano,7, 8 and which is a key ingredient
for the separability of the Dirac equation corresponding to the rotating background.9

At the quantum level, Killing-Yano tensors are generators for non-anomalous symmetries,
while for Killing tensors this is not the case. It is well known that when a bosonic particle in a given
background is quantized then, for every globally defined Killing vector the background admits there
corresponds an operator which commutes with the Hamiltonian (the curved Laplacian). But this
assertion is false for Killing tensors in general, as the commutator of the corresponding operator
with the Hamiltonian may not vanish.9 Nevertheless, when a Killing tensor admits a square root
which is Killing-Yano, the anomaly vanish identically.10 This is true for the rotating black hole
discussed above, as well as for other geometries.

The similarities between the usual isometries and hidden symmetries discussed above raise
the question whether or not Killing-Yano tensors do form an algebra. This issue was investigated
in Refs. 11 and 12 where it was argued that the natural generalization of the Lie bracket for
Killing vectors is the Schouten-Nijenhuis bracket for Killing tensors. The outcome is that Killing-
Yano tensors do not form a Lie algebra in general, at least with this particular operation, but they
do when some extra conditions are satisfied. An example is the requirement for the metric to
be of constant curvature. For Killing tensors instead, an associated graded algebra was reported
in Ref. 13 (see also Ref. 64).

The presence of hidden symmetries in a given background may give information about
the algebraic type of the curvature. In four dimensions, the presence of a conformal and non-
degenerate Killing-Yano tensor of rank two in a generic space time implies that the curvature is
of type D in the Petrov classification.14–17 The local form of these metrics is known explicitly.18 The
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generalization of the Petrov classification to higher dimensions was obtained in Refs. 19 and 127
and this classification allowed the authors of Ref. 20 to prove that any space admitting a closed
non-degenerate conformal Killing-Yano (CKY) tensor is of type D. This was based in previous work
done in Ref. 29. Furthermore, when the Einstein equations are imposed, these metrics become the
Kerr-Taub-Ads family22 which generalize the old Myers-Perry solution.23 But the converse of this
statement is an open question, though some suggestions in this direction appear in Ref. 21.

Soon after the appearance of Ref. 20, the geodesic motion and the Hamilton-Jacobi and Dirac
equations in these spaces were studied in Refs. 24–29. The outcome is that both equations are
separable. Additionally, the role of conformal Killing-Yano tensors for studying geodesic motion in
double spinning black rings was pointed out in Ref. 30, and a method for constructing conserved
charges in asymptotically flat spaces by use of Killing-Yano tensors was given in Ref. 11 and in
anti-de Sitter space times in Ref. 32.

Killing-Yano tensors also appear in other contexts of mathematical physics. For example, in the
theory of gravitational instantons, they are known to generate Runge-Lenz type symmetries.33–38

The separability of the Dirac equation in the Kerr-Taub-Nut background was studied in Ref. 39,
and formal properties of Dirac operators for spaces with hidden symmetries were pointed out in
several works such as Refs. 40–43 Additionally, Killing-Yano tensors are generators for exotic
supersymmetries in the spinning particle motion in a curved background.44–46 These are symmetries
which mix bosonic and fermionic coordinates but whose square does not give the Hamiltonian.47, 48

Further research related to the motion of particles of Abelian and non-Abelian charges in the
presence of external fields have been performed in Refs. 47,49–54 and these techniques were further
applied to derive N = 4 supersymmetric mechanics in a monopole background in Ref. 55. The
relation between Killing-Yano and integrable systems was subsequently studied in Refs. 56–60,
and applications related to string movement were found in Refs. 61 and 62. Novel geometries not
neccessarily Einstein were also obtained in Ref. 63.

Although their importance was understood long ago, till recent times few examples of spaces
admitting Killing-Yano tensors were known. This situation changed in the last years. The problem
of finding Killing-Yano tensors on spherically symmetric space times was studied in Ref. 68 and on
pp-wave backgrounds in Ref. 69. The Killing tensors for the Melvin universe were characterized in
Ref. 70. The local form of certain Lorentzian metrics admitting Killing-Yano tensors of higher order
was studied in Ref. 71, and the presence of hidden symmetries in the Plebanski-Demianski family
was studied in Ref. 72.

Recently, the problem of classifying the G structures do admit Killing-Yano tensors was inves-
tigated by Papadopoulos in Ref. 73. It is interesting that all the examples Papadopoulos is finding
are Einstein or Ricci-flat. Furthermore, these spaces can be uplifted to an AdS supergravity solution.
Since the constant of motions of rotating string configurations in these backgrounds are related to
quantum numbers in a conformal dual quantum field theory, the study of hidden symmetries in these
backgrounds may be of theoretical interest. The aim of the present work is to reproduce and enlarge
this list.

The present work is organized as follows. In Sec. II, the role of Killing and Killing-Yano
tensors as generators for hidden symmetries for the particle and the spinning particle in a given
space time is reviewed. It also emphasized the fact that when a Killing tensor has a Killing-Yano
“square root” the classical symmetries it generates are non-anomalous. In Sec. III, the conformal
generalizations of Killing and Killing-Yano tensors and their role in finding solutions of Dirac
equations in the curved background are briefly described. In Sec. IV, an attempt to generalize both
notions for the motion of the Polyakov string and spinning string is presented. We are unable to find
such a generalization unless some extra information about the string movement is given, and some
examples realizing this situation are given explicitly. In Sec. V, the main features of G structures
and their relation to special holonomy manifolds are briefly discussed, and all the cases of the
Papadopoulos list are reproduced by means of the torsion formalism developed in Refs. 82–92. In
addition, we analyze the presence of Killing-Yano tensors in almost contact structures and in SO(3)
structures in SO(5) and in structures Hk ⊂ SO(nk), with H1 = SO(3), H2 = SU(3), H4 = Sp(3) and
H8 = F4, following Refs. 116–118. Section VI contains the discussion of the results and their possible
applications.
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II. KILLING-YANO TENSORS AS EXOTIC SUPERSYMMETRIES

In the present section, some important aspects of Killing and Killing-Yano tensors and their role
in finding conserved quantities for motion of a particle and spinning particle in a curved background
are reviewed. It also emphasized the role of Killing-Yano as generators of exotic supersymmetries.
Clear introductory notes are given for instance in Ref. 65, and this reference can be consulted for
further details.

A. Killing tensors and the freely falling particle

A bosonic particle falling freely in a geodesically complete background (M, gμν) is described
by the following action:

S =
∫ τ1

τ0

Ldτ =
∫ τ1

τ0

gμν(x)ẋμ ẋνdτ, (2.1)

ẋμ = dxμ/dτ being the derivative with respect to the proper time τ of the particle coordinate xμ.
The variation of (2.1) with respect to arbitrary infinitesimal transformations δx and δẋ is

δS =
∫ τ1

τ0

[
δL

δxμ
− d

dτ

(
δL

δ ẋμ

)]
δxμdτ +

∫ τ1

τ0

d

dτ

(
δL

δxμ
δxμ

)
dτ

=
∫ τ1

τ0

[
− δxμgμν

Dẋν

Dτ
+ d

dτ

(
δxμ pμ

)]
dτ, (2.2)

pμ being the momentum of the particle

pμ = gμν ẋν . (2.3)

When the end points are fixed, i.e, when δxμ = 0, the total time derivative in (2.2) may be discarded.
Then variation (2.2) is zero when the Euler-Lagrange equations

Dẋμ

Dτ
= ẍμ + �μ

να ẋν ẋα = 0, (2.4)

are satisfied. Here, �μ
να denote the usual Christoffel symbols constructed in terms of the metric gμν

�k
i j = gkl

2
(gil, j + g jl,i − gi j,l). (2.5)

The first two members of the equations of motion (2.4) are the definition of the derivative Dẋν

Dτ
.

The vanishing of this derivative implies that the particle moves along a geodesic line in the curved
background.

When the variations δxμ = Kμ do not have fixed end points the total derivative in (2.2)
should not be discarded. In this case, by taking (2.4) into account it follows that the total variation
of (2.2) is

δL = d

dτ

(
K μ pμ

)
. (2.6)

If additionally δxμ = Kμ is such that this variation is zero, then it will be called a symmetry
transformation of L. The formula (2.6) implies that the quantity

EK = Kμ ẋμ, (2.7)

is a constant of motion for the particle.
The most celebrated example of symmetries for (2.2) are those of the forms δxμ = Kμ(x), that

is, the ones in which the variations are functions of the coordinates. The vanishing of (2.6) gives

d

dτ

(
Kμ ẋμ

)
= ẋν∇ν Kμ ẋμ + Kμ

Dẋμ

Dτ
= 0.
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But the last term is zero by (2.4) and the first one gives

∇(ν Kμ) = 0, (2.8)

where the parenthesis denote the usual symmetrization operation. Equation (2.8) shows that the
vector field Kμ is Killing, that is, a local isometry of gμν . Thus, for a particle moving along a
geodesic in a given background (M, gμν), there is a constant of motion for every isometry the
background admits.

