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Recently, exact agreement has been found between bulk and boundary three-point
functions in AdS3�S3�T4 with Neveu-Schwarz-Neveu-Schwarz �NSNS� fluxes.
This represents a nontrivial check of AdS/CFT correspondence beyond the super-
gravity approximation as it corresponds to an exact worldsheet computation. When
taking a closer look at this computation, one notices that a crucial point for the
bulk-boundary agreement to hold is an intriguing mutual cancellation between
worldsheet contributions corresponding to the AdS3 and to the S3 pieces of the
geometry, that results in a simple factorized form for the final three-point function.
In this note we review this cancellation and clarify some points about the analytic
relation between the SU�2� and the SL�2,R� structure constants. In particular, we
dicuss the connection to the Coulomb gas representation. We also make some
comments on the four-point function. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3119003�

I. INTRODUCTION

Exact agreement has been observed between boundary and bulk three-point functions in
AdS3�S3�T4 with Neveu-Schwarz-Neveu-Schwarz �NSNS� fluxes. In Refs. 1 and 2, Gaberdiel
and Kirsch, and Dabholkar and Pakman, computed three-point functions of certain chiral primary
states for type IIB string theory on AdS3�S3�T4 in the tree-level approximation, and the result-
ing expressions were compared with the corresponding correlators in the dual two-dimensional
conformal field theory at the orbifold point. As a result, exact agreement was found between bulk
and boundary observables at large N. In Ref. 3 the analysis of this holographic agreement was
extended to the case of chiral N=4 operators, and the operators of spectral flowed sectors were
considered in Ref. 4. The agreement was also studied from the supergravity point of view in Ref.
5.

The exact agreement found in Refs. 1–3 not only represents a highly nontrivial check of
AdS/CFT correspondence beyond the supergravity approximation, but it can also be seen as evi-
dence that a new nonrenormalization theorem holds for string theory in this background. This is
because the bulk and boundary computations are performed at different points of the moduli
space. This nonrenormalization mechanism was recently studied in Ref. 6.

When going through the worldsheet computation of Refs. 1 and 2, one immediately notices
that a crucial point to find agreement between bulk and boundary observables is the surprising
cancellation of all the factors in the worldsheet three-point functions that mix the momenta of
vertex operators. Since the superstring �-model in AdS3�S3�T4 with NSNS fluxes corresponds
to the N=1 Wess–Zumino–Novikov–Witten �WZNW� on SL�2,R��SU�2��U�1�4, it turns out
that such cancellation gets translated into a remarkable simplification that happens between
SL�2,R� and SU�2� structure constants when both are brought together.
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To those who are familiarized with the minimal Liouville gravity �MLG� �or, say the minimal
string theory�, the cancellation between SL�2,R� and SU�2� structure constants could seem remi-
niscent of the simplification that happens between three-point functions in Liouville field theory
�LFT� and the three-point function in the generalized minimal models �GMMs�. It was pointed out
by Zamolodchikov that even though the analytic relation between GMM and LFT might give rise
to the idea that GMM observables are simply an analytic continuation of the LFT quantities for
pure imaginary values of the Liouville parameter b, it is not actually the case. It was shown in Ref.
7 that the GMM structure constants are not the mere analytic continuation of the LFT ones. In fact,
contrary to one’s expectation, GMM structure constants turn out to be, up to a proper renormal-
ization of the vertex operators, the inverse of LFT structure constants, in the sense that the product
of both quantities yields a remarkably simple factorized expression such as ��i=1

3 f�ai�, where ai

are the momenta of the Liouville vertex operators.
It was noticed in Ref. 2 that the cancellation that takes place between the SU�2� and the

SL�2,R� supersymmetric structure constants when computing three-string amplitudes in AdS3

�S3�T4 is similar to what happens between GMM and LFT observables. This observation is
correct, but, if not interpreted correctly, it might lead to the wrong conclusion that SU�2� observ-
ables cannot be obtained as the analytic continuation of the analogous SL�2,R� observables for
negative values of the WZNW level k. What we want to point out in this note is that, unlike what
happens in the N=1 supersymmetric WZNW model, where the product of SU�2� and SL�2,R�
three-point functions yields a simple factorized form as in MLG, the relation between bosonic
SU�2� structure constants and bosonic SL�2,R� structure constants is different, and it does admit
to be seen as an analytic continuation in k. Such analytic continuation is actually what one
considers in the Coulomb gas approach to the nonrational WZNW theory.

The paper is organized as follows. In Sec. II, we discuss correlation functions in both SL�2,R�
and SU�2� WZNW theory. In Sec. III, we review the calculation of three-point amplitudes of chiral
states in AdS3�S3�T4. We focus our attention on the cancellations that take place between the
AdS3 and the S3 contributions. We discuss the analytic relation between SL�2,R� and SU�2�
structure constants. Section IV contains some concluding remarks. In particular, we make some
comments on the four-point function.

II. CORRELATION FUNCTIONS IN WZNW THEORY

A. SL„2,R…k WZNW correlators from Liouville theory

The N=1 supersymmetric SL�2,R�k̂ WZNW model describes the superstring �-model on the
AdS3 piece of the space-time, where the relation between the AdS3 radius l and the string length

scale ls is given by k̂= l2 / ls
2, so that the semiclassical limit corresponds to k̂ large. This interpre-

tation is consistent with the value of the central charge of the theory,

csl�2� = 3 + 6/k̂ ,

which tends to 3 when k̂ goes to infinity.
The supersymmetric affine algebra of the WZNW theory is generated by the supercurrent

�a�z�+�Ja�z�, where a=1,2 ,3, � is a Grassman variable, and �a�z� represent three free fermions.

The currents Ja generate the affine algebra sl̂�2� of level k̂, which is realized by the following
operator product expansion �OPE�:

Ja�z�Jb�w� �
�abk̂/2

�z − w�2 +
i�abcJc�w�

�z − w�
+ ¯ ,

where �abc=1 and �ab=diag�++−�, with a ,b ,c=1,2 ,3. The generators Ja�z� can be written as
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Ja�z� = ja�z� −
i

k̂
�abc�b�z��c�z� ,

where, in turn, the bosonic currents ja�z� generate sl�2�k of level k= k̂+2. The OPE between the
currents Ja�z� and the fermions �a�z� reads

Ja�z��b�w� �
i�abc�c�w�

�z − w�
+ ¯ , �a�z��b�w� �

�abk̂/2
�z − w�

+ ¯ .