The isometries considered above are not the whole set of symmetries. The most general ones are
of the form δxμ = K (x, ẋ), that is, transformation which are local with respect to the phase space
coordinates (xμ, ẋμ). The generality of this ansatz follows from the fact that a dependence on higher
order time derivatives such as ẍ will reduce to combinations of (x, ẋ) by means of the equations of
motion (2.4) and thus this dependence is redundant. If a Taylor-like expansion of the form

δxμ = K μ + K μ
α ẋα + K μ

αβ ẋα ẋβ + · · · , (2.9)

with velocity independent tensors K μ
μ1..μn

(x) is proposed, then a calculation analogous to the one
leading to (2.8) shows that if (2.9) will be a symmetry of the Lagrangian (2.1) when

∇(μKμ1..μn ) = 0, (2.10)

a condition which generalize (2.8). These tensors are known as Killing tensors and the quantities

cn = Kμ1..μn ẋμ1 ..ẋμn , (2.11)

are constants of motion for the particle moving in the background. An obvious Killing tensor is the
metric itself, that is, Kμν = gμν . The corresponding conserved charge

H = 1

2
gμν pμ pν, (2.12)

is the Hamiltonian for the particle.
A remarkable difference between Killing vectors and Killing tensors is that the first generate

symmetries even for the quantum version of (2.2), while for tensors an anomaly may appear. The
simplest quantum version of the particle motion is obtained by replacing the momentum pμ with the
operator ∇μ and, for the scalar fields, the classical Hamiltonian (2.12) is replaced with the operator

bH = �
2∇μ(gμν∇ν), (2.13)

which coincides with the Laplacian acting on scalar functions. Furthermore, any vector field Kμ is
in correspondence with a quantum mechanical operator bK = K μ∇μ whose commutator with the
Hamiltonian is

[bH , bK ] = −2�
2 K(μ;ν)∇μ∇ν − �

2(2K ;ν
(μ;ν) − K ν

;ν;μ)∇μ + �
2

4

(
n − 2

n − 1

)
K μ R,μ. (2.14)

From the last equation, it follows that for space times for which the vector Kμ is Killing the
corresponding quantum mechanical operator will commute with the Laplacian. This means that
Killing vectors generate true quantum symmetries. The situation is different for Killing tensors.
As an example, consider operators of the form bK (2) = ∇μ(K μν∇ν). Then a lengthy calculation
performed in Refs. 9 and 128 shows that

[bH , bK (2)] = 2�
2 K μν;σ∇(σ∇μ∇ν) + 3�

2 K (μν;σ )
;σ∇ν∇ν

+�
2

(
1

2
gμν(K (μν;λ);σ − K (μν;σ );λ) − 4

3
K [λ

μ Rσ ]μ

)
;σ

∇λ. (2.15)

If Kμν is assumed to be a Killing tensor all the terms above will vanish except the last one. This
can be paraphrased by saying that the classical symmetry that a Killing tensor generates will be
anomalous, unless the integrability condition

(K [λ
μ Rσ ]μ);σ = 0, (2.16)
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is satisfied. This condition holds for instance when the metric is Einstein Rij = 
gij, in particular,
this is true for Ricci-flat metrics. This is also true when the Killing tensor is the square Kμν = f α

μ fαν

of a Killing-Yano tensor fμν . The last situation will be discussed in Secs. II B–II E.

B. Supersymmetric extension of the bosonic particle

A supersymmetric generalization of the particle action (2.1) is the spinning particle.44–46 This
was introduced as a suitable semi-classical approximation to the dynamics of a massive spin-1/2
particle such as the electron. Its construction involves a fermionic extension Mξ of the manifold M,
which requires the introduction of a new set of Grassmann variables ξμ with μ = 1, . . . , D with
D being the dimension of the background in which the particle lives. For a particle moving in an
Euclidean space with its flat metric g = δabdya ⊗ dyb, a supersymmetric extension is

L = 1

2
δab ẏa ẏb + i

2
δabξ

a ξ̇ b. (2.17)

The corresponding action is invariant under the supersymmetry transformations

δya = −iε ξ a, δξ a = ẏaε, (2.18)

with ε being an anti-commuting (Grassmann) number. More precisely, the transformation given
above induce a variation on the Lagrangian which is proportional to a total time derivative and
therefore it does not affect the equations of motion. The Euler-Lagrange equations derived from
(2.17) are

d ẏa

dτ
= 0,

dξ a

dτ
= 0. (2.19)

Their meaning is transparent, the first one shows that the bosonic coordinates parameterize a line
and that the fermionic variables ξμ are constant in time.

The Lagrangian (2.17) and the supersymmetry transformations (2.18) are referred to Cartesian
coordinates ya. For curvilinear coordinates xμ (such as polar ones), one may write the metric in an
n-bein basis ea = ∂μyadxμ as g = δabea ⊗ eb. Then in a new coordinate system ξ a defined through
the relation ξμ = eμ

a ξ a the action may be rewritten as

L = 1

2
gμν ẋμ ẋν + i

2
gμνξ

μ Dξν

Dτ
, (2.20)

and the supersymmetry transformation becomes

δxμ = −i ε ξμ, δξμ = ε ẋμ. (2.21)

In the last equation, the fermionic time derivative

Dξμ

Dτ
= ξ̇ μ + ẋν�

μ
νλξ

λ, (2.22)

has been introduced. With this definition it is straightforward to check that the Lagrangian (2.20)
is invariant under (2.21). Furthermore, the fact that the curvature of the metric is trivial plays no
role in this checking and thus the extension is valid for any metric gμν . Therefore, (2.21) is a
supersymmetric extension of the bosonic particle Lagrangian (2.1) in any background. The change
of the action (2.20) with respect to a variation δxμ and δξ a is

δS =
∫

dτ

[
− δxμ

(
gμν

Dẋν

Dτ
+ i

2
ξλξκ Rλκμν ẋν

)
+ i�ξμgμν

Dξν

Dτ

+ d

dτ

(
δxμ pμ − i

2
δξμgμνξ

ν

)]
, (2.23)
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where the momentum

pμ = gμν ẋν − i

2
�μνλξ

νξλ, (2.24)

has been introduced, together with the variations

�ξμ = δξμ + δxν�
μ
νλξ

λ, (2.25)

and the curvature tensor

Rκ
μνλ = ∂μ�κ

νλ − ∂ν�
κ
μλ + �

ρ
λμ�κ

ρν − �
ρ
λν�

κ
ρμ. (2.26)

The equations of motion derived from (2.20) generalize (2.19) and can be casted in the following
form:

Dξμ

dτ
= 0,

Dẋμ

dτ
= − i

2
ξλξκ R μ

λκ ν ẋν . (2.27)

The last (2.27) in fact can be rewritten in terms of the “spin tensor” Sab = ξ aξ b as

Dẋμ

dτ
= − i

2
Sab R μ

ab ν ẋν, (2.28)

which is analogous to the electromagnetic force with the tensor Sab replacing the electric charge as
coupling constant. Additionally, the first (2.27) imply that

DSab

Dτ
= 0, (2.29)

i.e, the tensor Sab is covariantly constant.

C. Symmetries of the phase superspace

The next task is to characterize the symmetries of the spinning particle action (2.20). By analogy
with (2.9), one may consider a general symmetry transformation of the superphase space (x, ẋ , ξ ).
Higher order derivatives such as ξ̇ should be absent due to the equation of motion (2.27), which are
of first order in time derivatives of ξ . The generalization of (2.9) in this situation is an expansion of
the form

δxμ = K μ(x, ẋ, ξ ) = K (1)μ(x, ξ ) +
∞∑

n=1

1

n!
ẋν1 . . . . ẋνn K (n+1)μ

ν1....νn
(x, ξ ), (2.30)

�ξμ = Sμ(x, ẋ, ξ ) = S(0)μ(x, ξ ) +
∞∑

n=1

1

n!
ẋν1 . . . . ẋνn S(n)μ

ν1....νn
(x, ξ ), (2.31)

with �ξμ defined in (2.25). If the end points are not fixed, as it is usually the case, the variation
(2.23) will vanish if and only if

d

dτ

(
δxμ pμ − i

2
δξμgμνξ

ν

)
= 0. (2.32)

Note that in order to obtain this result the equations of motion (2.27) should be taken into account.
By denoting the quantity in parenthesis (2.32) as M, it follows from (2.30) and (2.31) that it has an
expansion of the form

M = M0(x, ξ ) +
∞∑

n=1

1

n!
ẋν1 . . . . ẋνn M (n)

ν1....νn
(x, ξ ),
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and is such that

K (n)
μ1....μn

= M (n)
μ1....μn

, n ≥ 1 (2.33)

S(n)
μ1....μnν

= i
∂K (n)

μ1....μn

∂ξν
, n ≥ 0. (2.34)

Additionally, for an arbitrary function M(x, ẋ, ξ ) of the superphase space, a simple chain rule
together with the equations of motions (2.27) shows that

d M

dτ
= ẋμ

(
∂ M

∂xμ
− �ν

μλ(ẋλ ∂ M

∂ ẋν
+ ξλ ∂ M

∂ξν
) − i

2
ξλξκ Rνμλκ

∂ M

∂ ẋν

)
. (2.35)

With the use of (2.33)–(2.35), the following recurrence relations are obtained for n ≥ 1:

K (n)
(μ1...μn ;μn+1) + ∂K (n)

(μ1...μn

∂ξλ
�λ

μn+1)κ ξ κ = i

2
ξλξκ Rλκν(μn+1 K (n+1)ν

μ1...μn ), n ≥ 1. (2.36)

For n = 0, one may define the quantity K(0) by the relation

S(0)
μ = i

∂K (0)

∂ξμ
, (2.37)

and the equation for S(0)
μ is equivalent to

K (0)
, μ + ∂K (0)

∂ξλ
�λ

μκ ξκ = i

2
ξλξκ Rλκνμ K (1)ν . (2.38)

Note that, different for the bosonic case, the scalar K(0) is not an irrelevant constant, as it may depend
non-trivially on (x, ξ ) by (2.38). Equations (2.34)–(2.38) characterize the local form of the symme-
tries for the superparticle action. These equations were derived, to the best of our knowledge, in
Refs. 47 and 48. The deduction given on those references relies in the Hamiltonian formalism, in
which the symmetries are interpreted in terms of quantities which commute with the Hamiltonian.
The Hamiltonian formalism is suitable for generalizing the notion of hidden symmetries when the
particle is in presence of gauge fields. This fact was exploited particularly in Refs. 47, 49–55.