The Sugawara construction yields the stress tensor

T�z� =
1

k̂
�ab�Ja�z�Jb�z� − �a�z� � �b�z�� �1�

that generates the worldsheet Virasoro algebra.
The vertex operators � j�x �z� representing states of the worldsheet theory are given by Vira-

soro primary fields with respect to �1� and expand representations of SL�2,R�. The index j labels
such representation of SL�2,R�, while x is an auxiliary complex variable that allows for the
following realization of the algebra:

ja�z�� j�x�w� = −
Dx

a� j�x�w�
�z − w�

+ ¯ ,

with the differential operators

Dx
+ = x2�x − 2jx, Dx

− = �x, Dx
3 = x�x − j ,

where, as usual, the notation a= + ,−,3 corresponds to the generators J��z�=J1�z�� iJ2�z�.
The conformal dimension of vertex operators � j�x �z� is given by

	sl�2� = −
j�j + 1�
k − 2

, with k = k̂ − 2.

Here, we are interested in correlation functions of these vertex operators. The four-point
correlation function in the SL�2,R�k WZNW theory can be written in terms of the five-point
function in LFT as follows:8

��
i=1

4

� ji
�xi�zi�	

sl�2�

= Xk�j1, j2, j3, j4�x,z� ���
i=1

5

Vai
�zi�	

LFT

, �2�

where 2a1=−b�j1+ j2+ j2+ j4+1�, 2a5
i
1=−b�j1+2ji− j2− j3− j4−b−2−1�, 2a5=−b−1, b−2=k−2,
z1=z, z2=0, z3=1, z4=�, and on the right hand side also holds that z5=x. The correlation function
on the right hand side involves five exponential vertex operators of LFT �see �6� below�. The
function Xk�j1 , j2 , j3 , j4 �x ,z� is given by

Xk�j1, j2, j3, j4�x,z� =
�z�4�a1a2−b2j1j2��z − 1�4�a1a3−b2j1j3�

�x�2a2b−1
�x − 1�2a3b−1

�x − z�2a1b−1 Xk�j1, j2, j3, j4� ,

with1

1When compareing with Ref. 8 take into account the relations �W�x�=��−xb�=Gk
−1�x�b−b2x2−�b2+1�x.
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Xk�j1, j2, j3, j4� =

CW

2 �b�

b5+4b2
�0

2

���b��s

�
���b2�b4�2j1

�
Gk�2 + 
i=1

4
ji��n=2

4
Gk�− 1 − j1 − 2jn + 
i=2

4
ji���b2� j1 + 2jn − 
i=2

4
ji��

��− b2
i=1

4
ji − 2b2��t=1

4
Gk�2jt + 1�

,

�3�

where s=1+
i=1
4 ji, ��x�=��x� /��1−x�, ��b�=−b2��−b2�, and where the special function Gk�x�

obeys the functional relations

Gk�x� = Gk�x − 1���− b2x�, Gk�x� = Gk�− 1 − x − b−2� , �4�

see Ref. 9 and references therein. The overall factor 
CW
2 �b� /b2�0

2 in �3� is a b-dependent function
�namely, a factor independent of ji�, and it can be found in Ref. 8. The SL�2,R�k structure
constants can be obtained from �3� in the limit j1=n=0.

Equation �2� relates correlation functions of two different nonrational theories. It follows from
the remarkable observation, originally due to Fateev and Zamolodchikov,10 that the Knizhnik–
Zamolodchikov equation11 satisfied by the WZNW four-point function generates a solution to the
Belavin–Polyakov–Zamolodchikov equation12 satisfied by the five-point function that involves a
degenerate field of momentum a5=−1 /2b.

Relation �2� permits to understand several nontrivial properties of the pole structure of
SL�2,R�k WZNW four-point function: In Ref. 13 it was shown that the logarithmic dependences
in the AdS3 amplitudes, which can be understood in terms of AdS3 /CFT2 as in Refs. 14 and 15, are
ultimately associate with the OPE V�b+1/b�/2�zi�V−1/2b�x� when ai= �b+1 /b� /2 for i=2,3 ,4. Repre-
sentation �2� is also useful to understand the origin of poles at the point z=x that are associated
with worldsheet instantons.9 While from the perspective of WZNW theory such poles are unex-
pected as they are located in the middle of the moduli space, in terms of LFT these are naturally
understood as emerging in the coincidence limit of two operators V−sb/2�z1�V−1/2b�x�.

The normalization Xk�j1 , j2 , j3 , j4� in �2� is compatible with crossing symmetry of WZNW
theory.8 It can be also shown that Xk�j1 , j2 , j3 , j4� leads to a nice realization of the Hamiltonian
reduction, which here corresponds to the limit x→z.16,17 In this limit, and considering the OPE,

Vai
�zi�V−1/2b�x� = �x − z�2�−V−1/2b+ai

�zi� + �
���b2��b−2 ��2aib
−1 − 1 − b−2�

b4��2aib
−1�

�x − z�2�+V−1/2b−ai
�zi� ,

with ��= �	ai�1/2b−	1/2b−	ai
� and 	a=a�b+b−1−a�, one finds

��
i=1

4

� ji
�xi�zi�	

sl�2�

� �
i=1

4

��1 + b2�2ji + 1�� ���
i=1

4

V−bji
�zi�	

LFT

+ ¯ , �5�

where the symbol � stands for a b-dependent factor and a singular factor �x−z��¯�, while the
ellipses stand for subleading contribution, provided the Seiberg bound ai
 �b+b−1� /2 is obeyed.
Notice that factors ��1+b2�2ji+1�� in �5� can be absorbed in the normalization of Liouville
vertices. Expression �5� can be proven by using formulas �1.28�–�1.29� of Ref. 18, together with
the kind of tricks used in Appendix B of Ref. 13.

The Liouville correlation functions in �3� are defined by

��
i=1

5

Vai
�zi�	

LFT

=� D�e−SL��;���
i=1

5

e�2ai��zi�, �6�

with
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SL��;�� =
1

4

� d2z����̄� + �b + b−1�R�/2�2 + 4
�e�2b�� , �7�

where R is the scalar curvature of the worldsheet and � is a real parameter.19 By integrating out
the zero mode of �, �6� can be expanded as

��
i=1

5

Vai
�zi�	

LFT

= ��− n�b−1�n�
nb + 

i=1

5

ai − b − b−1� �� D�e−SL��;�=0��
i=1

5

e�2ai��zi��
r=1

n

e�2b��wr�,

�8�

where now the path integral is understood as not including the zero mode.20

It is important to notice that expression above admits an integral representation of the form

��
i=1

4

� ji
�xi�zi�	

sl�2�

= Xk�j1, j2, j3, j4��z�−4b2j1j2�1 − z�−4b2j1j3��− n�b−1�n

�� �
r=1

n

d2wr�
r=1

n

�wr�−4a2b�wr − 1�−4a3b�wr − z�−4a1b�wr − x�2�
r�t

n

�wr − wt�−4b2
,

�9�

where

n = b + b−1
1 − 

i=1

5

�i� = 2j1. �10�

As mentioned, for the particular case j1=0 we would obtain the structure constants Csl�2�
��j2 , j3 , j4��Xk�0, j2 , j3 , j4�. Replacing j1=0 in the equation above it yields

Xk�0, j2, j3, j4� = −
��− b2�

2
2 ���b�� j2+j3+j4+1Gk�1 + j2 + j3 + j4�
Gk�− 1�

�
Gk�− j2 + j3 + j4�Gk�j2 − j3 + j4�Gk�j2 + j3 − j4�

Gk�2j2 + 1�Gk�2j3 + 1�Gk�2j4 + 1�
, �11�

where the overall factor CW
2 �b�Gk�−1� /�0

2Gk�1� has been replaced by �b1+4b2
/2
3���1−b2�, taking

into account that in the limit j1→0 one finds �Gk�−1� /Gk�1����−n�= �b2 /2���1+b2�.
Now, let us move on and consider the four-point function in the SU�2�k model.