D. Exotic supersymmetries

Although Eqs. (2.34)–(2.38) given above characterize the symmetries of the action (2.20), it
may be very hard to find explicit solutions for a given background. In the following some simple
cases will be considered, namely, the supersymmetries already introduced in (2.21) and the exotic
supersymmetries generated by the Killing-Yano tensors.

The simplest solution of the system (2.34)–(2.38) are symmetries which do not depend on the
fermionic variables. In this case, it is immediate to check that the resulting symmetry generators are
Killing tensors. One is the metric tensor itself gμν for which the associated conserved quantity is the
Hamiltonian

H = 1

2
gμν Pμ Pν, (2.39)

with Pμ = gμν ẋν . In the Hamiltonian formalism, the time evolution of any dynamical quantity F(x,
p, ξ ) is given in terms of the Poisson bracket with (2.39)

d F

dτ
= {F, H}. (2.40)

The fundamental Poisson brackets of the theory (2.20) are given by

{xμ, pν} = δν
μ, {ξμ, ξν} = −igμν. (2.41)
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From these brackets it is straightforward to find that

{pμ, ξν} = 1

2
gκνgκλ,μξλ, {pμ, pν} = − i

4
gκλgκρ,μgλσ,νξ

ρξσ . (2.42)

In these terms, the following Poisson bracket for the tensor Sab are found{
Sab, Scd

} = δad Sbc + δbc Sad − δac Sbd − δbd Sac, (2.43)

which justify the name “spin tensor”. The space-like components Sab represent the magnetic mo-
mentum and the time-like components are the electric momentum. Since it is expected that for free
particles such as electrons, the electric momentum in the rest frame vanish identically, the time-like
components should vanish identically. This condition may be imposed by requiring by implementing
the subsidiary condition

ẋμξμ = 0, (2.44)

after solving the equations of motion.47, 48

Another example of symmetries described by the system (2.34)–(2.38) are the supersymmetry
transformations (2.21), and it will be instructive to check this out explicitly. By comparison between
(2.21) and (2.30)–(2.31), it is found that the non-zero supersymmetry generators are

K (1)
μ = −i gμνξ

ν, S(1)
μν = gμν, (2.45)

and the relation (2.34) is satisfied for all of them. Moreover, one has that

K (1)
μ; α = gμν, α ξ ν − gλν �λ

μαξν = gμλ�
λ
ναξν,

where in the last the equality has been used that gμν; α = 0. With the use of the last formula it is
deduced that (2.36) is satisfied. In addition, the left hand side of (2.38) is zero and by using the first
(2.45) the right hand side vanish by the first Bianchi identity Rμ[ναβ] = 0. Thus, the supersymmetry
transformations (2.45) are solutions of Eqs. (2.34)–(2.38), which give an interesting consistency
check. The conserved quantity related to the supersymmetry (2.21) is obtained from (2.32), the
resulting Noether charge

Q = pμξμ, (2.46)

is known as the supercharge.
One may consider, in addition to the above examples, symmetries which mimics the

supersymmetry property of mixing bosonic and fermionic coordinates. A natural ansatz for these
symmetries is

δxμ = −iε f μ
a (x) ξ a . (2.47)

When the 1-forms f μ
a are an n-bein eμ

a basis for the metric, then the previous formula will represent
a true supersymmetry (2.21). Otherwise, it will be a new type of symmetry, whose composition does
not necessarily close to the Hamiltonian. For this reason, these are known as exotic supersymmetries.
By comparing (2.30) and (2.31) with (2.47) and taking into account (2.34) the following generator
are obtained:

K (1)
μ = −i gμν f ν

a (x) ea
α ξα, S(1)

μα = gμν f ν
a (x) ea

α. (2.48)

In these terms, Eq. (2.36) is equivalent to

Dμ f a
ν + Dν f a

μ = 0. (2.49)

On the other hand, these cannot be the whole generators. If this were the case then the left hand side
of Eq. (2.38) would be zero, but the right hand side is not unless f a

ν = ea
ν . Thus, a non-zero K(0)

generator is present, and should be of the form

K (0) = i

3!
cabc ξ aξ bξ c, (2.50)
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the cubic dependence in ξ a follows by noticing that the right hand of (2.38) is multiplied by a
quadratic expression in the ξ a variables and the generator K (1)

μ in (2.48) is linear in the Grassmann
variables. With this new generator Eq. (2.38) turns to be equivalent to

Dμcabc = − Rμνab f ν
c − Rμνbc f ν

a − Rμνca f ν
b . (2.51)

In these terms, the new symmetry transformations are

δ f xμ = −i ε f μ
a (x) ξ a, (2.52)

δ f ξ
μ = ε f μ

a (x) ea
ν ẋν + 1

2
ε cμνα ξνξα. (2.53)

A further simplification is obtained with the requirement that the transformations δf are superinvari-
ant. This requirement means that the Poisson bracket between the supercharge and the generators of
the exotic supersymmetry is zero. This condition imply that

f a
μ eνa + f a

ν eμa = 0. (2.54)

The last formula implies that the tensor fμν = f a
μ eνa is completely antisymmetric, thus a 2-form.

Equation (2.49) is in this case equivalent to the following one:

fμν;λ + fλν;μ = 0. (2.55)

Tensors satisfying (2.55) are known as Killing-Yano tensors. In brief, it may be stated that Killing-
Yano tensors are the generators for superinvariant exotic supersymmetries. By taking into account
(2.55) and the complete antisymmetry of fμν , it follows that the gradient

fμν;λ = 1

3
( fμν;λ + fνλ;μ + fλμ;ν) = Hμνλ

is completely antisymmetric and thus it defines a 3-form Hμνλ. Then, the second covariant derivative
of the last equation together with the Ricci identity and the antisymmetry of fμν give the following
identity:

Hμνλ;κ = 1

2

(
Rσ

μνκ fσλ + Rσ
νλκ fσμ + Rσ

λμκ fσν

)
. (2.56)

The comparison between (2.56) and (2.51) shows the following identification:

cabc = −2Habc = −2eμ
a eν

beλ
c Hμνλ. (2.57)

In conclusion, the most general supersymmetry such as symmetries of the form (2.47) are obtained
by the generators of the forms (2.52) and (2.53) and if these symmetries are superinvariants then they
are completely determined in terms of Killing-Yano tensors of second rank, which are antisymmetric
tensors satisfying (2.55). The exotic supersymmetry is defined by the formulas (2.54) and (2.57).47, 48

E. Squares of exotic symmetries

In the Hamiltonian formalism, where the fundamental brackets are (2.41) and (2.42), the action
of symmetry transformation over a function of the superphase space F(x, p, ξ ) is given as

δF = i{F, Qs}ε, (2.58)

Qs being the conserved constant of motion. In particular, it can be checked that (2.30) and (2.31)
are direct consequences of (2.58) together with the definition of the supercharge (2.46) and the
fundamental Poisson bracket (2.41) and (2.42), which gives a consistency check. By using (2.42), it
is seen that the supersymmetry generator Q satisfy

{Q, Q} = −2 i H, (2.59)

which is a well-known feature of the supersymmetry transformations. When r symmetries trans-
formations δi with i = 1, . . . , r are present, then there exist r conserved supercharges Qi defined
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by (2.32). Let us denote by Zij the following Poisson bracket:

{Qi , Q j } = −2 i Zi j . (2.60)

The time derivative of this quantity is

d Zi j

dτ
= {H, Zi j } = −2 i {H, {Qi , Q j }} = 2 i {Q j , {H, Qi }} + 2 i {Qi , {Q j , H}} = 0,

(2.61)
where in the last step the Jacobi identity together has been taken into account, together with the fact
that {Qi, H} = 0. The quantity Zij is the “charge” corresponding to the transformation δij = {δi,
δj} and the relation (2.61) imply that δij is a symmetry transformation as well. In particular, if the
symmetries δi are exotic supersymmetries of the form (2.52) and (2.53), then

δi j xα = K αμ

i j ẋμ + i

2
I α
i jab ξ aξ b, (2.62)

δi j ξ a = i I aμ

i jb ẋμξ b − Ga
i jbcd ξ bξ cξ d , (2.63)

the new quantities being defined as

K μν

i j = K νμ

i j = 1

2

(
f μ

ia f νa
j + f μ

j a f νa
i

)
,

I μ

i jab =
(

f ν
i b Dν f μ

j a + f ν
j b Dν f μ

i a + 1

2
f μc
i c j abc + 1

2
f μc

j ci abc

)
, (2.64)

Gi jabcd =
(

Rμνab f μ

ic f ν
jd + 1

2
ce

i abc jcde

)
.

The Killing-Yano equations (2.34)–(2.38) for f ν
jd and cabc imply the following relations for the new

quantities:47, 48

K(μν;λ) = 0,

D(μ Iν)ab = Rab(μKν), (2.65)

DμGabcd = Rλμ[ab I λ
cd].

The first (2.65) shows that the entries of the matrix Kijμν;λ are all Killing tensors. This result is well
known, the “square” of two Killing-Yano tensors gives a Killing tensor, a result which was obtained
in the context of general relativity in Ref. 8. Furthermore, it can be shown by taking into account
(2.55) that this Killing tensor satisfies the integrability condition (2.16) and therefore give rise to a
symmetry which is free of anomalies, a result that was anticipated by Carter in Refs. 9 and 10.