B. SU„2…k WZNW correlators from minimal models

The N=1 supersymmetric SU�2�k̂ WZNW theory has central charge,

csu�2� = 3 − 6/k̂ .

The affine symmetry is generated by the current algebra sû�2�k̂, realized by the OPE,

Ka�z�Kb�w� �
�abk̂/2

�z − w�2 +
i�abcKc�w�

�z − w�
+ ¯ ,

where �abc=1 and now �ab=diag�+++�, with a ,b ,c=1,2 ,3. It also holds that

Ka�z��b�w� �
i�abc�c�w�

�z − w�
+ ¯ , �a�z��b�w� �

�abk̂/2
�z − w�

+ ¯ .
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As in the case of SL�2,R�k, the generators can be written as

Ka�z� = ka�z� −
i

k̂
�abc�b�z��c�z� ,

where the bosonic currents ka�z� generate the algebra sû�2�k� of level k�= k̂−2, and �a�z� represent
three free fermions.

The vertex operators � j��y �z� are Virasoro primaries of conformal dimension

	su�2� =
j�j + 1�
k� + 2

, with k� = k̂ − 2,

where j� now labels representation of SU�2�, and where, again, y is an auxiliary complex variable,
such that

ka�z�� j��y�w� = −
Ky

a� j��y�w�

�z − w�
+ ¯ ,

with

Ky
+ = y2�y − 2j�y, Ky

− = − �y, Ky
3 = y�y − j�,

and with K��z�=K1�z�� iK2�z�.
Four-point correlation function in the SU�2�k� WZNW theory can be written in terms of the

five-point function in GMM as follows:

��
i=1

4

� ji�
�yi�zi�	

su�2�

= Yk��j1, j2, j3, j4��y,z� ���
i=1

5

W�i
�zi�	

GMM

, �12�

where 2�1=��j1+ j2+ j2+ j4+1�, 2�5
i
1=��j1+2ji− j2− j3− j4+k�+1�, 2�5=�−1, �−2=k�+2, z1

=z, z2=0, z3=1, z4=�, and on the right hand side also holds that z5=y. Equation �12� is the SU�2�
analog of �2�. Function Yk�j1 , j2 , j3 , j4 �y ,z� is given by

Yk��j1�, j2�, j3�, j4��y,z� =
�z�4��2j1�j2�−�1�2��z − 1�4��2j1�j3�−�1�3�

�y�−2�2�−1
�y − 1�−2�3�−1

�y − z�−2�1�−1 Yk��j1�, j2�, j3�, j4�� ,

with

Yk��j1�, j2�, j3�, j4�� = ����2��2j1�+1Pk��
a=1

4
ja� + 1��

i=1

4 ���1 − �2�2ji� + 1��
Pk��2ji��

��
n=2

4

Pk��
l=2

4
jl� − 2jn� − j1�� , �13�

where

Pk��x� = �
n=1

x

��n�2�, x � 1,

while Pk��0�=1. Normalization factor �13� is consistent with the fusion rules of the algebra.21

Expression �12� above also admits an integral representation,10,22,23 namely,
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��i=1

4
� ji�

�yi�zi��su�2�
= Yk��j1�, j2�, j3�, j4���z�4�2j1�j2��1 − z�4�2j1�j3�

�� �r=1
2j1� d2tr�r=1

2j1� �tr�−4�2��tr − 1�−4�3��tr − z�−4�1��tr − y�2�r�l
�tr − tl�4�2

.

This completes the parallelism with the formula �9� for SL�2,R�. Now, we are ready to discuss
string amplitudes in AdS3�S3 in terms of correlation functions of the SL�2,R��SU�2� theory.

III. STRING AMPLITUDES IN AdS3ÃS3

A. AdS3 /CFT2 correspondence and three-point function

According to the AdS3 /CFT2 correspondence, correlation functions of dimension-h operators
in the boundary CFT correspond to string amplitudes on AdS3, namely,

�i=3

N � d2zi��i=1

N
� ji

�xi�zi��worldsheet
� ¯ = ��i=1

N
Ohi

�xi��boundary
, �14�

where the ellipses reflect the contribution of the internal space.2

The indices ji, which label the representations of SL�2,R�, are related to the conformal
dimension hi of vertex operators in the dual theory by the simple relation

hi = − ji. �15�

This can be seen, for instance, by looking at the x-dependence of three-point functions in the
SL�2,R�k WZNW model, which goes like

�� j1
�x1�0�� j2

�x2�1�� j3
�x3����sl�2� = �x12�2�j1+j2−j3��x23�2�j2+j3−j1��x13�2�j3+j1−j2�Csl�2��j1, j2, j3� ,

where �xij�= �xi−xj�. From this we also observe that auxiliary complex variables xi acquire now a
physical meaning, as these are interpreted as the coordinates of the boundary, where the dual CFT2

is defined on.
Unitarity of the worldsheet theory in AdS3 also demands the bound

1 − k � 2j � − 1, k 
 2, �16�

as well as the introduction of the spectral flowed sectors of the sl̂�2�k̂ algebra, which represent
winding strings states in AdS3; see Ref. 9 and references therein.

The boundary two-dimensional conformal field theory that is dual to the type IIB string theory

in AdS3�S3�T4 is some deformation of the symmetric product orbifold SymN�T̃4� of N copies of

T̃4,24 where T̃4 is closely related to T4. This three-dimensional example of holographic correspon-
dence is motivated by the near horizon limit of the D1 /D5 system, where the geometry AdS3

�S3�T4 is seen to emerge. In the S-dual picture, this configuration corresponds to the setting of

Q5= k̂ NS5-branes and Q1 fundamental strings, where the number of copies of T̃4 is given by N
=Q1Q5. The six-dimensional string coupling constant is given by g6

2=Q5 /Q1, and thus the string
perturbative theory is reliable in the large Q1 limit, or N=Q5Q1�Q5. In this limit, string states in

the bulk are mapped to twisted states in SymN�T̃4� that are associated with conjugancy classes with
a single nontrivial cycle of length n. The relation between n and the worldsheet momentum is4,25

2More precisely, the complete prescription for AdS3 /CFT2 would also include contributions coming from disconnected
worldsheet diagrams.38
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n = 2h − 1 + k̂�, 2h = 2,3,4, . . . ,k, � = 0,1,2, . . . ,

where h is associated with index j of the representations of SL�2,R� by �15�, while � labels the
spectral flow sector of SL�2,R� the representation belongs to. Here we will consider the sector
�=0.