III. CONFORMAL GENERALIZATIONS OF KILLING AND KILLING-YANO TENSORS

The relations described above between Killing and Killing-Yano tensors can be generalized to
tensors of higher order. Additionally, conformal generalizations of these tensors may be constructed
as well.66 For example, the conformal generalization of a Killing vector is a vector field K which
satisfy

L K gμν = λgμν,

with λ being a constant and LK the standard Lie derivative along K. These are vectors with a flow
preserving a given conformal class of metrics. When λ goes to zero, the usual definition of a Killing
vector is obtained. Similarly, a conformal Killing tensor is

∇(ν Kμ1...μn ) = gν(μ1
eK μ2...μn ), (3.1)

with eK μ2..μn is the tensor defined by taking the trace on both sides. The limit λ → 0 reduce to the
usual definition of a Killing tensor.
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Killing-Yano tensors also admit a generalization to orders higher than two, and conformal
generalizations.3, 4 To see this one may note that Eq. (2.55) defining Killing-Yano tensors may be
rewritten as

∇X f = 1

p + 1
iX d f, (3.2)

with p = 2 and X an arbitrary vector field. For an arbitrary p-form, we will say that is Killing-Yano if
(3.2) is satisfied. The conformal generalization are the tensors f defined by the following equation:3, 4

∇X f = 1

p + 1
iX d f − 1

n − p + 1
X � ∧ d∗ f, (3.3)

which are known as conformal Killing-Yano tensor. Here, X� is the dual 1-form to the vector field X
and d* is the adjoint of d. This adjoint operation can be defined in terms of the Hodge star ∗, whose
square is ± 1 depending on the values of p and n and the signature of the metric. More precisely,

∗ ∗ X = (−1)p(n−p)εX ε = det g

| det g| .

In these terms, the adjoint of d is given by d* f = ( − 1) p ∗− 1d ∗ f with ∗− 1 = ( − 1) p(n − p)ε∗. Note
that if d*f = 0, the CKY tensor reduces to a usual KY tensor. In terms of two CKY tensors of the
same order one may construct a symmetric 2-tensor

Kμν = ( f 1)μμ1..μn ( f 2)μ1..μn
ν + ( f 2)μμ1..μn ( f 1)μ1..μn

ν , (3.4)

which, by virtue of (3.2), is a conformal Killing tensor. This relation generalize the first (2.65) for
the conformal case. In particular, if the f i are Killing-Yano, then (3.4) will be Killing and we will
recover results mentioned above.

A particular and important example realizing (3.3) are principal conformal Killing-Yano tensors
for p = 2, which are relevant in black hole physics. These are non-degenerate and closed p-forms,
i.e, df = 0, and are solutions of the following equation:

∇X f = X � ∧ ξ �, ξν = 1

n − 1
∇μ f μ

ν . (3.5)

Here, the vector ξμ satisfies the following equation:

ξ(μ;ν) = − 1

n − 2
Rλ(μ fν)

λ,

with Rλμ the Ricci tensor of the background. It follows that for Ricci-flat or Einstein spaces this
vector will be Killing. These tensors were considered in Ref. 20 and it was proved in that reference
that any space admitting a conformal and principal Killing-Yano tensor of order two is of type
D in the generalized Petrov classification of Ref. 19. Furthermore, when the Einstein equations
are imposed, these metrics become the Kerr-Taub-Ads family.22 Higher dimensional Killing-Yano
tensors were considered in the context of black holes physics in Ref. 67.

A. Quantum symmetries from Killing-Yano tensors

In view of the results discussed in Secs. II A–II E, Killing-Yano tensors seem to be more
fundamental than Killing tensors as they generate true symmetries for the movement of the free
particle in a given curved background. In other words, they generate operators which commute with
the wave operator on the curved background. An additional property, which makes them specially
interesting, is that they also generate operators which commute with the Dirac operator for the given
background, thus they generate quantum symmetries for spin 1/2 particles moving in the space
time40–43 (see also Ref. 74).

Let us assume that it is possible to define a Dirac spinor structure in the curved background.
These spinors carry an irreducible representation of the Clifford algebra. The elements of this algebra
are identified with forms and the following convention is adopted:

eaeb + ebea = gab.
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With this in hand, the Dirac operator on a curved background is defined as

D = ea∇Xa , (3.6)

with ea a tetrad basis for the metric gab of the background. In these terms one may construct the
following operators acting on spinors:

D f = L f − (−1)p f D, (3.7)

with

L f = ea f ∇Xa + p

p + 1
d f − n − p

n − p + 1
d∗ f

being an operator constructed in terms of a p-form whose components are fμ1...μp . The graded
commutator

{D, D f } = DD f + (−1)p D f D,

calculated between the operators (3.7) and (3.6) is given by

{D, D f } = RD, R = 2(−1)p

n − p + 1
d∗ f D. (3.8)

For a Killing-Yano tensor, one has that d*f = 0 and thus R = 0. This means that there exist operator
for which the graded commutator with the Dirac operator is zero for every Killing-Yano tensor the
background admits. These properties were extensively studied for instance in Ref. 41.

IV. KILLING-YANO TENSORS IN STRING AND SUPERSTRING BACKGROUNDS

As Killing and Killing-Yano tensors are generators for hidden symmetries for the particle and
superparticle one may ask if there exist the analogous structures for the movement of a string or a
superstring in a given background. The present section deals with this problem.

A. Hidden symmetries for the bosonic string

The movement of the bosonic string is described in terms of the Polyakov action. Consider
a D-dimensional space time M with metric gμν a two-dimensional worldsheet � parameterized
by coordinates (σ 1, σ 2), and suppose that there is an embedding φ from φ: � → M such that
xμ = xμ(σ i). The Polyakov action is then expressed as

Sp = T
∫

d2�
√

hhabgμν∂a xμ∂bxν, (4.1)

where hab is a metric in the two-dimensional worldsheet �. By use of the equation of motion of hab

and replacing the result into (4.1), the Nambu-Goto string is obtained. By denoting σ 1 = τ , σ 2 = σ ,
ẋμ = ∂τ xμ, and x′μ = ∂σ xμ the Nambu-Goto action reads

SN G = −T
∫

d2�

√
(gμν ẋμx ′ν)2 − (gμν ẋμ ẋν)(gμνx ′μx ′ν). (4.2)

The Polyakov action (4.1) is invariant under diffeomorphisms and Weyl transformations
hab → �2hab. The content of the theory are the bosonic coordinates xμ and the three-components
hab of the Riemann surface metric, which depends functionally on the two coordinates (σ 1, σ 2)
parameterizing the surface.

In order to find the general symmetries for the Polyakov action, one should consider a variation
δσ and δτ and field variations δhab and δxμ of the bosonic fields defined at the same point. The total
variation of the bosonic fields is

�hab = δhab + ∂i h
abδσ i , �xμ = δxμ + ∂i x

μδσ i . (4.3)
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The variation of the action (4.1) with respect to (4.3) inside a region R is given by

δS =
∫

R
d2�

{[
δL

δxμ
− ∂a

(
δL

δ(∂a xμ)

)]
δxμ + δL

δhab
δhab

}

+
∫

R
d2� ∂a

(
δL

δ(∂a xμ)
δxμ + Lδσ a

)
. (4.4)

Explicitly this variation is

δS =
∫

R
d2�

[
2
√

hhabgνκ,μ∂a xν∂bxκ − ∂a

(√
hhabgμν∂bxν

)]
δxμ

+
∫

R
d2�

√
h(gνκ∂a xν∂bxκ − 1

2
habhcd gνκ∂cxν∂d xκ ) δhab

+
∫

R
d2� ∂a

(√
hhabgνκ∂bxκ�xν

)
. (4.5)

The Euler Lagrange equations are obtained by considering variations that vanish on the boundary
∂R of the region R. For Riemann surfaces, one may bring hab to a diagonal metric ηab by a conformal
transformation. The equations of motion then are

ηab∂a∂bxν + ηab�ν
κμ∂a xκ∂bxμ = 0, (4.6)

which generalize the geodesic equation for a two-dimensional motion. Alternatively, the last system
of equations may be expressed as

η11 Dẋμ

Dτ
+ η22 Dx ′μ

Dσ
= 0, (4.7)

and the conformal constraints reduce to

gνκ (ẋνx ′κ + x ′ν ẋκ ) = 0,

η11gνκ ẋν ẋκ + η22gνκ x ′νx ′κ = 0. (4.8)

If instead one consider coordinate dependent variations δxμ = Kμ which do not vanish on the
boundary and which leave the action invariant, then the vanishing of the variation (4.5) together with
the equations of motion (4.7) imply that

η11∂τ (ẋμKμ) + η22∂σ (x ′μKμ) = 0.

By use of the equation of motions (4.7), the last formula reduce to

η11 ẋν ẋμ∇(ν Kμ) + η22x ′νx ′μ∇(ν Kμ) = 0. (4.9)

By comparing this with the second (4.8), it follows directly the following solution of this equation

∇(ν Kμ) = λgμν, (4.10)

λ being an arbitrary constant. For λ = 0, the vector Kμ is Killing, otherwise it is a conformal Killing
vector. Thus, conformal Killing vectors generate constants of motion for the Nambu-Goto string.

In order to find generalizations of Killing tensors for the Polyakov string, one may postulate
a symmetry transformation which depends also on the worldsheet derivatives of the background
coordinates, that is, δxμ = Kμ(x, · x, x′). Then, by performing a Taylor-like expansion of the form

δxμ = K μ + K μ
να ẋνx ′α + · · · , (4.11)

the vanishing of the action (4.5) gives the following system to solve:

η11∂τ (ẋμ ẋνx ′α Kμνα) + η22∂σ (x ′μ ẋνx ′α Kμνα) = 0.
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We attempted to solve this system and unfortunately, we find it very difficult to deal with. Recall
that the main task is to find a geometrical object which give rise to a conserved quantity for any
solution of the equation of motions. But we have found that, due to the mixing of derivatives in τ and
σ , additional conditions on the equations of motion should be imposed in order to find conserved
charges. This difficulty suggest, at least to us, that in order to find a hidden symmetry for a string
movement, one should partially specify the way that the string evolves. For instance, one may be
studying a spinning or a rotating string, or other similar configurations such as a wound string, and
after specifying this behavior one may search for hidden symmetries.

To give an example about specifying the string movement let us consider again the Nambu-Goto
string (4.2), which can be rewritten in equivalent fashion as

S =
∫

σ

d2�
√− det(gμν∂a xμ∂bxν). (4.12)

When the background metric gμν admits a globally defined Killing vector field V, then one may
rewrite the induced metric ĝμν on M/G, with G being the orbits of the Killing vector, as follows:

ĝμν = gμν − ξμξν

g00
. (4.13)

If additionally, it is assumed that the string world surface is foliated by the orbits G of the Killing
vector,61 then the Nambu-Goto action reduce to

S =
∫ σ1

σ0

(
1

N
egμν(x)x ′μx ′ν + N

)
dσ, (4.14)

where the lapse function N has been introduced and which, under a reparameterization σ ′ = σ ′(σ ),
transforms as

N → N ′ = dσ

dσ ′ N . (4.15)

The behavior (4.15) insures the action (4.14) to be reparameterization invariant. Here, we have
denoted egμν = g00ĝμν . From here it follows that when the string world surface is foliated by the
orbits of a Killing vector the action reduce to a one-dimensional effective one with an induced metric
egμν = g00ĝμν .61 This is a particle limit, and the Killing and Killing-Yano induced metric admits will
generate hidden symmetries for the motion of such particle, or massless string.

B. Hidden symmetries for the spinning string

Considerations analogous to the above hold for the movement of the spinning string, whose
action in the conformal gauge is

S =
∫

dσ 2

(
1

2
ηabgμν∂a xμ∂bxν − i

2
ψ

A
ρa DψA

Dσa

)
, (4.16)

with ρa being the usual Dirac matrices in two dimensions. The action given above is supplemented
with the vanishing on the worldsheet of the energy momentum tensor Tab

Tab = gμν∂a xμ∂bxν + i

2
gμνψ

μρ(a
Dψν

Dσ b)
− ηab

2

(
gμν∂cxμ∂cxν + i

2
ψ Aρc DψA

Dσ c

)
= 0, (4.17)

and the supercharge Qa

Qa = 1

2
ρbρaψμ Da xμ = 0. (4.18)

In presence of a Killing vector Vμ, the induced metric on M/G is (4.13). In order to reduce the action
to a particle, one may assume that the spinning string movement is foliated by the orbits of the
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Killing vector, as done above. Also the further requirement

Vμ∂σ xμ = 0, £V ψμ = 0, (4.19)

ψμVμ = g00ϒ,

ϒ being a constant spinor, implies the decomposition ψμ = ξμ + Vμϒ . Under these assumptions
the action (4.16) reduce to S = I�τ with

I =
∫

dσ

(
1

2
egμν ẋμ ẋν + i

2
egμνξ

μ Dξν

Dσ

)
,

with the dots denoting derivatives with respect to σ .62 The last expression is equivalent to (2.20)
with the induced metricegμν . We have then reproduced the particle limit of the spinning string found
in Ref. 62 and the Killing-Yano tensors, the induced metric admits will generate hidden symmetries
for the motion of this configuration of the spinning string.

V. KILLING-YANO TENSORS AND G-STRUCTURES

Our next task is to investigate the presence of Killing-Yano tensors in G structures. These
structures play an important role for constructing supergravity solutions and appear naturally when
studying special holonomy manifolds. As is well known, the holonomy group of a metric g defined
over an oriented n-dimensional manifold M is SO(n) or a subgroup G ∈ SO(n). The possible holonomy
subgroups were classified by Berger in Ref. 76. The groups we will be concerned with are Spin(7),
G2, Sp(n), Sp(n) × Sp(1), U(n), and SU(n) and it turns out that metrics with these holonomy groups
are always Einstein or Ricci-flat. For the Ricci-flat case, the reduction of the holonomy to G is
equivalent to the presence of a set of p-forms, which will be denoted from now as σ G

p , which are
constructed in terms an n-bein basis ea for g and each of which is invariant under the action of G and
also covariantly constant with respect to the Levi-Civita connection. The situation is a bit different
for the Einstein case, as we will see below.

To give an example, consider a 7-metric g7 = δabeb ⊗ eb with ea a 7-bein basis and a, b = 1,
. . . , 7. Then the following three form

φ = cabcea ∧ eb ∧ ec, (5.1)

constructed in terms of the multiplication constants cabc of the imaginary octonions, is invariant
under a G2 rotation of the basis ea. This follows from the fact that G2 ∈ SO(7) is the automorphism
group of the imaginary octonions. The set composed by the metric g7 and the 3-form (5.1) is called
a G2 structure. In general, s G structure is composed by a Riemannian metric g together with a
complete set of G invariant p-forms σ G

p . For G = G2, the additional condition ∇Xφ = 0 for an
arbitrary vector field X implies that the parallel transport of the ea around a closed loop will induce
a rotation e′a = Ra

b eb which leaves φ invariant. Thus, in this case the holonomy will be G2 or a
subgroup of G2. The resulting equations are equivalent to the differential system dφ = d*φ = 0.77, 78

Similar consideration follows for Ricci-flat G structures. The condition ∇σ G
p = 0 will imply that

the holonomy is reduced to G or to a smaller subgroup.
An important tool for studying G holonomy manifolds is the torsion formalism, which is a

method for studying obstructions for a metric g to be of G holonomy and was reviewed in Ref. 82
(see also Ref. 102). The roots of this formalism dates, to the best of our knowledge, from the work75

about hypercomplex structures, and it can briefly be described as follows. The Berger holonomy
groups G are embedded in SO(n) and this imply algebra so(n) can be represented schematically as
so(n) = g ⊕ g⊥. For Ricci-flat holonomy groups, this induce the following decomposition of the
Levi-Civita connection:

∇ = ∇g + ∇g⊥ = ∇g + 1

2
T, (5.2)

the component ∇g satisfying ∇Xσ
g
p = 0. The equality (5.2) can be taken as the definition of the

torsion tensor T i
jk , which corresponds to the component ∇g⊥

. When this tensor vanish identically
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the holonomy is G or a smaller subgroup, as the connection ∇g will coincide with the Levi-Civita
connection. Heuristically, the torsion measures the failure of the holonomy for being G.

The torsion Tijk will play a significant role in the following discussion and it may be instructive
to describe it with an explicit example. Let us recall that in four dimensions the isomorphism SO(4)
� SU(2)L × SU(2)r induces the decomposition 6 → 3 + 3 of a Maxwell tensor Fab into self-dual
and anti-self dual components. Consider now the analogous for the group G = G2 discussed above.
An antisymmetric tensor Aab transform as the adjoint of group SO(7), which has 21 generators,
and the embedding of G2 into SO(7) induce the decomposition 21 → 14 + 7 of Aab, with 14
corresponding to the adjoint and 7 to the fundamental representation of G2. This implies that Aab

can be decomposed as

Aab = A+
ab + A−

ab, (5.3)

corresponding to 14 and 7, respectively. These components are explicitly

A+
ab = 2

3
(Aab + 1

4
cabcd Acd ), (5.4)

A−
ab = 1

3
(Aab − 1

2
cabcd Acd ). (5.5)

In particular, the spin connection ωab of a given seven-dimensional metric can be expressed as ωab

= (ωab)+ + (ωab)− in the same way as (5.3). This induce a decomposition of the form (5.2) for
the Levi-Civita connection, the torsion part being related to (ωab)− . When this component is zero,
then the torsion will also vanish and the holonomy will be in G2.

Although the torsion may be interpreted as an obstruction of the holonomy to be reduced, the
following detail should be remarked. Even in the case when the forms σ G

p corresponding to a G
structure are not covariantly constant, it may be incorrect to conclude that the holonomy is not
reduced. As there is a local SO(n) freedom for choosing the frame ea, it may be the case that by a
suitable rotation of the ea one may construct a new G structure corresponding to the same metric
and which, in addition, is covariantly constant. Thus, the holonomy will be G although the initial
structure was not preserved by the Levi-Civita connection. An useful criteria for deciding whether
or not a given metric is of G holonomy is the fact that metrics with reduced holonomy are always
Ricci-flat or Einstein. This criteria is independent on the choice of the G structure.

In addition to the G2 case discussed above, other well-known example of Ricci-flat manifolds
of reduced holonomy are hyper-Kahler ones, which encode several non-compact gravitational in-
stantons and also K3 surfaces. By definition a hyper-Kahler manifold is 4n dimensional and admits
a metric g4n whose holonomy group is in Sp(n). For these manifolds, there always exist a triplet Ji

(i = 1,2,3) of (1, 1) tensors with quaternion multiplication rule J iJ j = δijI + εijkJk such that the
metric is Hermitian with respect to any of them. The Lie algebra sp(n) of Sp(n) is generated by (1, 1)
tensors A of so(4n) which commute with the J i, i.e, satisfying [A, Ji] = 0. In other words, the action
of Sp(n) leave the tensors Ji invariant. The generalization of the discussion given in the previous
paragraph implies that when

∇X J i = 0, (5.6)

the holonomy will be included in Sp(n). The last formula together with ∇Xg = 0 imply that the Sp(n)
invariant 2-forms ωi(X, Y) = g(X, J iY) are also covariantly constant with respect to the Levi-Civita
connection. These are known as Kahler forms, and this condition implies that the metric is Kahler
with respect to any of the ωi. It can be shown that this system is equivalent to dωi = 0, and the ωi

together with the metric g4n compose the Sp(n) structure.
For the Einstein case, the classical examples are quaternion Kahler manifolds of dimension

higher than four, which are 4n > 4 dimensional manifolds endowed with a metric g4n whose
holonomy is in Sp(n) × Sp(1) ∈ SO(4n).79, 80 The set Ji together with the set A satisfying that [A, Ji]
= 0 are the generators of the Lie algebra sp(n) ⊕ sp(1), and the action of Sp(n) leave the J i invariant
but the action of Sp(1) mix them due to the non-trivial commutator [J i, J j] = εijkJk. As a result,
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if the condition

∇X J i = εi
jk J j

eωk
−, ∇Xωi = εi

jkω
j
eωk

−, (5.7)

then the manifold will have holonomy in Sp(n) × Sp(1). Here,eωk
− is the Sp(1) part of the connection.