We are interested in worldsheet vertex operators that represent chiral string states in AdS3

�S3�T4. As an example, let us consider the worldsheet vertex operators of the form

O j�x�z� = ��x�z� � � j�x�z� � �−1−j�x�z� , �17�

where the fermionic contributions take the form ��x �z�=−�+�z�+2x�3�z�−x2�−�z�. This is a
worldsheet vertex operator associated with chiral string states of the NS sector, written in the
picture �1. In order to compute a three-point function we also need the expression for such a state
in the picture 0. This is obtained by reading off the coefficient of the single pole of the OPE
between the worldsheet supercurrent G�z� and the vertex O j�x �z�. It yields the following form for
the vertex in the picture 0:

Õ j�x�z� = 
J�x�z� +
2

k̂
��x�z��a�z�Dx

a +
2

k̂
��x�z��a�z�Kx

a�O j�x�z� , �18�

where J�x �z�=−J+�z�+2xJ3�z�−x2J−�z�. From this, we see that the computation of the three-point

amplitude �O j1
�x1 �z1�O j2

�x2 �z2�Õ j3
�x3 �z3�� also requires to compute correlators of the form

i�cd
f ��a�z1��b�z2��c�z3��d�z3�� as well as correlators that involve the insertion of current operator

Ja�z3�.
According to �14�, worldsheet operators O ji

�xi �zi� are associated with operators Ohi
�xi� in the

boundary CFT. The relation between SL�2,R� spin j and SU�2� spin j� in �17� is such that the
bosonic contribution to the conformal dimension corresponding to the AdS3�S3 piece3 of the
�-model gives 	sl�2�+	su�2�=0.

In Refs. 1 and 2, three-point functions of chiral operators �17� were shown to agree with
three-point functions in the symmetric product at the orbifold point. In Refs. 2 and 4, the compu-
tation of all the cases is discussed in detail. The worldsheet three-point function of chiral operators
�17� �with one of them written in the picture 0, as in �18�� takes the form

�O j1
�0�0�O j2

�1�1�Õ j3
������worldsheet = k̂2�2 − h1 − h2 − h3�2C�− h2,− h3,− h4� , �19�

where C�j2 , j3 , j4� is given by the product of SL�2,R� and SU�2� structure constants, namely,
C�j2 , j3 , j4�=Csl�2��j2 , j3 , j4�Csu�2��−1− j2 ,−1− j3 ,−1− j4�; that is,

C�j2, j3, j4� � Xk�0, j2, j3, j4�Yk−4�0,− 1 − j2,− 1 − j3,− 1 − j4� . �20�

When all the pieces are brought together, and after some manipulation, expression �19� can be
seen to agree with the three-point functions of the boundary theory.26,27 This agreement exhibited
by bulk and boundary observables is exact, and several steps through the computations combine in
such a subtle form that no doubt remains about this is a highly nontrivial check of AdS/CFT
conjecture. The roles played by the picture-changing operator in the three-point function and by
the precise normalization of the two-point functions are crucial ingredients in the calculation.
Nevertheless, the most striking feature in the calculation is, so far, the fact that all the dependences
that mix the momenta ji in the three-point function Csl�2��j2 , j3 , j4� cancel out against analogous
dependences coming from Csu�2��−1− j2 ,−1− j3 ,−1− j4�. In the next subsections we will review
these cancellations and, more interestingly, we will explain why this fact does not confront the

3Also notice that the relation between k� and k is such that the total central charge of the worldsheet theory saturates c

=3k / �k−2�−3k� / �k�+2�+9=3+6 / k̂+3−6 / k̂+4+5=15, where the contribution of the T4 factor and of the free fermions
were included.

042304-8 G. Giribet and L. Nicolás J. Math. Phys. 50, 042304 �2009�



analytic relation that exists between SL�2,R� and SU�2� structure constants.

B. Cancellations in the supersymmetric three-point function

Let us consider three-point amplitudes of chiral states in type IIB string theory in AdS3�S3

�T4. The bosonic part corresponding to the six-dimensional piece AdS3�S3 is the nontrivial
contribution here. It is given by correlation functions of vertex operators � j�x �z��−1−j�x �z�, which
are the product of correlation functions in the SL�2,R�k̂+2 model and correlation functions in the

SU�2�k̂−2 model, provided the relations k̂=k−2=k�+2 and ji=−1− ji�.
Three-point function in SL�2,R�k WZNW model is obtained from �3� by taking the limit j1

→0. This yields

Xk�0, j2, j3, j4� =
���b�� j2+j3+j4+1

2
2��b2�b4

Gk�1 + j2 + j3 + j4�
Gk�− 1� �

i=2

4
Gk�j2 + j3 + j4 − 2ji�

Gk�2ji + 1�
, �21�

as we wrote in �11�. On the other hand, knowing that �=b, and being aware that if x is a positive
integer then the following identity holds:

Pk��x� = �
n=1

x

��n�2� =
Gk�− 1�

Gk�− 1 − x�
, x � 1,

we obtain the explicit form for the three-point function in the SU�2�k� WZNW model,

Yk��0,− 1 − j2,− 1 − j3,− 1 − j4� =
���b2�Gk�− 1�

Gk�1 + j2 + j3 + j4��i=2

4 ���1 + b2�2ji + 1��Gk�2ji + 1�
Gk�j2 + j3 + j4 − 2ji�

.

�22�

Rewriting this in a more convenient way and putting both �21� and �22� together, we find

Xk�0, j2, j3, j4�Yk��0,− 1 − j2,− 1 − j3,− 1 − j4� =
1

2�

�
i=2

4

�B�ji� , �23�

where B�j� is given by the SL�2,R�k reflection coefficient,

�� j1
�x1�0�� j1

�x2�1�� = �x12�4j1B�j1�, with B�j� = ���b��2j+1 1


b2��1 + �2ji + 1�b2� .