In different way than for hyper-Kahler manifolds, in the quaternionic case the triplet of 2-forms ωi

are not covariantly constant. Still their specific behavior (5.7) imply a reduction of the holonomy
from SO(4n) to Sp(n) × Sp(1). Alternatively, it may be shown that the condition for being quaternion
Kahler imply that

dωi = εi
jkω

j ∧eωk
−, d� = 0, (5.8)

where the 4-form � = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3 has been introduced. The Sp(n) × Sp(1)
structure is composed by the metric, the three 2-forms ωi and the 4-form �.

A. A check of the Papadopoulos list

The present subsection deals with the problem of classifying which G structures do admit some
of their G invariant p-forms σ G

p as Killing-Yano tensors. This was investigated already in Ref. 73
with G being the Berger groups. The purpose of the present section is to reproduce by use of the
torsion languages developed in Refs. 82–92. The Killing-Yano condition (3.2) is translated for σ G

p
as

∇Xσ g
p = 1

p + 1
iX dσ g

p . (5.9)

All the forms σ
g
p composing a Ricci-flat structure are Killing-Yano, as both the left and the right

hand side vanish identically. Our task is to find non-trivial examples, when possible. The left hand
side of the last equation involves the torsion T i

jk introduced (5.2). The right hand is also determined
in terms of T k

i j by the well-known formula

d
 = 1

(p − 1)!
∇[μ1
μ2...μp]dx1 ∧ . . . ∧ dx p, (5.10)

together with (5.2). Therefore, the Killing-Yano equation is essentially reduced to a constraint for
the torsion. The interesting point is that several solutions for these constraints involve structures
which are relevant for constructing supergravity solutions with conformal field theory duals. The
task to find hidden symmetries in these structures is therefore of theoretical interest.

1. Kahler and Calabi-Yau structures

Consider first U(n) structures, which are defined in d = 2n dimensions.86 These are composed
by a 2n-dimensional metric g defined over a manifold M2n and an almost complex structure J. The
last is an automorphism of the cotangent space satisfying the complex imaginary unit multiplication
rule J2 = − I2n × 2n, and the metric g is assumed to be Hermitian with respect to it. The Hermiticity
condition means that the tensor ω(X, Y) = g(X, J, Y) is a 2-form, commonly known as almost Kahler
form. The Nijenhuis tensor corresponding to J may be expressed as

N ρ
μν = J λ

μ(∂λ J ρ
ν − ∂ν J ρ

λ ) − J λ
ν (∂λ J ρ

μ − ∂μ J ρ
λ ), (5.11)

and the vanishing of this tensor implies that M2n is complex with respect to J. If in addition there
exists a connection ∇u(n) with torsion for which ∇u(n)g = ∇u(n)J = 0, then the Nijenhuis tensor may
be expressed entirely in terms of J and the torsion. This condition is explicitly

∇u(n)
μ J ρ

ν = ∂μ J ρ
ν + γ

ρ
λμ J λ

ν − γ λ
νμ J ρ

λ = 0, (5.12)

with γ ρ
μν defined in terms of the Christoffel symbols �ρ

μν and the torsion T ρ
μν as follows:

γ ρ
μν = �ρ

μν − 1

2
T ρ

μν. (5.13)
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From (5.12) and (5.13), it follows that (5.11) can be expressed as

N ρ
μν = T ρ

μν − J λ
μ J σ

ν T ρ
λσ + (J λ

μT σ
λν − J λ

ν T σ
λμ)J ρ

σ , (5.14)

which express the Nijenhuis tensor entirely in terms of the torsion and the almost complex structure.
The decomposition so(2n) = u(n) ⊕ u(n)⊥ induce a decomposition of the space 
2 of 2-forms on
M2n as

1

2
2n(2n − 1) −→ n2 ⊕ 1

2
n(n − 1) ⊕ 1

2
n(n − 1). (5.15)

This can be expressed as 
2 = 
(1, 1) ⊕ 
(2, 0) + (0, 2). Denote as ϒ ijk the following covariant
derivatives:

∇iω jk = ϒi, jk . (5.16)

The torsion belongs to T*M ⊗ u(n)⊥ and by representing the cotangent space as T*M = T*(1, 0)

M ⊕ T*(0, 1)M and taking into account (5.15), it follows that the non-zero covariant derivatives are

ϒα,βγ , ϒα,βγ , ϒα,βγ , ϒα,βγ . (5.17)

These components can be divided into four irreducible representations Wi with i = 1, . . . , 4 of
T*M ⊗ u(n)⊥ on u(n) given by Ref. 129,

(W1)αβγ = ϒ[α,βγ ], (W2)αβγ = ϒα,βγ − ϒ[α,βγ ]

(W3)αβγ = ϒα,βγ − 2

n − 1
ϒμ,

μ

[γ gβ]α, (W4)γ = ϒμ,μγ . (5.18)

The component W3 is traceless.
For SU(n) structures one has, in addition to the Kahler form ω, an invariant (n, 0) form � whose

square is proportional to the volume form of g, namely,

(−1)
n(n−1)

2

(
i

2

)n

� ∧ � = 1

n!
ωn = dvol(g). (5.19)

The additional covariant derivative

∇α�βγ δρ = (W5)αβγ δρ, (5.20)

determines a new class W5.
The SU(3) case is of particular importance in the context of compactifications of II supergravity

down to four dimensions. These structures are classified as follows. As the components of the
Nijenhuis tensor are expressed entirely in terms W1 and W2, when these torsion components are
zero the manifold is complex. Particular subcases are structures for which the unique non-vanishing
classes are W3 and W5 which are known as balanced. When W3 is the unique non-vanishing torsion
the structure is known as special Hermitian, while when W5 is the only non-vanishing component
the structure is Kahler. Other important examples are those for which ∂∂ J = 0 and dJ �= 0 which
are known as strong Kahler structures. If instead W1 or W2 are not zero, then the manifold is non-
complex. When W1 is the unique non-zero component, the manifold is known as nearly Kahler.
When W2 is the unique non-zero component, then the manifold is known as almost Kahler. Finally,
when the torsion belongs to W −

1 ⊕ W −
2 ⊕ W3 the manifold is known as half flat.

The torsion classes Wi not only determine the covariant derivatives of ω(X, Y) and of �, but
also their differentials dω and d�.91 This follows from the elementary formula (5.10) and the final
result for SU(n) structures may be schematically stated as

W1 ←→ dω(3,0) + dω(0,3),

W3 + W4 ←→ dω(2,1) + dω(1,2),

W1 + W2 ←→ d�(n−1,2) + d�(2,n−1), (5.21)

W4 + W5 ←→ d�(n,1) + d�(1,n).
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For example, the first (5.21) is explicitly

dω(3,0) + dω(0,3) = 3W1. (5.22)

By comparing this formula with the first (5.18), it follows easily that when W2 = W3 = W4 = W5

= 0 one has that

∇Xω = 1

3
iX dω, (5.23)

and this implies that for these types of manifolds the almost Kahler form ω is a Killing-Yano tensor.
As it was discussed above, structures with these types of torsion are nearly Kahler.83 These manifolds
are characterized by the condition ∇XJ(X) = 0 and some applications in physics can be found in
Refs. 93–95. Additionally, the last (5.21) together with the definition (5.20) shows that when
W4 = W5 = 0 the components �(n, 1) and �(1, n) are covariantly constant, thus Killing-Yano. These
structures are balanced and Hermitian.

2. Quaternion Kahler and hyper-Kahler structures

The next structures we would like to consider are Sp(n) × Sp(1) ones, which are known as
quaternion Kahler. In this case, the p-forms defining the structure are the triplet of almost Kahler
2-forms ωi together with the 4-form

� = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3. (5.24)

For these structures, there exist an useful formula derived in the Proposition 4.3 of Ref. 87 which
relate the covariant derivatives of the almost Kahler forms ωi with their differentials. The explicit
form of this formula is

∇Xω1(Y, Z ) = dω1(X, Y, Z ) − dω1(X, J 1Y, J 1 Z ) + dω2(J 2 X, Y, Z ) + dω2(J 2 X, J 1Y, Z )

+ dω2(J 2 X, Y, J 1 Z ) + dω3(J 2 X, Y, Z ) − dω3(J 2 X, J 1Y, J 1 Z ), (5.25)

and the analogous formula holds for cyclic permuted indices. Clearly, if ω1 is required to be Killing-
Yano, then (5.9) implies that dω2 = dω3 = 0. Furthermore, 3dω1(X, J1Y, J1Z) = − 2dω(X, Y, Z).
But if two of the almost Kahler form are required to be simultaneously Killing-Yano, then the same
analysis shows that dω1 = dω2 = dω3. Therefore, if these forms are Killing-Yano then the metric is
hyper-Kahler and thus the holonomy is Sp(n) or even a smaller subgroup. In addition, the covariant
derivatives of the 4-form (5.24) can be calculated by direct use of (5.25), the result is given in the
formula (5.1) of Ref. 88

∇� = 2εi jkα[k j] ∧ ωi . (5.26)

In formula (5.26), the tensor αkj has been introduced, and is explicitly

αk j (X, Y, Z ) = αk(X, J j Y, Z ), (5.27)

with

αi = −λi ⊗ g + εi jk

4

(
∇ωk(·, J j ·, ·) − ∇ωk(·, ·, J j ·)

)
.

In the last formula, the 1-forms λi are expressed as

λ1(X ) = 1

2n
< ∇Xω2, ω3 >,

up to cyclic permutations. We see from (5.26) that � is a Killing-Yano tensor when � is covariantly
constant. Thus, the metric is quaternion Kahler for this to be the case.

3. Spin(7) structures

Other structures with particular physical interest are the Spin(7) structures.90 These are defined
on eight-dimensional manifolds with metric g8 = δabea ⊗ eb. The holonomy will be in Spin(7) if the
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following octonionic form

� = e8 ∧ φ + ∗7φ (5.28)

is closed. Here, φ = cabcea ∧ eb ∧ ec and cabc are the multiplication constants of the imaginary
octonions. This form satisfy the self-duality condition ∗� = �. In addition, we have that

d� = θ ∧ � + W1, (5.29)

that is the differential of � has a part which is proportional to � and a part W1 which is not. The
form θ is known as the Lee form. The covariant derivative of the fundamental 4-form is

∇m�i jkl = Tmipg pq�q jkl + Tmjpg pq�iqkl + Tmkpg pq� j iql + Tmlpg pq� jklq , (5.30)

with T given by

T = − ∗ d� − 7

6
∗ (θ ∧ �). (5.31)

By checking explicitly the condition (5.9) in this situation, we were able to find a solution only when
d� = ∇� = 0. This corresponds to manifolds with holonomy in Spin(7).

4. G2 structures

Let us now analyze the presence of Killing-Yano tensors on G2 structures (φ, ∗φ).84, 89 In this
case, one may find non-trivial examples, as it will be seen below. The torsion classes τ i for the
differential are given by91

dφ = τ0 ∗ φ + 3τ1 ∧ φ + ∗τ2, (5.32)

d ∗ φ = 4τ1 ∧ ∗φ + ∗τ3.

When the torsion classes vanish, the holonomy will be G2 or a subgroup of G2. The covariant
derivative of the 3-form can be expressed as92

∇lφabc = Tlm gmn(∗φ)nabc, (5.33)

with the torsion tensor given by

Tlm = τ0

4
glm − (τ3)lm + (τ1)lm − (τ2)lm . (5.34)

The Killing-Yano condition 4∇Xφ = iXdφ implies iX∇Xφ = 0. This together with (5.33) and (5.34)
show that for φ being a Killing-Yano tensor only a non-zero τ 0 component is allowed. These
structures are known as nearly parallel. Thus, for every nearly parallel G2 structure the octonionic
3-form φ is a non-trivial Killing-Yano tensor of order three.

B. Further examples

1. Almost contact structures

The calculations performed above show the validity of the Papadopoulos list for Killing-Yano
tensors in G structures of the Berger type. Below we will focus on cases which are not of this type,
and which consequently do not appear in the Papadopoulos list. This is the case for the almost
contact structures.

Almost contact structures are defined in d = 2n + 1 dimensions114 and are intimately ligated to
almost Kahler structures in dimension d = 2n + 2. In fact, the cone of an almost contact structure
defines an almost Kahler structure and when the structure is Kahler the almost contact structure
is known as Sasakian. Sasakian structures are reviewed for instance in Refs. 96–101. When the
Kahler cone metric is Ricci-flat, thus Calabi-Yau, then the odd dimensional metric is known as
Einstein-Sasaki.

In formal terms, an almost contact structure is a U(n) × 1 ∈ SO(2n + 1) structure. It is
composed by a metric g2n + 1 defined over a space M2n + 1 together with a selected vector field
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ξ ∈ TM2n + 1 whose dual form will be denoted as η ∈ T*M2n + 1, and a morphism φ: TM2n + 1

→ TM2n + 1 satisfying the conditions

g2n+1(φX, φY ) = g2n+1(X, Y ) − η(X ) ⊗ η(Y ),

φ2 = −I + η ⊗ ξ. (5.35)

The fundamental form for this structure is � = g2n + 1(X, φY). The cone over an almost contact
structure,

g2n+2 = dr2 + r2g2n+1, (5.36)

is defined over M2n + 2 = R>0 × M2n + 1. This manifold admits an almost complex structure J
described by the following actions:

J∂r = −1

r
ξ, J X = φX + rη(X )∂r . (5.37)

By decomposing a vector field eX ∈ R>0 × M2n+1 into a radial and angular part as eX = (a, X ), it is
found from (5.35) and (5.37) that the action of the almost complex structure over eX is

J (a, X ) = (rη(X ), φX − a

r
ξ ). (5.38)

The lifted Levi-Civita connection e∇ over the cone is defined through

e∇∂r ∂r = 0, e∇X∂r = e∇∂r X = X

r
,

e∇X Y = ∇X Y − rg(X, Y )∂r . (5.39)

Here, ∇ is the Levi-Civita connection for the metric g2n + 1 of the almost contact structure. From
(5.39) and (5.37), it is deduced that

(e∇∂r J )∂r = (0, 0), (e∇∂r )X = (0, 0),

(∇X J )∂r = (0,
1

r
(−∇Xξ + φX )), (5.40)

(e∇X J )Y = (r∇Xη(Y ) − rg2n+1(X, φY ), (∇Xφ)Y − g2n+1(X, Y )ξ + η(Y )X ).

The Kahler condition is equivalent to the vanishing of all the covariant derivatives (5.40) and this
holds when

∇Xξ = φX,

∇Xη(Y ) = g2n+1(X, φY ), (5.41)

(∇Xφ)Y = g2n+1(X, Y )ξ − η(Y )X.

The last three conditions define a Sasakian structure. Alternatively, the second (5.41) implies that ξ

is Killing and the first and the third ones may combine to obtain

∇X (dη) = −2X∗ ∧ η. (5.42)

This equation implies in particular that d*dη = (n − 1)η and, by taking this into account, it follows
that (5.42) can be expressed as

∇X (dη) = − 1

n − 1
X∗ ∧ d∗dη. (5.43)

Since dη is closed the last equation shows that dη is a conformal Killing tensor.126 This, together
with the fact that η is also a conformal Killing 1-form, implies that the combinations

ωk = η ∧ (dη)k, (5.44)

are all Killing tensors of order 2k + 1.126
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There exist other almost contact structures, different from Sasaki ones, which also admit Killing-
Yano tensors. Generic almost contact structures are characterized by the irreducible components of
the covariant derivative ∇� of the fundamental form.103, 104 In representation theoretical terms this
derivative belongs to T*M ⊗ u(n)⊥. One may decompose the cotangent space as

T ∗M = Rη + η⊥, (5.45)

from where it follows that

so(2n + 1) � 
2T ∗M = 
2η⊥ + η⊥ ∧ Rη

= u(n) + u(n)⊥|ξ⊥ + η⊥ ∧ Rη. (5.46)

From (5.46), it is obtained that

u(n)⊥ = u(n)⊥|ξ⊥ + η⊥ ∧ Rη. (5.47)

Therefore, the covariant derivative ∇� belongs to

∇� ∈ T ∗M ⊗ u(n)⊥ = η⊥ ⊗ u(n)⊥|ξ⊥ + η ⊗ u(n)⊥|ξ⊥

+η⊥ ⊗ η⊥ ∧ η + η ⊗ η⊥ ∧ η. (5.48)

The respective components are

∇iφ jk, ∇mφ jk, ∇iφmk, ∇mφmk, (5.49)

with the indices i, j, k corresponding to the η⊥ directions and m to the η direction. But these
components are not irreducible, and in fact it was shown in Refs. 103 and 104 that there is a further
decomposition into 12 irreducible classes given schematically as

η⊥ ⊗ u(n)⊥|ξ⊥ = C1 + C2 + C3 + C4,

η⊥ ⊗ η⊥ ∧ η = C5 + C6 + C7 + C8 + C9 + C10,

η ⊗ u(n)⊥|ξ⊥ = C11, η ⊗ η⊥ ∧ η = C12. (5.50)

More precisely, the space C(V) of 3-form tensors with the same symmetries of ∇� is

C(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (x, z, y) = −T (x, φy, φz) + η(y)T (x, ξ, z) + η(z)T (x, y, ξ )},
and can be decomposed as

C(V ) =
12⊕

i=1

Ci (V ),

with the irreducible components Ci(V) given by

C1(V ) = {T ∈ C(V ) | T (x, x, y) = −T (x, y, ξ ) = 0},

C2(V ) = {T ∈ C(V ) | T (x, y, z) + T (y, z, x) + T (z, x, y) = 0, T (x, y, ξ ) = 0},

C3(V ) = {T ∈ ⊗3V | T (x, y, z) = T (φx, φy, z),
∑

c12T (x) = 0},

C4(V ) = {T ∈ ⊗3V | T (x, y, z) = 1

2n − 1

[
(g(x, y) − η(x)η(y))c12T (z)

− 1

2n − 1
(g(x, z) − η(x)η(z))c12T (y) − g(x, φy)c12T (φz)

+g(x, φz)c12T (φy)

]
, c12T (ξ ) = 0},



043509-23 O. P. Santillan J. Math. Phys. 53, 043509 (2012)

C5(V ) = {T ∈ ⊗3V | T (x, y, z) = 1

2n

[
g(x, φz)η(y)c12T (φξ ) − g(x, φy)η(z)c12T (φξ )

]
},

C6(V ) = {T ∈ ⊗3V | T (x, y, z) = 1

2n

[
g(x, y)η(z)c12T (ξ ) − g(x, z)η(y)c12T (φξ )

]
},

C7(V ) = {T ∈ ⊗3V | T (x, y, z) = T (y, x, ξ )η(z) − T (φx, φz, ξ )η(y), c12T (ξ ) = 0},

C8(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (y, x, ξ )η(z) − T (φx, φz, ξ )η(y), c12T (ξ ) = 0},

C9(V ) = {T ∈ ⊗3V | T (x, y, z) = T (y, x, ξ )η(z) + T (φx, φz, ξ )η(y)},

C10(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (y, x, ξ )η(z) + T (φx, φz, ξ )η(y)},

C11(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (ξ, φy, φz)η(x)},

C12(V ) = {T ∈ ⊗3V | T (x, y, z) = −T (ξ, ξ, z)η(x)η(y) − T (ξ, y, ξ )η(x)η(z)},
where the following quantities

c12T (x) =
∑

T (ei , ei , x),

c12T (x) =
∑

T (ei , φei , x),

have been introduced, with ei an arbitrary orthonormal basis.
It should be remarked that some of the classes Ci may vanish for lower enough dimensions. For

n = 1, the covariant derivative ∇� belongs to C5 ⊕ C6 ⊕ C9 ⊕ C12. The case n = 2 corresponds to
the structures studied in Refs. 120 and 121, and for this dimension almost contact structures belongs
to C2 ⊕ C4 ⊕ C6 ⊕ C8 ⊕ C10 ⊕ C12. Only for n ≥ 3 all the classes may not vanish.