From �23� we observe that the contributions that mixed the momenta ji have disappeared.
Functions Gk coming from both SL�2,R�k and SU�2�k� factors cancel against each other, yielding
a rather simplified factorized form. Therefore, we have reproduced the computation of Refs. 1 and
2 in a very succinct way, showing that the three-point function of chiral states in AdS3�S3�T4

simplifies in such a way that the dependence of the momenta appears completely factorized.
Nevertheless, it is worth mentioning that the way we obtained �23� is not particularly useful,

as it is almost the same that working out the expressions for both SU�2�k� and SL�2,R�k structure
constants directly, as in Refs. 1, 2, and 28. However, what does represent an actual advantage is
looking at the four-point function in terms of this minimal gravity representation �see �47� below�.

C. Two relations between SL„2,R…k and SU„2…k structure constants

We have just seen that in the supersymmetric theory, the three-point functions of the SL�2,R�k

model and that of SU�2�k� model are related by
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Xk�0, j2, j3, j4� �
�i=2

4 �B�ji�

Yk��0,− 1 − j2,− 1 − j3,− 1 − j4�
, �24�

with k�+2=k−2. That is, all the contributions that mix the momenta ji in �3� and �13� disappeared
in �23�. As mentioned, this striking simplification yielding the factorized form �24� is crucial to
find agreement between bulk and boundary observables.

Expression �24� is due to the relations ji�=−1− ji and k−2=k�+2. Roughly speaking, �24�
expresses that supersymmetric SL�2,R�k structure constants are the inverse of supersymmetric
SU�2�k� ones, provided the precise relations between ji� and ji. In turn, �24� is analog to the
relation between three-point functions in GMM and three-point functions in LFT.7

Then, a natural question arises: Does not this inverse proportionality relation confront the fact
that one can analytically continue the expressions from SU�2�k to get its noncompact analog
SL�2,R�k �instead of its inverse�? That is, naively one would expect to find the expression for
SL�2,R�k correlators by reversing the sign of k in the formulas for SU�2�k and performing some
analytic extension; getting something like

Xk�0, j2, j3, j4� � Y−k�0, j2, j3, j4��
i=2

4

�B�ji� . �25�

We will see in Sec. III D that this is actually the case. That is, one can analytically continue
the expressions and prove a relation like �25�. We emphasize that this is not in contradiction with
relation �24� as it is commonly asserted.

D. Analytic continuation in k and the bosonic three-point function

Three-point functions in minimal models coupled to Liouville gravity were computed by
Dotsenko in Ref. 29. When going through the computation of these correlators, which is based on
the Coulomb gas approach, one needs to make sense of expressions typically given by formal
products of the form

�
n=1

x

f�n� �26�

for negative values of the upper index x. We will see below that similar expressions appear when
trying to extend the SU�2�k structure constants for negative values of ji� and k. In order to propose
a reasonable extension for products like �26� when x�0, one can start by noticing that for positive
x it holds

� f�x� = �
n=1

x

f�n� =
�n=1

�
f�n�

�n=x+1

�
f�n�

=
�n=1

�
f�n�

�n=1

�
f�n + x�

. �27�

After that, in a quite natural way, the following extension for the � f�x� function with negative
argument is proposed,29

� f�− x� = �
n=0

x−1

f−1�− n� . �28�

Now, consider this analytic extensions for the products Pk�x� standing in �13�. It yields
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�
n=1

−�l�

��nb2� = b4��l�−1� ���l��
���l�b2��n=1

+�l�

��nb2� �29�

being l an integer and where we used ��x���1−x�=1, ��1+x�=−x2��x�. This permits to make
sense of the following expression:

�
n=−�l�

+�l�

��nb2� = ��− �l��b−4�l�−2, �30�

which will be rederived later in an alternative way.
Now, let us use �28� to show how the SL�2,R�k structure constants can be obtained by analytic

extension of the SU�2�k� quantities, provided the relation k�=−k. Although it might seem we have
already shown this, it is worth noticing that what we showed before is something slightly different:
We showed that, if k�+2=k−2 and ji�=−1− ji, then the SL�2,R�k structure constants are inversely
proportional to SU�2�k� structure constants.

To derive SL�2,R�k structure constants from �13�, we assume k=−k�, and then write

Pk��x� = �
n=1

x

��n�2� = �
n=1

x

��− nb2� = �
n=1

x

�−1�1 + nb2� ,

since now �2=1 / �k�+2�=−b2=−1 / �k−2� �instead of �2= +b2 as before�. According to �28�, for
x�0 we have

Pk��x� =
���x�b2�

��0� 
�
n=1

�x�

��nb2��−1

=
Gk�− 1 − �x��
��0�Gk�− 1�

���x�b2�, x � 0. �31�

That is, if k=−k� and x�0 we get P−k�x��Gk�x−1���−xb2� /Gk�−1�, while if k−2=k�+2 and
x
0, we get something different like P−k�x��Gk�−1� /Gk�−1−x�. Using expression �31� and
Gk�x�=Gk�−1+x���−xb2�, one finds4

Y−k�0, j2, j3, j4� =
���− b2�Gk�− 1����b�� j2+j3+j4+2

b3�
3B�j2�B�j3�B�j4�
Gk�1 + j2 + j3 + j4�

Gk�− 1�

�
Gk�− j2 + j3 + j4�Gk�j2 − j3 + j4�Gk�j2 + j3 − j4�

Gk�2j2 + 1�Gk�2j3 + 1�Gk�2j4 + 1�
. �32�

It is instructive to compare �32� with �11�. This realizes �25�, and this relation between
Xk�0, j2 , j3 , j4� and Yk��0, j2 , j3 , j4� is somehow the inverse of that we found between �21� and �22�.

In Sec. III E we will rederive relation �25� in a different way. In particular, it will allow us to
show how the Coulomb gas representation emerges from the analytic extension of Yk�0, j2 , j3 , j4�
to negative values of k and ji. In other words, we will show that this relation between SL�2,R� and
SU�2� WZNW models is nothing but the same sort of analytic continuation that one considers in
the free field representation of nonrational theories.

E. The Coulomb gas approach and Wakimoto representation

Here, we will reconsider the problem of how to recover SL�2,R�k structure constants from
�13�. That is, we want to obtain

4Here, we have omitted a divergent ��0� factor; see discussion below.
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��i=2

4
� ji

�xi�zi��sl�2�
= �

i�j

�xij�2�ji+j j−jk��zij�−2�	i+	j−	k�Csl�2��j2, j3, j4� ,

with Csl�2��j2 , j3 , j4�=Xk�0, j2 , j3 , j4�, starting from the expression for Yk�0, j2 , j3 , j4� in the SU�2�
case. So, let us consider the quantity

Y−k�0, j2, j3, j4��
i=2

4

�B�ji� � ���b��s��− b2��
i=2

4

��1 + b2�2ji + 1��

�
P−k�s�P−k�j2 + j3 − j4�P−k�j2 − j3 + j4�P−k�− j2 + j3 + j4�

P−k�2j2�P−k�2j3�P−k�2j4�
,

�33�

where s= j2+ j3+ j4+1, and where the symbol � stands for the omission of irrelevant b-dependent
factors. Let us be also reminded of the definition P−k�x�=�n=1

x ��−nb2� with b−2=k−2. Notice also
that a divergent factor ��0� arises in �33�, although we are omitting it here. This factor stands for
the integration over the zero mode in the integral realization,30 i.e., it corresponds to the factor
��−n�=��−2j1� in �8�, see �10�. This factor is eventually cancelled out by another contribution
�−1�0� arising when analytically extending expression �33�; see �45� below.

The first step in rewriting �33� will be to consider the three factors of the form

P−k�j2 + j3 + j4 − 2ja�
P−k�2ja�

=
�r=1

j2+j3+j4−2ja ��− b2r�

�r=1

2ja ��− b2r�
. �34�

Let us write them by splitting the product. In turn, at least formally, we can write

P−k�j2 + j3 + j4 − 2ja�
P−k�2ja�

= �
r=1

2ja

�−1�− b2r��
r=1

2ja

��− b2r� �
r=2ja+1

j2+j3+j4−2ja

��− b2r� = �
r=2ja+1

j2+j3+j4−2ja

��− b2r� .

Again, let us split the product, basically extending what would be valid for the case 2ja+1�
−2ja−1� j2+ j3+ j4−2ja. Then, we write

Pk�j2 + j3 + j4 − 2ja�
Pk�2ja�

= �
r=2ja+1

−2ja−1

��− b2r� �
r=−2ja

j2+j3+j4−2ja

��− b2r� .

Now, we can replace the products �r=−x
x ��−b2r� appearing in the expression above by the

quantity �−b2�−2x−1��−x�, using5

�
r=2ja+1

−2ja−1

��− b2r� = �− b2�4ja+1��2ja + 1� . �35�

Then, �33� would take the form

Y−k�0, j2, j3, j4��
i=2

4

�B�ji� � ���b��s��− b2��− b2�4�1−s��
a=2

4
��2ja + 1�

��− b2�2ja + 1��

��
r=1

s

��− b2r��
b=2

4

�
r=−2jb

j2+j3+j4−jb

��− b2r� . �36�

5It follows from prescription �28�, but it can be also heuristically motivated as follows: First consider the expansion
�r=−x

x ��−b2r�= ���b2x���b2�x−1��¯��b2���0���−b2�¯��−b2x�� / ���1−b2x���1−b2�x−1��¯��1−b2���1���1
+b2�¯��1+b2x��. Then, using ��x+1�=x��x� and replacing ��0�= �−1�−x��−x���x+1�, one finds �35�.
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By manipulating �-functions, we get

Y−k�0, j2, j3, j4��
i=2

4

�B�ji� � ���b��s��− b2�
��j2 − j3 − j4�

��2j2 + 1�

�
�− 1�sIk


s�s�b2���− s���1 + s��a=2

4
��2ja + 1�

��− b2�2ja + 1��
, �37�

where we have defined

Ik = ��− s���s + 1�
s�− 1�s�− b2�2s���b2��s�
r=1

s

��− b2r� � �
r=0

s−1

���1 − b2�r − 2j2����− b2�r − 2j3��

���− b2�r − 2j4��� . �38�

The reason why we preferred to write the expression for Y−k�0, j2 , j3 , j4��i=2
4 �B�ji� in its form

�37� and �38� is that Ik can be identified as the contribution coming from a Dotsenko–Fateev
integral,12,31,32

Ik = ��− s��
r=1

s � d2wr�
r=1

s

�wr�4j2b2
�1 − wr�4j3b2−2 �

r�t

s−1,s

�wr − wt�−4b2
. �39�

This follows from formula �B.9� of the Appendix of Ref. 22.
It is worth noticing that integral �39� is precisely the one that arises in the Wakimoto free field

representation of three-point functions.31 For instance, the exponent of �1−wr�−2+4j3b2
in �39� can

be thought of as coming from the Wick contraction between a SL�2,R�k vertex operator and the
rth screening operator in the Coulomb gas representation. The contributions �wr�+4j2b2

indicate the
presence of highest weight states of discrete representations in the correlator.

Wakimoto free field representation follows from the considering the action

S��,�,�; � =
1

4

� d2z����̄� − bR�/2�2 + �̄ � �̄ + ��̄� + 4
 ��̄e−�2b�� , �40�

where  is an arbitrary constant, ��z� and ��z� form a commutative ghost system, and ��z� is a
boson field with background charge −b=−1 /�k−2.33 The nonvanishing propagators are

���w���z�� =
1

�w − z�
, ���w���z�� = − 2 log�w − z� . �41�

In the large � regime, which corresponds to the near boundary limit in AdS3 space, the vertex
operators take the form

� ji,mi,m̄i
�zi� = ��zi�

ji+mi��z̄i�
ji+m̄ie�2jib��zi� + B�ji���zi�

−1−ji+mi��z̄i�
−1−ji+m̄ie−�2�ji+1�b��zi� + ¯ ,

with

� ji,mi,m̄i
�zi� =� d2xi� ji

�xi�zi�xi
ji+mix̄i

ji+m̄i �42�

for i=2,3 ,4. On the other hand, the screening operators come from the perturbation term in �40�,
taking the form

S�wr� =  ��wr�
�̄�wr�

e−�2b��wr�, �43�

r=1,2 , . . . ,s, with s= j2+ j3+ j4+1.
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This representation yields the integral expression �39� through the Wick contractions standing
in

 s��− s��
r=2

s � d2wr��
i=2

4

��zi�
ji+mi�̄�z̄i�

ji+m̄ie�2bji��zi��
r=2

s

��wr�
�̄�w̄r�

e−�2b��wr�� =0 =  sIk,

where the average �¯� =0 is the functional sum for the action �40� with  =0.
The precise relation between three-point functions in the m-basis and those in the x-basis is

discussed in Ref. 32. There, expressions like the right hand side of �37� were shown to lead to
exact result34 through analytic continuation. Moreover, in Ref. 32 �see Eqs. �2.45� and �2.63�
therein�, it was discussed how the Dotsenko–Fateev integral �39� could be formally continued to
be also expressed in terms of special functions as follows:

Ik = b2
s���b2��s��− 1 − j2 − j3 − j4���2j2 + 1���− j2 − j3 + j4���− j2 + j3 − j4�

�
Gk�− 2 − j2 − j3 − j4�

Gk�− 1� �
a=2

4
Gk�− 1 − j2 − j3 − j4 + 2ja�

Gk�− 2ja − 1�
. �44�

The way of proposing expression �44� is completely analog to what Zamolodchikov and
Zamolodchikov did for LFT in Ref. 35, where the exact expression for Liouville structure con-
stants was obtained from the analytic continuation of the formula of the residues corresponding to
resonant correlators. Considering such analytic continuation, we can replace the piece