The classification of the structures goes as follows. When all the classes vanish the structure
is known as cosympletic, C1 structures are nearly K-cosympletic, C5 are α-Kenmotsu manifolds,
C6 are α-Sasakian and in particular, Sasakian structures belong to this class. Other structures are
C5 ⊕ C6 which are known as trans-Sasakian, C2 ⊕ C9 which are almost cosympletic, C6 ⊕ C7 which
are quasi-Sasakian, C1 ⊕ C5 ⊕ C6 which are nearly trans-Sasakian and C1 ⊕ C2 ⊕ C9 ⊕ C10 which
are quasi K-cosympletic and C3 ⊕ C4 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8 which are normal ones. Properties of
these structures may be found in Refs. 105 and 106 and references therein.

The class for which � is Killing-Yano is the one for which ∇� is totally antisymmetric, and
this is the case when the unique non-vanishing class is C1. Therefore, for nearly K-cosympletic
structures are the ones for which the fundamental form � is a Killing-Yano tensor of order two.
These structures are characterized by the condition ∇XφX = 0, i.e, ∇XφY + ∇YφX = 0. Properties
of these structures were studied for instance in Refs. 107–113.

2. SO(3) structures in SO(5) and higher dimensional generalizations

Let us consider now SO(3) structures in five dimensions. Given a five-dimensional manifold M5

with a metric g5 an SO(3) structure is the reduction of the frame bundle to a SO(3) sitting in SO(5).115

One has the decomposition so(5) = so(3) ⊕ V with V the unique seven-dimensional fundamental
representation of so(3). The space R5 is isomorphic to space of 3 × 3 symmetric traceless matrices
S2

0 R3, the isomorphism can be expressed by means of the mapping

(x1, x2, x3, x4, x5) ←→ X =
( x1√

3
− x4 x2 x3

x2
x1√

3
+ x4 x5

x3 x5 − 2x1√
3

)
. (5.51)
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These matrices define the unique irreducible representation ρ of SO(3) in R5 given as follows:

ρ(h)X = h Xh−1, h ∈ SO(3). (5.52)

For an element X, its characteristic polynomial PX(λ) invariant under the action of ρ, i.e, Pρ(h)X(λ)
= PX(λ), is given by

PX (λ) = det(X − λI ) = −λ3 + g(X, X )λ + 2
√

3

9
ϒ(X, X, X ), (5.53)

with

g(X, X ) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 ,

ϒ(X, X, X ) = 3
√

3

2
det X = x1

2
(6x2

1 + 6x2
2 − 2x2

3 − 3x2
4 − 3x2

5 ) + 3
√

3x4

2
(x2

5 − x2
3 ) + 3

√
3x2x3x5.

By introducing a 3-tensor ϒ ijk by the relation ϒ(X, X, X) = ϒ ijkxixjxk, it follows that

ϒi jk = ϒ(i jk),

ϒi j j = 0, (5.54)

ϒ jkiϒlni + ϒl j iϒkni + ϒkliϒ jni = g jk gln + gl j gkn + gkl g jn,

where the tensor gij is defined through the relation g(X, X) = gijxixj. In these terms for a given
manifold M5 with a metric g5, an SO(3) structure is given in terms of a tensor ϒ of rank three for
which the associated linear map constructed in terms of Z ∈ TM5 given by

ϒi j = (ϒk
i j Zk) ∈ End(T M5),

satisfying the following conditions:

T r (ϒZ ) = 0,

g(X, ϒZ Y ) = g(Z , ϒY X ) = g(Y, ϒX Z ), (5.55)

ϒ2
Z Z = g(Z , Z )Z .

There always exist a basis ea such that

g5(X, X ) = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4 + e5 ⊗ e5, (5.56)

which is defined up to an SO(3) transformationeea = ρ(h)ea , and such that

ϒ = e1

2
⊗ (6e1 ⊗ e1 + 6e2 ⊗ e2 − 2e3 ⊗ e3 − 3e4 ⊗ e4 − 3e5 ⊗ e5)

+3
√

3e4

2
⊗ (e5 ⊗ e5 − e3 ⊗ e3) + 3

√
3e2 ⊗ e3 ⊗ e5.

This defines a SO(3) structure over (M5, g5).
The types of possible SO(3) structures are defined in terms of the covariant derivative of ϒ ijk. The

situation is different from the other G structures considered above, as this tensor is totally symmetric,
and one may try to study in which situations ϒ ijk is a Killing tensor instead a Killing-Yano one. The
Killing condition ∇(iϒ jkl) can be rewritten as

∇Xϒ(X, X, X ) = 0. (5.57)

Fortunately, structures satisfying this condition have been considered in Refs. 116 and 117 and we
can just borrow the description from that references. The condition (5.57) resembles the nearly
Kahler one ∇XJ(X) = 0, and for this reason SO(3) structures satisfying this condition are known as
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nearly integrable in the terminology of Refs. 116 and 117. For example, there exist only three nearly
integrable structures with eight-dimensional symmetry groups

M+ = SU (3)/SO(3), M0 = (SO(3) ×ρ R5)/SO(3), M− = SL(3, R)/SO(3).

Further examples with the symmetry and lower dimensional groups were found in Refs. 116 and
117 and on five-dimensional Lie groups in Ref. 119.

In addition to these examples, it was shown in Ref. 118 that tensors satisfying the conditions
(5.54) exist in distinguished dimensions nk = 3k + 2, where k = 1, 2, 4, 8, as observed also
by Bryant. The numbers k = 1, 2, 4, 8 are the dimensions of the division algebras and in these
dimensions the orthogonal group may be reduced to the subgroups Hk ⊂ SO(nk), with H1 = SO(3),
H2 = SU(3), H4 = Sp(3), and H8 = F4. Nearly, integrable geometries can be defined in all these
dimensions by the condition (5.57) and it turns out that for all these geometries ϒ is a Killing tensor.
Examples of these geometries can be found in Ref. 118.

VI. DISCUSSION

In the present work, some of the applications of Killing-Yano tensors in general relativity and
supersymmetric quantum field theory have been reviewed. Additionally, the Papadopoulos list of G
structures whose G invariant tensors are Killing-Yano has been reproduced and enlarged to cases
which do not appear in the Berger list. It should be remarked that the results presented here about G
structures do not consist in a no go theorem. For instance, we have shown that between the SU(3)
structures, the nearly Kahler are the ones for which their almost Kahler 2-form is Killing-Yano. But
this does not imply the absence of Killing-Yano for other SU(3) structures. In fact, the presence of
Killing-Yano tensors in half-flat manifolds, which are outside this classification, are under current
investigation.122 What the present work is showing is that for these other structures the presence of
a Killing-Yano tensor may be a special situation, while for the nearly Kahler case the presence of
hidden symmetries is something generic. The same considerations hold for the other G structures
studied.

The presence of these hidden symmetries in these structures can be of interest in the AdS/CFT
correspondence. For instance, we have shown that nearly Kahler, weak G2 holonomy or Einstein-
Sasaki manifolds do admit non-trivial Killing-Yano tensors. The cones over these manifolds
are Ricci-flat and of holonomy G2, Spin(7) and SU(3) holonomy, respectively, and from these
manifolds one may construct ten-dimensional supergravity solutions whose near horizon lim-
its are the form AdS3 × (weak G2), AdS4 × (nearly Kahler), and AdS5 × (Einstein-Sasaki). In
some regimes, certain anomalous dimensions of the dual quantum field theories may be calcu-
lated by studying strings configuration over these backgrounds. The energy and the conserved
quantities for the movement of these strings give information about the anomalous dimensions
of the dual theory. It is even possible to draw conclusions about the dual theory by studying
particle limits of that string. For example, in Ref. 123 anomalous long Bogomoln’yi-Prasad-
Sommerfeld (BPS) operators are matched to massless point-like strings in AdS5 backgrounds
with the Einstein-Sasaki spaces found in Ref. 124 as internal spaces, and the conserved charges
for that particle-like movement gives information about the anomalous dimensions of that oper-
ators. Thus, the presence of hidden symmetries in these backgrounds is of theoretical interest,
and it may be an interesting task to understand to which quantum numbers of the dual theory
these Killing-Yano tensors are matched with. Several of these are W-symmetries, as pointed out in
Ref. 73, but a more concrete description still is desirable.

Another interesting task could be to understand more deeply whether or not the relation between
the algebraic type of the curvature for a given space time and the presence of hidden symmetries,
which is known for Killing-Yano tensors of order two in four dimensions, can be generalized to
higher dimensions and for tensors of higher rank. In our opinion, these tasks are of theoretical interest
and deserve further attention.
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