�− b2�2s�
r=1

s

��− b2r��
r=0

s−1

��1 − b2�r − 2j2����− b2�r − 2j3����− b2�r − 2j4��

=
�− 1�s

��− s���s + 1�
s�s�b2�
Ik,

arising in �37�, by the following contribution:

−
�− b2�−2s+1��− 1 − j2 − j3 − j4���− j2 − j3 + j4���− j2 + j3 − j4�

��0�

�
��2j2 + 1�Gk�− 2 − j2 − j3 − j4�

Gk�− 1� �
a=2

4
Gk�− 1 − j2 − j3 − j4 + 2ja�

Gk�− 2ja − 1�
, �45�

where the factor �−1�0� arises from writing �−1�−s��−s���s+1�=��0�. As anticipated, this factor
precisely cancels the divergent factor ��−2j1�=��0� standing from evaluating j1=0 in �8�. Taking
into account functional properties �4�, one finds

Y−k�0, j2, j3, j4��
i=2

4

�B�ji� � ���b�� j2+j3+j4+1Gk�1 + j2 + j3 + j4�
Gk�− 1� �

a=2

4
Gk�j2 + j3 + j4 − 2ja�

Gk�2ja + 1�
.

That is, we recovered SL�2,R�k structure constants from the expression for SU�2�k� model with
k�=−k; namely, Y−k�0, j2 , j3 , j4��i=2

4 �B�ji��Csl�2��j2 , j3 , j4�. This is nothing but �25�, what we
proved in Sec. III D by means of relation �31�.

IV. DISCUSSION

We have explained how the fact that three-point superstring amplitudes of chiral states in
AdS3�S3 lead to a factorized expression does not confront the fact that formulas of SL�2,R�k

WZNW model can be obtained from those of SU�2�k� WZNW model by analytically continuing in
k. This turns out to be related to the shifting of the Kac-Moody level k in the supersymmetric
theory: While in the bosonic theory, an appropriate analytic continuation of SU�2�k� correlators
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leads to the expression of SL�2,R�k correlators �with k�=−k�, in the supersymmetric theory both
observables are, roughly speaking, one the inverse of the other �with k�+2=k−2�. In this sense, it
is fair to say that the computation in the superstring theory is more similar to the one in bosonic
MLG than the one in bosonic WZNW model itself. It is the magic of supersymmetry that is behind
the cancellation in the three-point function, and not merely the similarity between the Liouville
theory and the SL�2,R� WZNW theory. This cancellation in the three-point function is the key
point for the matching between bulk and boundary observables,1,2 and this was the motivation to
revisit this calculation herein.

Before concluding, let us make some comments on the four-point function. First, let us recall
the relation between Liouville momenta �i and the spin variable ji in the SL�2,R�k WZNW model
�k−2=b−2�, namely,

a1 = −
b

2
�j1 + j2 + j3 + j4 + 1�, ai = −

b

2
�j1 + 2ji − j2 − j3 − j4 − b−2 − 1�

for i=2,3 ,4. On the other hand, the relation between the GMM momenta �i and the SU�2�k�
WZNW model �k�+2=�−2� spin variables ji� is the following:

�1 =
�

2
�j1�, j2�, j3�, j4� + 1�, �i =

�

2
�j1� + 2ji� − j2� − j3� − j4� + �−2 − 1�

for i=2,3 ,4. Then, talking into account that in the supersymmetric theory k�+2=k−2 and that
chiral states obey ji=−1− ji�, we find

ai = �i + b �46�

for the five states i=1,2 ,3 ,4 ,5. Remarkably, �46� is exactly the relation between the momenta �i

and ai in MLG, as it is necessary for the vertex operators Vai
�W�i

to have conformal dimension
one with respect to the full stress tensor TLiouville+Tminimal model. In turn, restrictions on the mo-
menta in the supersymmetric correlators in AdS3�S3�T4 agree with requirements for conformal
invariance in the MLG.

Using �46� we can show that the expression for the bosonic part of the worldsheet four-point
functions �O j1

O j2
O j3

O j4
� simplifies in a remarkable way. Recalling

Pk�x� = �
n=1

x

��n�2� =
Gk�− 1�

Gk�− 1 − x�
, x 
 0,

and taking into account ji�=−1− ji �for i=1,2 ,3 ,4�, we can write the SU�2�k� four-point function
as follows:

Yk��− 1 − j1,− 1 − j2,− 1 − j3,− 1 − j4� =
���b2��−2j1−1

Gk�2 + 
a=2

4
ja��n=1

4
Gk�2jn + 1�

���− �2jn + 1�b2�

�
1

�n=2

4
Gk�− 1 − 2jn − j1 + 
i=2

4
ji�

. �47�

Considering both �3� and �47� together, the final expression reads6

6Notice that there exists a remarkable similarity between this expression and Eq. �23�.
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Xk�j1, j2, j3, j4�Yk��− 1 − j1,− 1 − j2,− 1 − j3,− 1 − j4� =
CW

2

�0
2

�z�2�1 − z�2

�x�2�1 − x�2�z − x�2

�

3

b3+4b2�
i=1

4 �B�ji�
��2bai − b�

,

where we have chosen �
�2�b2�b4−2b2
=1. Although the computation of worldsheet four-point

function, in addition, would require to deal with the insertion of picture-changing operators in

�O j1
O j2

Õ j3
Õ j4

�, it is still encouraging that the bosonic piece of the correlator �O j1
O j2

O j3
O j4

�
yields a very simple form in terms of MLG five-point functions. In fact, one gets

��
i=1

4

� ji
�xi�zi�	

sl�2�

���
i=1

4

�−1−ji
�xi�zi�	

su�2�

=

3

b3+4b2

CW
2

�0
2 �

i=1

4 �B�ji�
��2bai − b�

�
�z�2�1 − z�2

�x�2�1 − x�2�z − x�2��
i=1

5

Uai
�zi�	

MLG

,

�48�

where ��i=1
5 Uai

�zi��MLG on the right hand side refers to the five-point correlation function in MLG;
that is,

��
i=1

5

Uai
�zi�	

MLG

=��
i=1

5

Vai
�zi�	

LFT

���
i=1

5

Wai−b�zi�	
GMM

, �49�

with z2=0, z3=1, z4=�, while z1=z, z5=x. It is worth mentioning that N-point correlation numbers
in MLG were recently computed18,36,37 for particular values of N−3 of the N momenta ai. There-
fore, the fact one has access to these observables makes relation �48� quite interesting. For in-
stance, one could raise the question whether holographic agreement for extremal four-point func-
tions in AdS3�S3�T4 is also observed as it happens in AdS5�S5. To answer this kind of
questions, we have to learn more about the nonrenormalization mechanism and, more importantly,
we have to get more information about the boundary four-point function. Unfortunately, four-point
functions in the symmetric product to compare with are not available; a computation of these
observables would be a major progress.

ACKNOWLEDGMENTS

This work was partially supported by University of Buenos Aires, Agencia ANPCyT, and
CONICET, through Grant Nos. UBACyT X861, PICT34557, and PIP6160. G.G. thanks Ari Pak-
man and Leonardo Rastelli for previous collaboration and for very interesting discussions. He is
also grateful to Matt Kleban and the members of the Center for Cosmology and Particle Physics
CCPP of New York University NYU for their hospitality during his stay, where this work was
finished.

1 M. Gaberdiel and I. Kirsch, J. High Energy Phys. 04, 050 �2007�.
2 A. Dabholkar and A. Pakman, e-print arXiv:hep-th/0703022.
3 A. Pakman and A. Sever, Phys. Lett. B 652, 60 �2007�
4 G. Giribet, A. Pakman, and L. Rastelli, JHEP 06, 013 �2008�.
5 M. Taylor, JHEP 06, 010 �2008�.
6 J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, J. High Energy Phys. 0903, 030 �2009�.
7 Al. Zamolodchikov, Theor. Math. Phys. 142, 183 �2005�.
8 J. Teschner, Phys. Lett. B 521, 127 �2001�.
9 J. Maldacena and H. Ooguri, Phys. Rev. D 65, 106006 �2002�.

10 A. Zamolodchikov and V. Fateev, J. Nucl. Phys. 43, 657 �1986�.
11 V. Knizhnik and A. Zamolodchikov, Nucl. Phys. B 247, 83 �1984�.
12 A. Belavin, A. Polyakov, and A. Zamolodchikov, Nucl. Phys. B 241, 333 �1984�.

042304-16 G. Giribet and L. Nicolás J. Math. Phys. 50, 042304 �2009�

http://dx.doi.org/10.1088/1126-6708/2007/04/050
http://dx.doi.org/10.1016/j.physletb.2007.06.041
http://dx.doi.org/10.1088/1126-6708/2008/06/013
http://dx.doi.org/10.1088/1126-6708/2008/06/010
http://dx.doi.org/10.1088/1126-6708/2009/03/030
http://dx.doi.org/10.1016/S0370-2693(01)01181-9
http://dx.doi.org/10.1103/PhysRevD.65.106006
http://dx.doi.org/10.1016/0550-3213(84)90374-2
http://dx.doi.org/10.1016/0550-3213(84)90052-X


13 G. Giribet and C. Simeone, Int. J. Mod. Phys. A 20, 4821 �2005�.
14 E. D’Hoker, D. Freedman, S. Mathur, A. Matusis and L. Rastelli, e-print arXiv:hep-th/9908160.
15 D. Freedman, S. Mathur, A. Matusis, and L. Rastelli, Phys. Lett. B 452, 61 �1999�.
16 P. Furlan, A. Ganchev, R. Paunov, and V. Petkova, Phys. Lett. B 267, 63 �1991�.
17 P. Furlan, A. Ganchev, R. Paunov, and V. Petkova, Nucl. Phys. B 394, 665 �1993�.
18 V. Fateev and A. Litvinov, JETP Lett. 84, 531 �2007�.
19 Yu. Nakayama, Int. J. Mod. Phys. A 19, 2771 �2004�.
20 M. Goulian and M. Li, Phys. Rev. Lett. 66, 2051 �1991�.
21 O. Andreev, Phys. Lett. B 363, 166 �1995�.
22 V. Dotsenko and V. Fateev, Nucl. Phys. B 240, 312 �1984�.
23 V. Dotsenko and V. Fateev, Nucl. Phys. B 251, 691 �1985�.
24 N. Seiberg and E. Witten, JHEP 04, 017 �1999�.
25 R. Argurio, A. Giveon and A. Shomer, JHEP 12, 003 �2000�.
26 O. Lunin and S. Mathur, Commun. Math. Phys. 219, 399 �2001�.
27 O. Lunin and S. Mathur, Commun. Math. Phys. 227, 385 �2002�.
28 O. Aharony, B. Fiol, D. Kutasov, and D. Sahakyan, Nucl. Phys. B 679, 3 �2004�.
29 V. Dotsenko, Mod. Phys. Lett. A 6, 3601 �1991�.
30 P. Di Francesco and D. Kutasov, Nucl. Phys. B 375, 119 �1992�.
31 K. Becker and M. Becker, Nucl. Phys. B 418, 206 �1994�.
32 G. Giribet and C. Núñez, JHEP 06, 010 �2001�.
33 M. Wakimoto, Commun. Math. Phys. 104, 605 �1986�.
34 J. Teschner, Nucl. Phys. B 546, 390 �1999�; 546, 369 �1999�; 571, 555 �2000�.
35 A. Zamolodchikov and Al. Zamolodchikov, Nucl. Phys. B 477, 577 �1996�.
36 A. Belavin and A. Zamolodchikov, Teor. Mat. Fiz. 147, 339 �2006�.
37 I. Kostov and V. Petkova, Teor. Mat. Fiz. 146, 132 �2006�.
38 J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, JHEP 12, 026 �1998�.

042304-17 Comment on three-point function in AdS�3�/CFT�2� J. Math. Phys. 50, 042304 �2009�

http://dx.doi.org/10.1142/S0217751X05021270
http://dx.doi.org/10.1016/S0370-2693(99)00229-4
http://dx.doi.org/10.1016/0370-2693(91)90525-U
http://dx.doi.org/10.1016/0550-3213(93)90227-G
http://dx.doi.org/10.1142/S0217751X04019500
http://dx.doi.org/10.1103/PhysRevLett.66.2051
http://dx.doi.org/10.1016/0370-2693(95)01226-G
http://dx.doi.org/10.1016/0550-3213(84)90269-4
http://dx.doi.org/10.1016/S0550-3213(85)80004-3
http://dx.doi.org/10.1088/1126-6708/1999/04/017
http://dx.doi.org/10.1088/1126-6708/2000/12/003
http://dx.doi.org/10.1007/s002200100431
http://dx.doi.org/10.1007/s002200200638
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.041
http://dx.doi.org/10.1142/S0217732391004152
http://dx.doi.org/10.1016/0550-3213(92)90337-B
http://dx.doi.org/10.1016/0550-3213(94)90245-3
http://dx.doi.org/10.1088/1126-6708/2001/06/010
http://dx.doi.org/10.1007/BF01211068
http://dx.doi.org/10.1016/S0550-3213(99)00072-3
http://dx.doi.org/10.1016/0550-3213(96)00351-3
http://dx.doi.org/10.1088/1126-6708/1998/12/026

